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В данном обзоре рассмотрена литература, в основном последних лет, по актуальной теме примене-
ния графенов в  суперконденсаторах. Проанализировано влияние пористой структуры графенов, 
влияние допирования и облучения графенов. Описаны способы получения графенов, композиты 
графенов с оксидами, сульфидами и селенидами металлов, с частицами металлов, с электронопро-
водящими полимерами, с MXenes, а также квантовые точки. Для рассмотренных типов графенов 
приведены электрохимические характеристики.
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This review examines the literature, mainly of recent years, on the current topic of using graphenes in su-
percapacitors. The influence of the porous structure of graphenes, the influence of doping and irradiation 
of graphenes are considered. Methods for producing graphenes, composites of graphenes with metal oxides, 
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Список сокращений
АУ – ​активированный уголь
ВОГ – восстановленный оксид графена
ДЭС – ​двойной электрический слой
ОСУНТ – ​одностенные углеродные нанотрубки
ПВС – ​поливиниловый спирт
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ПЭМ – ​просвечивающая электронная микро-
скопия

УНТ – ​углеродные нанотрубки
УП – ​площадь удельной поверхности
ЦВА – ​циклическая вольтамперометрия
ЭИС – ​электрохимическая импедансная спек-
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AC – ​активированный уголь
CNT – ​углеродные нанотрубки
EDX  – ​энергодисперсионная рентгеновская 

спектроскопия
EIS  – ​электрохимическая импедансная спек-

троскопия
FESEM – ​полевая эмиссионная сканирующая 

электронная микроскопия
FTIR  – ​рамановская инфракрасная спектро-

скопия с преобразованием Фурье
GCD – ​гальваностатическое циклирование
GO – ​оксид графена
GQD – ​графеновые квантовые точки
HRTEM – ​просвечивающая электронная ми-

кроскопия высокого разрешения
PANi – ​полианилин
PL – ​фотолюминисценция
PP – ​полипорфин
PPy – ​полипиррол
PT – ​политиофен
rGO – ​восстановленный оксид графена
SEM – ​сканирующая электронная микроско-

пия
TEM – ​просвечивающая электронная микро-

скопия
Uv-vis  – ​ультрафиолетовая видимая спектро-

скопия
WSC – ​проволочный суперконденсатор
XRD – ​рентгеновская дифракция

ВВЕДЕНИЕ
В последнее время в качестве перспективных 

электродных материалов для электрохимических 
суперконденсаторов (ЭХСК) стали использовать 
графены и  их производные [1, 2, 3–44]. Графе-
ны были открыты всего около 15 лет назад, за что 
их создатели получили Нобелевскую премию, 
и  практически сразу были обнаружены замеча-
тельные свойства графенов, которые открывают 
широкие возможности их применения в различ-
ных отраслях народного хозяйства, в  том числе 
в химических источниках тока и в электрохими-
ческих конденсаторах в  частности. Единичный 
слой графенового листа обеспечивает удельную 
внешнюю поверхность вплоть до 2675  м2/г, до-
ступную для жидкого электролита, по сравнению 

с внешней удельной поверхностью приблизитель-
но 1300  м2/г для единичной одностенной угле-
родной нанотрубки. Графеновые слои образуют 
пластинки из нескольких единичных графеновых 
слоев, в результате чего доступная для электроли-
та поверхность уменьшается. Тем не менее в по-
следнее время были получены обнадеживающие 
результаты для ЭХСК с графеновыми электрода-
ми. Часто графеновые электроды кроме емкости 
двойного электрического слоя обладают также 
псевдоемкостью фарадеевских редокс-реакций.

Восстановленный оксид графена обычно по-
лучают по модифицированному методу Хаммер-
са. Согласно этой методике, исходный порошок 
графита при перемешивании и  охлаждении до-
бавляется в  смесь концентрированных серной 
и азотной кислот, и через некоторое время в эту 
же смесь добавляется трехкратное по отношению 
к  графиту количество перманганата калия. За-
тем к ней добавляют раствор пероксида водорода 
и через час разбавляют троекратным количеством 
дистиллированной воды. После отстаивания 
в течение нескольких часов верхний прозрачный 
слой декантируют. Взвешенный осадок фильтру-
ют, промывают дистиллированной водой и сушат 
при комнатной температуре до постоянного веса. 
В  результате получают сухой порошкообразный 
оксид графита, который восстанавливают мето-
дом быстрого нагревания до температуры 1000°С. 
В  момент восстановления происходит расслое-
ние материала с многократным увеличением его 
объема (эксфолиация). Конечный продукт пред-
ставляет собой порошок из тонких монослоев, 
содержащих от 1 до 10 графеновых монослоев 
в пластинках, которые имеют разброс по разме-
рам от 1 до 10 мкм в латеральном направлении. 
Эти монослои, в  свою очередь, группируются 
в агломераты, между которыми образуются поры 
с широким (в 4–5 порядков) спектром размеров: 
микропоры, мезопоры и макропоры [8, 19–44].

