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Введение
Полностью твердотельные тонкопленочные 

литий-ионные аккумуляторы [1] представляют 
собой особую, относительно малотиражную, но 
очень важную категорию таких устройств. Пол-
ностью твердотельные аккумуляторы обладают 
определенными преимуществами по сравнению 
с  традиционными аккумуляторами с  жидкими 
электролитами. Во-первых, отсутствие органи-
ческих растворителей повышает безопасность 
аккумулятора за счет устранения риска возмож-
ной утечки жидкости и  паров и,  следовательно, 
снижения риска возгорания и  взрыва. Во-вто-
1	По материалам доклада на 17-м Международном Совеща-

нии “Фундаментальные и прикладные проблемы ионики 
твердого тела”, Черноголовка, 16–23 июня 2024 г.

2	Based on the materials of the lecture at the 17th International 
Meeting “Fundamental and Applied Problems of Solid State 
Ionics”, Chernogolovka, June 16–23, 2024.

рых, растворители жидких электролитов часто 
участвуют в  процессах деградации литий-ион-
ных аккумуляторов, поэтому предполагается, что 
срок службы твердотельных аккумуляторов будет 
намного больше. В-третьих, использование жид-
кого электролита приводит к  ряду ограничений 
на конструкцию и размер аккумулятора. (Типич-
ная толщина обычных сепараторов в литий-ион-
ных аккумуляторах составляет около 20 мкм, тог-
да как толщина твердых электролитов составляет 
1 мкм). Таким образом, концепция полностью 
твердотельных устройств открывает путь к созда-
нию тонкопленочных (в том числе гибких и про-
зрачных) и микроаккумуляторов.

Потребность в полностью твердотельных тон-
копленочных литий-ионных аккумуляторах воз-
никает в связи с быстро развивающейся микроэ-
лектроникой, особенно с появлением смарт-карт 
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с  батарейным питанием, метками радиочастот-
ной идентификации (RFID), умными часами 
(smart watch), имплантируемыми медицински-
ми устройствами, удаленными микродатчиками 
и передатчиками, системы Интернета вещей (IoT) 
и  различными другими беспроводными устрой-
ствами, включая интеллектуальное управление 
зданиями и т. д. Часто эти аккумуляторы необхо-
димо размещать на том же кристалле (чипе), что 
и  само устройство микроэлектроники, создавая 
так называемую встроенную систему. Технология 
изготовления твердотельных тонкопленочных ли-
тий-ионных аккумуляторов должна быть совме-
стима с  технологией изготовления интегральной 
микросхемы, микроэлектромеханических систем 
(МЭМС-устройств), полупроводникового датчи-
ка и т. п., т. е. в целом она должна быть СБИС-со-
вместимой (СБИС  – “сверхбольшемасштабная 
интегральная схема”  – общепринятый перевод 
с английского термина “very large scale integration”, 
VLSI). Достаточно важными видами тонкопле-
ночных аккумуляторов являются гибкие и  про-
зрачные устройства. Следует отметить, что в по-
следнее время значительный прогресс в  области 
твердотельных литий-ионных аккумуляторов был 
достигнут за счет экспериментальной разработки 
и оптимизации твердых электролитов и функцио-
нальных материалов электродов.

Интерес к  полностью твердотельным ли-
тий-ионным аккумуляторам неуклонно возраста-
ет. Число публикаций по этой теме в 2010 г. было 
около 500, а в 2021 г. превысило 2500 [2]. Можно 
указать на достаточно подробные обзорные рабо-
ты [3–16].

Общие положения
Принципиальная схема полностью твердо-

тельного тонкопленочного литий-ионного акку-
мулятора показана на рис. 1.

Ничтожная толщина тонкопленочного акку-
мулятора вынуждает размещать его на более или 
менее крупном конструктивном элементе (под-
ложке), который может быть частью устройства, 
питаемого от этого аккумулятора. И  это, пожа-
луй, главное отличие тонкопленочных аккумуля-
торов от обычных коммерческих литий-ионных 
аккумуляторов. Второе принципиальное отличие 
состоит в возможности использования металли-
ческого лития в  качестве отрицательного элект-
рода в полностью твердотельных аккумуляторах. 
Известно, что главная особенность литий-ион-
ных аккумуляторов заключается в использовании 
интеркаляционных электродов вместо металли-
ческого лития.

Конструктивная основа тонкопленочного ак-
кумулятора в  принципе может быть изготовлена 
из любого материала, включая металлы, керами-
ку, стекло, полимеры и даже бумагу. Если этот ма-
териал является электронным проводником, то 
конструктивная основа (подложка) может играть 
роль токоотвода одного электрода (обычно литие-
вого). В любом случае материал подложки должен 
соответствовать условиям нанесения и эксплуата-
ции функциональных слоев. Материал подложки 
не должен взаимодействовать с  другими слоями 
аккумулятора. Материал подложки также должен 
препятствовать диффузии лития из аккумулятора. 
Аккумулятор, по сути, состоит из двух электродов, 
между которыми находится электролит. Внешняя 
сторона каждого электрода контактирует с  соот-
ветствующим токоотводом. Аккумулятор в целом 
заключен в соответствующий корпус. Корпус яв-
ляется весьма важным элементом конструкции. 
Он должен обеспечивать защиту внутреннего со-
держимого аккумулятора от внешних физических 
и  химических воздействий, в  частности предот-
вращать взаимодействие активных материалов 
аккумулятора с воздухом и влагой. В идеале акку-
мулятор и  электронное устройство, питаемое от 
него, должны быть функционально интегрирова-
ны с  максимальной эффективностью и  контро-
лем напряжения.

Хотя первые попытки создания полностью 
твердотельных тонкопленочных аккумулято-
ров предпринимались еще в 50-х годах прошлого 
столетия, реальный успех был достигнут только 
через 40 лет и был обусловлен разработкой удач-
ного твердого электролита LiPON  – фосфор-ок-
синитрид лития [17–20]. LiPON получают мето-
дом магнетронного радиочастотного распыления 
мишени из Li3PO4 в среде азота. Его усредненный 
состав можно выразить как Li3.3PO3.8N0.22 с неко-
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Рис. 1. Схема полностью твердотельного тонкопле-
ночного литий-ионного аккумулятора.
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торой неопределенностью содержания азота. Пред-
полагалось, что введение азота в структуру стекла 
повысит его химическую и термическую стабиль-
ность. LiPON устойчив в  контакте с  металличе-
ским литием, обладает очень низкой электронной 
проводимостью и адекватной ионной проводимо-
стью около 2.3 мкСм/см при комнатной темпера-
туре, и что особенно важно, имеет число переноса 
лития, равное единице. Напряжение разложения 
LiPON превышает 5.5 В. С использованием этого 
самого электролита были изготовлены тонкопле-
ночные аккумуляторы с  различными активными 
материалами положительного электрода, включая 
LixMn2O4, TiS2, LiCoO2 и V2O5.

В  первое десятилетие 21-го века несколько 
компаний наладили производство полностью 
твердотельных тонкопленочных аккумуляторов 
емкостью от 0.1 до 5 мАч. В этих аккумуляторах 
использовались отрицательные электроды как из 
лития, так и из обычных интеркаляционных ма-
териалов (Sn, Si, Ge и C). Общая толщина актив-
ной части (токоотводы, электроды и электролит) 
составляла от 20 до 50 мкм. Первые аккумуляторы 
с электролитом LiPON выдерживали сотни и да-
же тысячи циклов с  низкой деградацией. Столь 
превосходная цикличность объяснялась сочета-
нием нескольких факторов. Во-первых, высокой 
стабильностью LiPON, во‑вторых, способно-
стью тонкопленочных материалов выдерживать 
объемные изменения, вызванные литированием 
и делитированием, в‑третьих, равномерным рас-
пределением тока в тонкопленочной структуре.

Схема на рис.  1 показывает “пластинчатую” 
(одномерную) конструкцию. Более рациональ-
ными являются различные 3D-конструкции 
[4,  21–27]. 3D-конструкции позволяют значи-
тельно увеличить удельную энергию аккумуля-
тора, поскольку увеличивается общая площадь 
поверхности электродов на единице площади 
подложки. Фактически энергетические потреб-
ности микро- и  наноэлектромеханических си-
стем, включая имплантируемые медицинские 
устройства, системы доставки лекарств, микро-
сенсоры и т. д., открыли своеобразную нишу для 
3D-аккумуляторов с характерным размером от 1 
до 10 мм3 и мощностью от 10 нВт до 1 мВт.

Описаны разнообразные конструкции 3D-ак-
кумуляторов с регулярной или хаотичной геоме-
трией. Это может быть периодическая решетка 
или апериодический ансамбль электродов. На-
пример, это может быть массив цилиндриче-
ских (столбчатых) электродов обоих знаков, вы-
ращенных на подложках. Два массива разных 

электродов вставлены один в другой. Простран-
ство между электродами должно быть заполнено 
электролитом (рис. 2). Основными недостатками 
такой конструкции являются довольно большой 
объем электролита, большое и переменное меж-
электродное расстояние.

Более эффективной является конструкция, 
состоящая из массива столбчатых электродов од-
ного знака, помещенных на подложку и покры-
тых тонким слоем электролита. Оставшееся про-
странство в  этом случае заполняется активным 
материалом противоэлектрода.

Интересная конструкция 3D-аккумулятора 
описана в  [21]. Здесь в  массивной кремниевой 
подложке методом анизотропного травления вы-
полнен ряд канавок. Сама подложка играет роль 
одного токоотвода. Активные слои электродов 
осаждаются внутри этой высокоструктуриро-
ванной подложки, начиная с  эффективного ба-
рьерного слоя, предпочтительно TiN или TaN, 
для защиты подложки от проникновения лития, 
за которым следует тонкопленочный кремние-
вый отрицательный электрод толщиной около 
50 нм, твердотельный LiPON-подобный электро-
лит и тонкопленочный материал положительного 
электрода, в  данном примере LiCoO2  толщиной 
1 мкм. Последним наносится второй токоотвод.

Хаотичный аналог регулярной конструкции, 
изображенной на рис. 2, представляет собой сво-
его рода “губчатая” конструкция (рис. 3). В этом 
случае сплошная сетка губки (“паутины”), явля-
ющаяся катодом, покрыта очень тонким слоем 
твердого электролита. Остальные пустоты запол-
нены анодным материалом.

Вероятно, наиболее продвинутой техноло-
гией производства 3D-аккумуляторов является 
3D-печать (в  англоязычной литературе additive 
manufacturing (AM)) [28–30]. Эта технология обе-
спечивает возможность изготовления объектов 
с  хорошо контролируемой и  очень сложной ге-
ометрией посредством послойного осаждения 
непосредственно на компьютеризированном 

Рис. 2. 3D-конструкция с встречно-штыревыми мас-
сивами электродов.
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оборудовании без использования каких-либо 
шаблонов. В  последнее время разрабатывается 
3D-печать литий-ионных аккумуляторов различ-
ной геометрии с целью повышения их удельной 
энергии, удельной мощности и  механических 
характеристик. Фактически, 3D-печать – ​это не 
один метод, а  группа методов, включающая: (i) 
экструзию материала (например, прямое письмо 
чернилами (direct ink writing DIW) и  моделиро-
вание наплавлением (fused deposition modeling, 
FDM)); (ii) струйную обработку материалов (на-
пример, струйная печать); (iii) струйную очистку 
связующего; (iv) плавление в  порошковом слое 
(например, селективное лазерное спекание и се-
лективное лазерное плавление); (v) направлен-
ное энерговыделение; (vi) фотополимеризацию 
(например, стереолитография (SLA)); (vii) лами-
нирование листов. Наиболее популярный метод 
3D-печати, применяемый при изготовлении ли-
тий-ионных аккумуляторов, – это прямое письмо 
чернилами. Оборудование для DIW не сложное 
(и, следовательно, недорогое) и включает в себя 
простой настольный 3D-принтер, стол с подогре-
вом, пневматический дозатор и микросопло.