Следует отметить, что в  обзоре проанализи-
ровано много публикаций за последние годы  – ​
с  2019 по 2024 г. В  самые последние годы был 
опубликован ряд обзоров по применению графе-
нов в суперконденсаторах, например [20, 21, 43]. 
Однако в  них отсутствовали следующие важные 
разделы, которые систематически рассмотрены 
в настоящем обзоре: влияние допирования и об-
лучения, влияние пористой структуры, квантовые 
точки, композиты графенов с оксидами металлов, 
с электронопроводящими полимерами, с MXenes.

В  обзоре важное место занимают материа-
лы, представляющие из себя композиты графе-
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нов с  электронопроводящими полимерами (по-
лианилин, полипиррол), с  оксидами металлов 
и  с  MXenes. Суперконденсаторы с  этими мате-
риалами покаывают высокие электрохимические 
характеристики.

1. Графены и их комбинации 
с другими углеродными 

материалами
Графеновые электроды отличаются высокой 

обратимостью зарядно-разрядных процессов. Это 
наглядно видно из рис.  1, на котором приведены 
зависимости удельной емкости от удельного тока 
и от числа гальваностатических циклов заряда/раз-
ряда для двух разных электродов с площадью удель-
ной поверхности 450 и  520  м2 г–1, изготовленных 
на основе ВОГ, который наносился на никелевый 
войлок. Электрохимические измерения проводи-
лись в 30 вес. % КОН [45]. Как видим, при изме-
нении удельного тока на порядок емкость почти не 
изменилась. Также видно, что в течение 500 циклов 
емкость практически оставалась постоянной.

В  [18] было установлено, что оксид графена 
обладает протонной проводимостью, а  в  [19] на 
этом основании был изготовлен суперконденса-
тор, состоящий из сепаратора из оксида графена 
и  двух электродов на основе восстановленного 
оксида графена.

В  работе [46] графены были получены тремя 
различными методами и были исследованы в ка-
честве электродных материалов в электрохимиче-
ских суперконденсаторах. Образцы, полученные 

эксфолиацией оксида графита и  превращением 
наноалмаза, обладают высокой удельной емкостью 
в H2SO4, значение достигает 117 Ф/г. При исполь-
зовании ионной жидкости рабочее напряжение 
было увеличено до 3.5 В (вместо 1 В в случае во-
дного раствора H2SO4), удельная емкость и плот-
ность энергии составляют 75 Ф/г и 31.9 Вт ч/кг со-
ответственно. Эксплуатационные характеристики 
графенов, напрямую связанные с  количеством 
слоев и величиной УП, превосходят одностенные 
и многостенные углеродные нанотрубки.

В последнее время было опубликовано много 
статей по применению графенов в ЭХСК. Иссле-
дование [47] представляет собой краткое изло-
жение последних разработок по использованию 
графена в качестве электрода суперконденсатора 
в форме пенопласта (3D), тонких слоев (2D), на-
новолокон (1D) и наноточек (0D). В этой статье 
представлен краткий взгляд на открытие и  про-
движение графена с последующим изучением те-
оретических и экспериментальных подходов, ис-
пользуемых для производства графена высшего 
качества. Кроме того, в  статье основное внима-
ние уделяется изготовлению электродов с сохра-
нением их основных характеристик. Подчерки-
вается их особенная эффективность в  качестве 
анода в суперконденсаторах. Статья завершается 
выявлением основных возникших проблем и по-
тенциальных перспектив.