Своеобразный вариант 3D полностью твердо-
тельного литий-ионного аккумулятора представ-
ляет собой прозрачный (или полупрозрачный) 
гибкий аккумулятор. Концепция полупрозрачно-
го аккумулятора с непрозрачными активными ма-
териалами электродов была предложена в 2011 г. 
[31] и развита позднее [32]. Концепция основана 
на принципе электродов с  сетчатой структурой. 
Отличительной особенностью этой сетчатой кон-
струкции является тот факт, что размеры элек-
тродов ниже разрешения человеческого глаза, 
и, таким образом, вся батарея кажется прозрач-

ной. В работе [31] описан тонкопленочный акку-
мулятор электрохимической системы LiMn2O4/
Li4Ti5O12 с гель-полимерным электролитом, тог-
да как в работе [32] описан аккумулятор системы 
LiCoO2/Si с электролитом LiPON. Прозрачность 
обоих аккумуляторов близка к 60%.

Функциональные материалы для 
твердотельных тонкопленочных 

литий-ионных аккумуляторов
Материалы для электролитов. Электролиты 

твердотельных тонкопленочных аккумуляторов 
принципиально отличаются от электролитов тра-
диционных литий-ионных аккумуляторов, и раз-
работке и  совершенствованию таких электро-
литов посвящено довольно много исследований 
(см., например, обзоры [33–42]).

Электролиты для твердотельных тонкопле-
ночных аккумуляторов должны обладать высо-
кой ионной и  низкой электронной проводимо-
стью при рабочей температуре (предпочтительно, 
комнатной), широким окном электрохимиче-
ской стабильности, технологичностью, совме-
стимостью с  электродами. Последняя особен-
ность предполагает, что электролит должен быть 
устойчив к взаимодействию с электродами, осо-
бенно с  электродами из лития и  его сплавов, 
и  иметь одинаковые коэффициенты теплового 
расширения с  обоими электродами. В  качестве 
твердых электролитов используются как кристал-
лические, так и аморфные материалы. Типичным 
представителем аморфного (стеклообразного) 
электролита для твердотельных тонкопленочных 
аккумуляторов является уже упомянутый LiPON. 
Другими примерами аморфных твердых электро-
литов являются оксидные и  сульфидные стекла. 
Кристаллические твердые электролиты пред-
ставлены твердыми растворами со структурой 
перовскита, литий-ионными проводниками ти-
па NASICON, LISICON и тио-LISICON, а также 
литий-ионными проводниками типа граната.

Интересный пример LiPON-подобного 
стеклообразного электролита – так называемый 
LiSON с  типичным составом Li0.29S0.28O0.35N0.09 
и  ионной проводимостью около 2×10–5 См/см 
[43]. Этот материал был изготовлен методом 
ВЧ-магнетронного распыления с использовани-
ем мишени Li2SO4 в атмосфере чистого азота. Та-
кой же проводимостью обладает и другой анало-
гичный стеклообразный электролит, известный 
как LiPOS (6LiI–4Li3PO4–P2S5) [44].

Сульфидные стеклообразные твердые элек-
тролиты, особенно с  высокой концентраци-

1

2

3

Рис.  3. “Губчатая” конструкция 3D-аккумулятора. 
1  – активный материал положительного электрода, 
2 – электролит, 3 – активный материал отрицатель-
ного электрода (из [24], open access).
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ей ионов Li+, обладают в целом более высокой 
проводимостью, чем LiPON-подобные элек-
тролиты. В  системе Li2S–P2S5 при содержании 
Li2S более 70 мол. % электролиты имеют прово-
димость более 10–4 См/см, что на полтора по-
рядка выше проводимости LiPON-подобных 
аналогов. Правда, синтез сульфидных стекол 
с достаточно высокой концентрацией ионов Li+ 
затруднен из-за легкой кристаллизации в  про-
цессе охлаждения, поэтому такие стекла изготав-
ливают методом двухвалковой быстрой закалки 
или механического фрезерования. Добавление 
галогенидов, боргидрида или ортофосфата ли-
тия приводит к  повышению проводимости 
стекол до 10–3 См/см при комнатной темпера-
туре. Например, электролит состава 95(80Li2S–
20P2S5) + 5LiI имеет проводимость 2.7 мСм/см 
[45], электролит состава Li5.5PS4.5Cl1.5 со струк-
турой аргиродита – 10.2 мСм/см [46], а электро-
лит состава Li5.4PS4.4Cl1.6 – 8.4 мСм/см [47].

Своего рода паллиатив представляют проме-
жуточные формы, так называемые стеклокера-
мические электролиты. Их проводимость выше, 
чем у  аморфных, но ниже, чем у  кристалличе-
ских электролитов. Такие стеклокерамические 
электролиты можно получить кристаллизаци-
ей настоящих стеклоэлектролитов. Выделение 
термодинамически стабильных кристалличе-
ских фаз из исходного стекла приводит к сниже-
нию межзеренного сопротивления. Например, 
в  [48] описаны стеклокерамические электро-
литы, полученные термообработкой стекол 
Li2O–Al2O3–TiO2–P2O5. Максимальная прово-
димость 1.3  мСм/см достигнута в  системе, тер-
мообработанной при температуре 950°С.

Еще более высокой проводимостью обла-
дают стеклокерамики составов 70Li2S–30P2S5 
[49], 80Li2S–20P2S5 [50], Li3,25P0,95S4 [51] 
и  Li7P3S11  [51]. Стеклокерамику 70Li2S–30P2S5 
синтезировали термообработкой соответству-
ющего стекла при температуре около 240°С 
(несколько выше температуры кристаллиза-
ции). Такая обработка привела к  увеличению 
проводимости при комнатной температуре до 
3.2 мСм/см. Проводимость стеклокерамики 
80Li2S–20P2S5 составляет 0.74 мСм/см. Стекло-
керамики Li3.25P0.95S4 и  Li7P3S11 демонстрируют 
проводимость при комнатной температуре 1.3 
и  17 мСм/см (!) Стеклокерамический электро-
лит Li7P3S11 (70Li2S–30P2S5) характеризуется не 
только самой высокой проводимостью, но и са-
мой низкой энергией активации проводимости 
17 кДж/моль при комнатной температуре (и, 

следовательно, самой слабой температурной за-
висимостью проводимости).

Наиболее популярные кристаллические элек-
тролиты семейства перовкситов типа (АВО3) с A = 
Li, La и B = Ti – это твердые растворы с общей фор-
мулой Li3xLa2/3–x 1/3–2xTiO3 (где квадрат обознача-
ет вакансию решетки) [52]. Обычно 0.04<x<0.17, 
в этом случае используется сокращение LLTO. Та-
кие электролиты имеют проводимость при ком-
натной температуре порядка 1 мСм/см. Еще более 
высокую проводимость имеют обогащенные ли-
тием оксигалогениды со структурой антиперов-
скита. Например, соединение Li3OCl0.5Br0.5 демон-
стрирует удельную проводимость около 2 мСм/см 
при комнатной температуре и около 5 мСм/см при 
температуре 230°С [53].

Классическим примером электролита со 
структурой NASICON является NaAIV

2(PO4)3, 
где AIV = Ge, Ti и  Zr. Такую структуру мож-
но представить как каркас [A2P3O12]–, со-
стоящий из октаэдров AO6 и  тетраэдров PO4. 
Наиболее популярным Li+-проводящим электро-
литом с NASICON-подобной структурой являет-
ся Li1.3Al0.3Ti1.7(PO4)3 (LATP), принадлежащий 
к семейству с общей формулой Li1+xTi2–xMx(PO4)3 
(M = Al, Ga, В, Sc). Среди Li+-проводящих элек-
тролитов с NASICON-подобной структурой наи-
большую проводимость при комнатной темпера-
туре 3 мСм/см имеет Li1+xAlxGe2–x(PO4)3(LAGP). 
Представляет интерес кремнийзамещенный 
электролит, в  котором часть фосфора заменена 
на кремний Li1+x+yTi2–xAlxSiy(PO4)3–y.

Аналог электролитов со структу-
рой NASICON  – LISICON с  формулой 
Li2+2xZn1–xGeO4 обладает слишком низкой про-
водимостью и  не представляет практического 
интереса. В то же время очень привлекательным 
является тио-LISICON [54]. Наибольшую про-
водимость – 2.2 мСм/см – проявляет электролит 
состава Li3.25Ge0.25P0.75S4 (который можно рас-
сматривать как Li4–xGe1–xPxS с  x=0.75). В  то же 
время электролиты Li2S–GeS2–P2S5 оказались 
несовместимыми с  графитовым отрицательным 
электродом. Для решения этой проблемы авто-
ры работы [55] предложили конструкцию акку-
мулятора с двухслойным твердым электролитом. 
Слой, обращенный к  отрицательному (графи-
товому) электроду, представляет собой стекло 
LiI–Li2S–P2S5, а  слой, обращенный к  положи-
тельному (LiCoO2) электроду, – ​кристаллический 
материал Li2S–GeS2–P2S5. Известно, что первый 
электролит устойчив к электрохимическому вос-
становлению, а второй – ​к окислению.
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Еще более высокую проводимость  – 
12  мСм/см  – имеет аналогичный суперионный 
проводник состава Li10GeP2S12 со специальной 
кристаллической структурой [56].

Особое внимание в последнее время уделяется 
твердым электролитам со структурами, близкими 
к гранату. Идеальные гранаты можно представить 
общей формулой A3B2(XO4)3, где A = Ca, Mg, Y, 
La или редкоземельные элементы; B = Al, Fe, Ga, 
Ge, Mn, Ni или V; X = Si, Ge или Al. Важнейшей 
особенностью структуры граната является спо-
собность внедрять в  структуру ионы Li+. Грана-
ты обычно содержат от пяти до семи атомов Li на 
формульную единицу. Увеличение числа атомов 
лития в  формульной единице до пяти, как, на-
пример, в Li5La3B’2O12 (B’ = Bi, Sb, Na, Ta), при-
водит к увеличению ионной проводимости на три 
порядка до 2×10–5 См/см [57]. Частичная замена 
Zr в литий-обогащенном гранате Li7La3Zr2O12 на 
Nb позволяет получить материал с литий-ионной 
проводимостью до 0,8 мСм/см [58]. Li7La3Zr2O12, 
легированный Ga, имеет ионную проводимость 
0.54 мСм/см [59]. Для замещенного граната 
Li6.75La3Zr1.75Ta0.25O12 сообщалось о  проводимо-
сти при комнатной температуре 0.9 мСм/см [60]. 
Легирование электролита со структурой граната 
бромид-анионом приводит к увеличению прово-
димости ионов Li+ в 2–3 раза.

На рис. 4 приведены сводные данные о темпе-
ратурной зависимости проводимости различных 
твердых электролитов. Как правило, эти зависи-
мости хорошо описываются уравнением Аррени-
уса (в отличие от многих жидких электролитов). 
Рисунок 4 наглядно показывает также, как по-

высилась проводимость новых электролитов по 
сравнению с LiPON.

Материалы для отрицательных электродов. 
Как уже указывалось, существенное преимуще-
ство твердотельных тонкопленочных аккумуля-
торов состоит в возможности использования ме-
таллического лития в  качестве отрицательного 
электрода. Литий имеет максимальную теорети-
ческую удельную емкость и наиболее отрицатель-
ный равновесный потенциал, поэтому использо-
вание металлического лития при прочих равных 
условиях обеспечивает наибольшее разрядное 
напряжение. Однако использование металличе-
ского лития в  качестве перезаряжаемого отри-
цательного электрода в аккумуляторах с жидким 
апротонным электролитом наталкивается на из-
вестные фундаментальные проблемы дендри-
тообразования и  инкапсуляции. Обе проблемы 
приводят к резкому сокращению срока службы.

При контакте металлического лития с твердым 
электролитом проблемы дендритообразования 
не играют такой решающей роли, как в  случае 
жидких электролитов. Это утверждение нагляд-
но подтверждается успешной коммерциализа-
цией полностью твердотельных аккумуляторов 
с металлическим литиевым отрицательным элек-
тродом, реализованной в  Оак-Риджской наци-
ональной лаборатории (США) в  начале текуще-
го тысячелетия, а  также в  таких компаниях, как 
STMicroelectronics, CymbetTM Corp., Front Edge 
Technology, Inc., Exxellatron и др. Например, ком-
пания STMicroelectronics заявляла, что ресурс ее 
тонкопленочных аккумуляторов достигает 4000 
циклов. Для борьбы с дендритообразованием на 
границе с  твердыми электролитами применя-
ют те же приемы, что были отработаны в систе-
мах с  жидким электролитом, в  первую очередь 
создание литиефильной подложки-токоотвода 
и  нанесение искусственных SEI (solid electrolyte 
interface, пассивная пленка) [61].