Графеновая кислота (ГК) представляет собой 
проводящее производное графена, диспергируе-
мое в воде, которое может быть получено в боль-
ших масштабах из фторографена. В  работе [48] 
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Рис. 1. Зависимости удельной емкости от удельного тока (a) и зависимости удельной емкости в 30 вес. % КОН от 
числа гальваностатических циклов заряда/разряда (б) при удельном токе 0.1 А/г для двух электродов на основе ВОГ 
с разными величинами удельной поверхности [45].
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описывается исследование синтеза с  высокой 
воспроизводимостью для изготовления ГК. Было 
проведено зарядно/разрядное циклирование. ГК 
испытывали в  двухэлектродной ячейке с  серно-
кислотным электролитом. Тест на стабильность 
скорости показал, что ГК можно многократно 
циклировать при плотности тока в диапазоне от 
1 до 20 А/г без потерь емкости. Эксперимент по 
циклической стабильности показал, что даже по-
сле 60 000 циклов материал сохранял 95.3% своей 
удельной емкости при высокой плотности тока 
3 А/г.

В  [49] концепция биполярной электрохимии 
используется для разработки одноступенчато-
го и  контролируемого процесса одновремен-
ного отшелушивания источника графита и  для 
осаждения оксида графена и  восстановленных 
слоев оксида графена на проводящие подлож-
ки. Электрохимический анализ, проведенный 
на симметричных ячейках, показал удельную 
емкость 1932  мФ/см2 для высококачественного 
восстановленного оксида графена, осажденно-
го на отрицательном электроде, и  0.404 мФ/см2 
для оксида графена, осажденного на положи-
тельный электрод со скоростью сканирования 
2 мВ/с. Устройства также показали высокую ста-
бильность к  периодическим и  повторяющимся 
циклам заряда/разряда постоянным током, что 
подходит для накопления энергии в суперконден-
саторах. В  частотной области получены частоты 
1820 и 1157 Гц при фазовом угле импеданса –45° 
для устройств на основе положительного и отри-
цательного электродов соответственно, что явля-
ется перспективной характеристикой для приме-
нений фильтрации переменного тока.

В  последнее время быстрое развитие супер-
конденсаторов на основе графена привело к то-
му, что возникла потребность в  устройствах 
с  определенной адаптируемостью, что станет 
фундаментальным преимуществом в инноваци-
онных электронных устройствах. Тестируются 
различные материалы, чтобы убедиться в  соот-
ветствующих свойствах. Графен, обладающий 
уникальными свойствами, такими как высокая 
УП, высокая проводимость, рассматривается 
как потенциальный кандидат для использования 
в качестве строительного материала сверхпрово-
дников. В работе [50] изучили различные аспек-
ты сверхпроводников на основе графена, их 
типы, допирование металлом/неметаллом/по-
лимером, а также оксиды и восстановленные ок-
сиды сверхпроводников, включенных в  графен. 
Подводя итоги, были проведены сравнения про-

цессов, которым следовали исследователи, чтобы 
выяснить, какой из них является наиболее под-
ходящим способом получения наилучших элек-
трохимических характеристик.

В работе [51] было обнаружено, что суперкон-
денсатор с электродами на основе графена име-
ет удельную плотность энергии 85.6 Вт ч/кг при 
комнатной температуре и  136  Вт ч/кг при 80°C 
при 1  А/г. Эти значения плотности энергии со-
поставимы с  таковой у  никель-металлогидрид-
ного аккумулятора, но суперконденсатор можно 
заряжать или разряжать за секунды или минуты. 
Ключом к успеху стала возможность в полной ме-
ре использовать высокую УП однослойного гра-
фена путем подготовки изогнутых графеновых 
листов, что позволяет образовывать мезопоры, 
доступные и смачиваемые экологически безопас-
ными ионными жидкостями, способными рабо-
тать при напряжении >4 В.

1.1. Влияние пористой структуры
Характеристики пористой структуры суще-

ственно влияют на электрохимические характе-
ристики графеновых электродов и  соответству-
ющих суперконденсаторов. К  характеристикам 
пористой структуры относится площадь удельной 
поверхности, соотношение объемов микро- (ие-
рархический тип пористой нано) пор, мезопор 
и  макропор, суммарная пористость и  структуры 
электродов. Иерархический тип пористой струк-
туры означает, что наиболее мелкие частицы 
слипаются между собой в  агломераты, которые, 
в свою очередь, агломерируются в более крупные 
агломераты и т. д.