Как правило, литиевые электроды наносятся 
методом термического испарения или магнетрон-
ного распыления непосредственно на твердый 
электролит [62]. Типичная толщина литиевого 
тонкопленочного электрода составляет 2–5 мкм, 
что соответствует емкости 0.4–1.0 мА ч/см2.

Серьезным недостатком аккумуляторов с  ме-
таллическим литиевым отрицательным электро-
дом является ограниченная рабочая температу-
ра, определяемая температурой плавления лития 
(180.54°С). Поскольку тонкопленочные твердо-
тельные аккумуляторы предназначены в  пер-
вую очередь для микроэлектронных устройств, 
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Рис.  4. Температурная зависимость удельной про-
водимости твердых электролитов. 1  – LiPON, 2 – 
Li3.6Si0.6P0.4O4, 3 – Li0.5La0.5TiO3, 4 – стеклокерамиче-
ский Li7P3S11, 5 – Li10GeP2S12, 6 – Li9.54Si1.74P1.44S11.7Cl0.3.
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эти аккумуляторы используются в  современной 
полупроводниковой технике, т. е. должны быть 
пригодны для пайки при более высоких темпе-
ратурах. Достаточно остроумным вариантом, 
позволившим решить эту проблему, является 
так называемая “безлитиевая конструкция” [63]. 
Такой безлитиевый аккумулятор собирается без 
металлического лития (и, следовательно, выдер-
живает процедуры высокотемпературного оплав-
ления припоем), но с  некоторым избытком ак-
тивного материала положительного электрода. 
В ходе первого заряда на токоотводе осаждается 
необходимое количество лития. (В  этом отно-
шении “безлитиевые” аккумуляторы подобны 
популярным в последнее время так называемым 
“безанодным” аккумуляторам.) Для правильного 
функционирования безлитиевого аккумулятора 
очень важно, чтобы материал токоотвода отрица-
тельного электрода не образовывал интерметал-
лических соединений с литием. Наиболее подхо-
дящим материалом в  этом отношении является 
медь, которая используется в качестве токоотво-
дов в обычных литий-ионных аккумуляторах, хо-
тя обсуждаются и некоторые альтернативные ма-
териалы, такие как Ti, Co и TiN.

Другой подход к  повышению рабочей темпе-
ратуры тонкопленочных твердотельных аккуму-
ляторов заключается в замене чистого лития ли-
тиевым сплавом, например сплавом с  магнием. 
Температура плавления такого сплава в  зависи-
мости от содержания магния колеблется от 200°C 
при содержании магния 4 ат. % до 400°C при со-
держании магния 40 ат. %.

Однако более фундаментальным решением 
проблемы является замена литиевого электрода 
электродом, типичным для литий-ионных акку-
муляторов, т. е. электродом, в котором ионы ли-
тия обратимо внедряются в  некоторую матрицу. 
В качестве таких матриц (как и в традиционных 
литий-ионных аккумуляторах) могут использо-
ваться элементы 4-й группы Периодической си-
стемы (углерод, кремний, германий, олово), ок-
сиды и некоторые другие соединения.

Кремний, как известно, обладает рекордной 
способностью к  обратимому внедрению лития. 
При внедрении лития в кремний образуются ин-
терметаллические сплавы, а  самым богатым ли-
тием интерметаллическим соединением является 
Li4.4Si (Li22Si5), что соответствует удельной емко-
сти 4200 мА ч/г. Такой сплав образуется только 
при повышенных температурах. При комнатной 
температуре самым богатым литием интерметал-
лидом является Li3.75Si (Li15Si4), что соответствует 

удельной емкости 3590 мА ч/г. Следует подчер-
кнуть, что указанные значения удельной емкости 
относятся к  процессу внедрения лития в  крем-
ний, т. е. к заряду отрицательного электрода. При 
разряде, т. е. при извлечении лития из интер-
металлида Li3.75Si, удельная емкость составляет 
1852 мА ч/г (напомним, что удельная емкость чи-
стого лития равна 3828 мА ч/г). Внедрение лития 
в  кремний протекает при потенциалах, близких 
к потенциалу лития, а его анодное извлечение – 
в основном в интервале 0.3–0.5 В (Li+/Li).

Принципиальная возможность длительного 
функционирования кремниевого электрода в кон-
такте с твердым электролитом (LiPON) была экс-
периментально подтверждена в работе [64]. В [65] 
был использован электролит LiPON, допирован-
ный бором. В более поздней работе [66] показана 
совместимость пористого кремния с стеклообраз-
ным электролитом состава 80Li2S·20P2S5. В  этой 
работе на протяжении 100 циклов емкость крем-
ниевого электрода составляла почти 3000 мА ч/г. 
В  работах [67, 68] показана работоспособность 
электродов из аморфного кремния в  контакте 
со стекло-керамическим электролитом соста-
ва 70Li2S·30P2S5. В  [69] описаны характеристики 
монолитного кремниевого электрода толщиной 
1 мкм в  контакте с  электролитом со структурой 
граната (Li7La3Zr2O12 допированный 3 вес. Al2O3). 
Здесь достигнута удельная емкость 2685  мА ч/г. 
Увеличение толщины электрода до 2 и 3 мкм при-
вело к  ожидаемому снижению емкости до 1700 
и  830 мА ч/г. Стабильное циклирование крем-
ниевых электродов со столбчатой структурой 
в  контакте с  аргиродито-подобным электроли-
том состава Li6PS5Cl доложено в  [70]. Близкие 
результаты для электродов из микрочастиц крем-
ния приводятся в [71–73]. В последней работе так-
же показано, что введение в  состав сульфидного 
электролита небольшого количества LiI приводит 
к повышению эластичности электролита и предо-
храняет частицы кремния от разрушения при ли-
тировании-делитировании.

Электроды в  виде пленок из смеси кремния 
с FeS толщиной до 1 мкм в контакте с вышеупо-
мянутым сульфидным стеклокерамическим элек-
тролитом демонстрировали удельную емкость 
3000 и  2200 мА ч/г при разряде в  режимах С/10 
и 10 С [74].

Известно, что при внедрении достаточно 
большого количества лития в  кремний проис-
ходит значительное увеличение удельного объ-
ема, приводящее к  возникновению внутренних 
напряжений и разрушению материала. Для пре-
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дотвращения этого разрушения в традиционных 
литий-ионных аккумуляторах с жидким электро-
литом широко используются наноматериалы на 
основе кремния и его сплавов. Обычно исполь-
зуют разнообразные наноформы (нанопорош-
ки, нановолокна, тонкие пленки и т. д.) Особый 
интерес представляют многослойные структуры, 
в  которых тонкие слои кремния перемежают-
ся слоями других материалов [75–81]. Слоистые 
структуры Si–O–Al, хорошо зарекомендовавшие 
себя в контакте с твердым электролитом LiPON, 
описаны в  работах [82–87]. Из других компози-
ционных материалов на основе кремния, исполь-
зованных в  качестве отрицательных электродов 
в  контакте с  твердыми электролитами, следу-
ет упомянуть композиты с  углеродом [88], оло-
вом [89] и даже таким экзотическим материалом, 
как LixTi4Ni4Si7 [90, 91].

При использовании кремния в  виде микро- 
и нанопорошков в состав активной массы элек-
трода вводят твердый электролит [92, 93]. Хоро-
шую способность к  циклированию в  контакте 
с твердым электролитом показывают также плен-
ки аморфного кремния [94, 95].

Если максимальной удельной емкостью по 
внедрению лития обладает кремний, то луч-
шая циклируемость свойственна титанату лития 
Li4Ti5O12. Отличительной особенностью этого 
материала является практическое постоянство 
его удельного объема при полном литировании 
(и  обратном делитировании) и,  как следствие, 
отсутствие внутренних напряжений при цикли-
ровании электродов [96]. Процесс обратимого 
литирования/делитирования описывается урав-
нением
	 Li Ti O 3 e 3 Li Li Ti O ,4 5 12

–
7 5 12+ + ↔+ 	 (1)

следовательно, теоретическая удельная емкость 
этого процесса составляет 175 мА ч/г. Титанат ли-
тия, как таковой и в виде различных допирован-
ных производных, нашел очень большое приме-
нение в  аккумуляторах с  жидким электролитом. 
Примеры его использования в контакте с тверды-
ми электролитами довольно редки. В [97, 98] при-
водятся характеристики модельного аккумулято-
ра с отрицательным электродом из сплава лития 
с индием и положительным электродом из ком-
позита Li4Ti5O12, стеклокерамического электро-
лита (70Li2S·29P2S5·1P2S3) и  электропроводной 
добавки из углеродного волокна. На зарядных 
и разрядных характеристиках такой модели отме-
чались почти горизонтальные прямые (что харак-
терно для Li4Ti5O12). Модели выдержали 700 ци-
клов при плотности тока 10 мА/см2 без заметной 

деградации. Удельная емкость Li4Ti5O12 составила 
в данном случае 140 мА ч/г. В [99] описаны маке-
ты аккумуляторов с сульфидными электролитами 
составов Li9.54Si1.74P1.44S11.7Cl0.3 и Li9.6P3S12. В этих 
макетах в качестве положительного электрода ис-
пользована смесь LiCoO4 с электролитом и элек-
тропроводной добавкой (ацетиленовой сажей), 
а  в  качестве отрицательных электродов  – смесь 
композита Li4Ti5O12 с  графитом, электролита 
и  электропроводной добавки. Докладывается 
о достижении феноменальных результатов – ста-
бильное циклирование до 1000 циклов в режимах 
до 0.9 С при температуре –30°С и в режимах до 
150 С и 1500 С при температурах, соответственно, 
25 и 100°С.

Материалы для положительных электродов. 
Наиболее популярным активным материалом для 
положительных электродов полностью твердо-
тельных литий-ионных аккумуляторов остается 
литированный оксид кобальта LiCoO2 (уже упо-
минавшийся в ссылках [20, 32, 40, 56, 63, 79, 99]. 
К  сожалению, глубокое циклирование (дели-
тирование при потенциалах выше 4.2  В, что оз-
начает извлечение примерно 50% или более Li) 
приводит к  необратимым искажениям кристал-
лической решетки LiCoO2 от гексагональной до 
моноклинной симметрии, и это изменение ухуд-
шает характеристики циклирования. Реально 
при циклировании извлекается только около 50% 
лития, т. е. электродный процесс описывается 
уравнением
	 x xLiCoO Li e Li CoO ,x2 1 2↔ + ++

− 	 (2)

где 0 < x < 0.5.
Теоретическая удельная емкость LiCoO2 со-

ставляет 273 мА ч/г, тогда как реальные значе-
ния не превышают 140 мА ч/г. Несмотря на это, 
LiCoO2 все-таки используется в тонкопленочных 
аккумуляторах с  различными твердыми элек-
тролитами [100–114]. Именно с  такими поло-
жительными электродами были созданы гибкие 
полупрозрачные аккумуляторы [100, 102]. Опре-
деленную проблему составило, однако, взаимо-
действие LiCoO2 с сульфидными электролитами 
[104–106]. При контакте этих материалов проис-
ходит взаимная диффузия и  образование неко-
его промежуточного слоя, затрудняющего меж-
фазный транспорт. Один из путей борьбы с этим 
неприятным явлением  – это нанесение на по-
верхность электрода из LiCoO2 тончайшего (не-
сколько монослоев) покрытия из различных ма-
териалов, в  том числе Al2O3 [107], LiNbO3 [108], 
Li4Ti5O12 [109] и даже Nb [110].
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Радикальным методом увеличения удельной 
емкости (т. е. глубины циклирования) электродов 
на основе LiCoO2, а также снижения их стоимо-
сти является использование смешанных литий-
содержащих оксидов, т. е. литированных оксидов 
кобальта, в  которых часть ионов кобальта заме-
нена ионами одного или двух других металлов. 
Было исследовано довольно много различных 
многокомпонентных литированных оксидов, из 
которых наиболее популярными являются си-
стемы LiNixCoyMnzO2 (NMC) и  LiNixCoyAlzO2 
(NCA), в  частности LiNi1/3Co1/3Mn1/3O2 
и LiNi0.8Co0.15Al0.05O2. Оба материала в настоящее 
время считаются экологически чистыми, доста-
точно дешевыми продуктами с  высокой удель-
ной емкостью и хорошей циклируемостью. NMC 
и  NCA очень широко используются в  литий-
ионных аккумуляторах с  жидким электролитом, 
а  примеры их применения в  полностью твердо-
тельных аккумуляторах ограниченны (например, 
[115–119].

Теоретическая удельная емкость NMC со-
ставляет 278 мА ч/г, на практике достигается 
до 230 мА  ч/г. NMC имеет ту же структуру, что 
и LiCoO2, т. е. он принадлежит к типу α-NaFeO2 
слоистой структуры каменной соли. С формаль-
ной точки зрения NMC можно рассматривать 
как твердый раствор LiCoO2–LiNiO2–LiMnO2 
(1:1:1). В  исходном состоянии никель, кобальт 
и  марганец в  NMC находятся соответственно 
в состоянии 2+, 3+ и 4+, при циклировании ре-
ализуются переходы Ni (2+/4+) и  Co (3+/4+), 
причем в  ходе делитирования сначала происхо-
дит переход Ni2+/Ni3+ (при увеличении x в фор-
муле Li1–x[Co1/3Ni1/3Mn1/3]O2 от 0 до 1/3), затем 
переход Ni3+/Ni4+ (при x в диапазоне 1/3<x<2/3) 
и, наконец, Co3+/Co4+ (при увеличении x от 2/3 
до 1). Именно такая схема окислительно-восста-
новительных процессов обеспечивает указанное 
выше значение теоретической удельной емкости.

Стабильное циклирование NMC обусловлено 
незначительным изменением кристаллической 
решетки. При экстракции 60% общего количе-
ства лития, содержащегося в LiNi1/3Mn1/3Co1/3O2, 
объем кристаллической ячейки не изменяется 
и составляет 0.1 нм3, а при его практически пол-
ном удалении уменьшается всего до 0.095 нм3.

Практическая удельная емкость NCA также 
превышает 200 мА ч/г, а  циклируемость таких 
электродов не уступает традиционным электро-
дам на основе LiCoO2.

При контакте и  NMC и  NCA с  сульфидны-
ми твердыми электролитами так же, как и в слу-

чае с  LiCoO2, тоже образуется переходный слой 
с повышенным сопротивлением. На поверхность 
NMC и  NCA также наносят тонкие защитные 
слои из различных материалов, в  том числе из 
алмазоподобного углерода [115], Li4Ti5O12 [116], 
HfO2 [118].

В  начальный период развития традиционных 
литий-ионных аккумуляторов широкое распро-
странение в  качестве активного материала по-
ложительного электрода получили литий-мар-
ганцевые шпинели состава, близкого к LiMn2O4, 
а  также литированные смешанные никель-мар-
ганцевые оксиды. Важное преимущество ли-
тий-марганцевых шпинелей перед другими ма-
териалами состоит в  их относительно низкой 
стоимости. Соединения марганца гораздо менее 
токсичны, чем соединения кобальта, а  содер-
жание марганца в  земной коре также намного 
больше, чем содержание кобальта. В  полностью 
твердотельных литий-ионных аккумуляторах ли-
тированные оксиды марганца применяются го-
раздо меньше [19, 62, 114, 120, 121], правда, с раз-
ными типами электролитов (LiPON [19, 62, 120], 
типа граната [114], фосфатный [121]).

Очень широкое распространение в  аккуму-
ляторах с жидким электролитом получили элек-
троды из феррофосфата лития (LiFePO4), отно-
сящегося к  классу полианионных соединений. 
Теоретическая удельная емкость LiFePO4 состав-
ляет 170 мА ч/г. Важнейшие преимущества фер-
рофосфата лития состоят в относительно низкой 
стоимости, доступности, нетоксичности, безо-
пасности в работе, а главное – в хорошей цикли-
руемости. Основной недостаток  – чрезвычайно 
низкая электронная проводимость и  малый ко-
эффициент диффузии лития, что вынуждает ис-
пользовать его в  виде наноматериала с  тонким 
(порядка 3 нм) покрытием из углерода, а  также 
прибегать к  допированию другими катионами, 
или анионами фторида и хлорида.

Обратимый процесс экстракции и внедрения 
лития (в ходе заряда и разряда электрода) описы-
вается простым уравнением:
	 LiFePO FePO Li + e.4 4↔ + + 	 (3)

LiFePO4 и  FePO4 изоструктурны, поэтому 
протекание реакции (3) не сопровождается ка-
кими-нибудь структурными изменениями, что 
и  обеспечивает очень хорошую циклируемость 
электродов на основе феррофосфата лития и воз-
можность форсированных зарядов и  разрядов. 
Взаимная растворимость LiFePO4 и FePO4 незна-
чительна, поэтому процесс (3) протекает по двух-
фазному механизму. В  этом отношении систе-
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ма LiFePO4/FePO4 очень похожа на описанную 
выше систему Li4Ti5O12/Li7Ti5O12. На гальвано-
статических кривых, полученных на электродах 
из феррофосфата лития, также регистрируют-
ся практически горизонтальные участки (участ-
ки с  постоянным потенциалом), соответствую-
щие существованию двух контактирующих фаз 
LiδFePO4 и Li1–δFePO4. Примером использования 
электродов на основе LiFePO4 в системе с твер-
дым электролитом может служить работа  [122], 
в  которой описана конструкция 3D-аккумуля-
тора с  отрицательными электродами из нано-
стержней кремния, LiPON в  качестве электро-
лита и положительным электродом из композита 
LiFePO4 с углеродом. Другие примеры использо-
вания LiFePO4  – это работы [123, 124]. Послед-
няя работа примечательна тем, что в ней описан 
макет литий-ионного аккумулятора, в  котором 
положительный электрод из LiFePO4 сочетается 
с отрицательным электродом из Li3V2(PO4)3. Ва-
надофосфат лития Li3V2(PO4)3 может функци-
онировать и  как отрицательный электрод (тогда 
в  нем реализуется редокс-система V3+/V2+ с  ра-
бочим потенциалом около 1.8  В  (Li/Li+)), и  как 
положительный электрод (в этом случае реализу-
ется редокс-система V4+/V3+ с рабочим потенциа-
лом, близким к 4 В). В статье [125] описан симме-
тричный твердотельный аккумулятор, в котором 
в  разряженном состоянии оба электрода име-
ют состав Li3V2(PO4)3. Электролитом здесь слу-
жит фосфат Li1.5Al0.5Ge1.5(PO4)3 со структурой 
NASICON. При заряде один электрод окисляет-
ся до LiV2(PO4)3, а  другой восстанавливается до 
Li5V2(PO4)3 с  переносом двух электронов и  двух 
ионов Li+.

Вообще, способность ванадия менять свою 
валентность в оксидных соединениях в диапазо-
не от +2 до +5 делает заманчивым использовать 
оксиды ванадия в качестве положительных элек-
тродов литий-ионных аккумуляторов. Теоретиче-
ски удельная емкость пентоксида ванадия может 
достигать 883.5 мА ч/г, что намного превышает 
удельную емкость других соединений. V2O5, дей-
ствительно, использовался в  первых образцах 
полностью твердотельных литий-ионных акку-
муляторов [18, 19, 126–128]. К  сожалению, вне-
дрение лития в кристаллическую решетку оксида 
ванадия связано со значительными структурны-
ми изменениями. Уже при внедрении 2 молей 
лития на моль V2O5 появляется фаза γ-Li2V2O5 
с  необратимым изменением структуры. В  отли-
чие от феррофосфата лития материалы на основе 
оксидов ванадия работают в  довольно широком 

диапазоне потенциалов, что представляет опре-
деленный недостаток.

Существенно меньшее распространение в ка-
честве активных материалов положительного 
электрода полностью твердотельных литий-ион-
ных аккумуляторов получили сульфиды, в  том 
числе сульфиды никеля [129, 130], титана [131] 
и молибдена [132].

Производство твердотельных 
литий-ионных аккумуляторов

Масштабы коммерческого производства пол-
ностью твердотельных литий-ионных аккуму-
ляторов до сих пор довольно скромные. В неко-
торых случаях такое производство существовало 
несколько лет, а затем закрывалось.

Cymbet Corp. (США) выпускала миниатюр-
ные аккумуляторы (с  габаритными размерами 
1.7×2.25×0.2 мм и 5.7×6.1×0.2 мм) номинальной 
емкостью 5 и  50 мкА ч. Front Edge Technology 
Inc. (США) выпускала аккумуляторы систе-
мы LiCoO2|LiPON|Li размерами 25×20×0.1  мм 
и 25×20×0.3 мм емкостью 100 и 1000 мкА ч. Анало-
гичные аккумуляторы емкостью 1000 мкА ч выпу-
скались фирмами Infinity Power Solutions (США), 
STMicroelectronics (Франция) и  Excellatron 
(США) [82].

Сообщалось [7], что фирмы Fuji film Co. 
и  Samsung выпускали аккумуляторы с  сульфид-
ным электролитом в  ламинатном корпусе. Ак-
кумуляторы Samsung имели удельную энергию 
175  Вт ч/кг, в  них использовались положитель-
ные электроды на основе NMC и отрицательные 
электроды на основе графита.

В 2016 г. фирма Sony выпустила аккумуляторы 
с электролитом LiPON [7]. ProLogium Corporation 
(Китай) объявила о выпуске аккумуляторов с ке-
рамическим электролитом, имеющих удельную 
энергию 810 Вт ч/л.

Заключение
Несмотря на то что полностью твердотель-

ные тонкопленочные литий-ионные аккумуля-
торы представляет собой особую, относительно 
небольшую по объему производства категорию 
аккумуляторов, потребность в  них возрастает, 
особенно в  последние десятилетия. Эта потреб-
ность обусловлена как бурным развитием микро-
электроники и вообще высоких технологий, так 
и  принципиальными преимуществами полно-
стью твердотельных аккумуляторов в  сравнении 
с  традиционными аккумуляторами с  жидкими 
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электролитами (повышенной пожаро- и взрыво-
безопасностью, возможностями использования 
электродов из металлического лития, возмож-
ностями применения технологий, совместимых 
с  технологией изготовления интегральных ми-
кросхем и иных полупроводниковых устройств).

Казалось бы, что такие неоспоримые преи-
мущества будут стимулировать развитие крупно-
масштабного производства полностью твердо-
тельных литий-ионных аккумуляторов, однако, 
как отмечено в  разделе “Производство твердо-
тельных литий-ионных аккумуляторов”, до ре-
ального промышленного производства дошли 
только относительно малогабаритные изделия 
емкостью не более 1 мА ч. Причины такого от-
ставания промышленного производства как от 
потребительских запросов, так и  от результатов 
фундаментальных исследований, неоднократ-
но обсуждались в литературе (см., например, [2, 
13, 133]). Наряду с упомянутыми преимущества-
ми полностью твердотельных аккумуляторов, им 
присущи и  определенные недостатки, в  частно-
сти технологические проблемы, причем масшта-
бирование, т. е. переход к все более энергоемким 
единичным изделиям, сопровождается ужесточе-
нием технологических проблем [134]. Например, 
относительно малая электронная проводимость 
твердых неорганических электролитов диктует 
необходимость максимального снижения их тол-
щины; при этом с  ростом площади единичного 
изделия заметно возрастает риск неравномерно-
сти толщины и других показателей, а также риск 
появления дефектов, в частности сквозных пор.

С  увеличением площади электродов в  еди-
ничном аккумуляторе заметно возрастает веро-
ятность возникновения локальных превышений 
межфазного сопротивления на границе элект-
рода с  твердым электролитом (что невозможно 
в системах с жидким электролитом) [135]. Увели-
чение размеров (и  емкости) единичных изделий 
наталкивается также на определенные экономи-
ческие проблемы [136, 137].

Прогресс в  развитии твердотельных тонко-
пленочных литий-ионных аккумуляторов опре-
деляется, прежде всего, усовершенствованиями 
твердых электролитов, а  также усовершенство-
ваниями функциональных электродных мате-
риалов. В  будущем можно ожидать появление 
твердых электролитов с  повышенной проводи-
мостью, числом переноса лития, близким к еди-
нице. Особый фундаментальный интерес пред-
ставляет исследование процессов на границе 
электрода и  твердого электролита. В  технологи-

ческом отношении особый интерес представляет 
развитие 3D-конструкций и  использование 3D- 
печати.
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