В работе [52] установили, что хлорид цинка яв-
ляется идеальным порообразователем и в сочета-
нии с капиллярной сушкой может задать удельную 
поверхность графена от 370 до более чем 1000 м2/г. 
Обладая хорошим балансом пористости и плотно-
сти, гранулированный электрод из графена тол-
щиной до 400 мкм обеспечивает емкость 150 Ф/см3 
в  ионно-жидкостном электролите, соответству-
ющую объемной плотности энергии ~65  Вт ч/л. 
В этом исследовании представлен принцип проек-
тирования электродных материалов для накопите-
лей энергии следующего поколения.

Суперконденсаторы на основе графена при-
влекают все большее внимание из-за возможной 
высокой УП, высокой подвижности электронов 
и  многих других превосходных свойств графена. 
Тем не менее в некоторых экспериментах совре-
менные графеновые электроды рассматриваются 
в [53] с целью решения проблем комбинации гра-
фена с другими видами (например, с ЭПП, оксида-
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ми металлов, атомными кластерами, с электрода-
ми с наноструктурой и т. д.) для преодоления таких 
препятствий, как малая площадь поверхности, 
низкая электропроводность и низкая емкость, что 
значительно ограничивает их электрохимические 
характеристики для суперконденсаторов. В  этом 
обзоре обсуждаются различные принципы гибри-
дизации (гибридизация проводников), рекомен-
даций по подходам к гибридизации для решения 
этих проблем. Приводятся высокие величины УП 
до 960, 1330 и 1530 м2/г и очень высокие величины 
удельной емкости 530, 780 и 990 Ф/г.

Волоконные суперконденсаторы (FSC) могут 
использоваться для питания гибких устройств, та-
ких как носимая электроника и умный текстиль. 
В работе [54] описывается высокопористый акти-
вированный графен (АГ), который встраивается 
в графеновые волокна для улучшения электрохи-
мических характеристик FSC на основе емкости 
двойного электрического слоя. Мокрое прядение 
AГ в смеси с оксидом графена и последующее хи-
мическое восстановление GO до восстановлен-
ного оксида графена позволяют изготавливать 
непрерывные и  проводящие графеновые волок-
на. Порошки АГ с очень большой УП значитель-
но улучшают электрохимические характеристики 
FSC. В  частности, волокно rGO/AГ с  массовым 
соотношением rGO/AГ 80/20 достигает удель-
ной поверхностной емкости 145.1 мФ/см2 при 
плотности тока 0.8 мА/см2 с гелевым электроли-
том PVA/LiCl. Это соответствует поверхностной 
энергии и  плотности мощности 5.04 мкВт ч/см2 
и 0.50 мВт/см2 для FSC соответственно. Кроме то-
го, гибкие FSC, использующие волокна rGO/AГ, 
демонстрируют высокую циклическую способ-
ность с  сохранением 91.5% емкости после 10 000 
циклов. Эта работа показывает значительный по-
тенциал в производстве волокон на основе AГ для 
разработки высокоэффективных гибких FSC.

В  [55–57] было описано, как имеющиеся 
в  изобилии биоотходы эффективно преобразу-
ются в  пористые графеновые листы при низкой 
температуре 900°C путем использования гидрок-
сида калия (KOH) в  качестве активационного 
агента для создания пористости, а также катали-
затора для индуцирования графитизации с помо-
щью простого синтетического подхода. Получен-
ный углеродный материал обладает хорошими 
текстурными свойствами, такими как высокая 
УП (2308  м2/г), большой объем пор (1.3  см/г), 
графеновая листовая морфология с межслойным 
d-расстоянием 0.345 нм и высокоупорядоченный 
sp-углерод, что подтверждается детальным тек-

стурным анализом. Благодаря многочисленным 
синергетическим свойствам материал был проте-
стирован в качестве эффективного электродного 
материала для применения в суперконденсаторах 
и обеспечивал высокую удельную емкость 240 Ф/г 
при 1 А/г. Кроме того, собранный симметричный 
суперконденсатор продемонстрировал быструю 
способность удерживать 87% емкости при вы-
соком токе (50  А/г), исключительную цикличе-
скую стабильность (удержание 93% емкости по-
сле 25 000 циклов) и высокую плотность энергии 
21.37 Вт ч/ кг при высокой плотности мощности 
13 420 Вт/кг.

Получение углеродного электрода с  высокой 
гравиметрической и  объемной емкостью при 
больших нагрузках имеет решающее значение 
для суперконденсаторов. При этом дефектные 
графеновые наносферы (ГНС) хорошо удовлет-
воряют вышеуказанным требованиям [56–62]. 
Морфология и  структура ГНС контролируются 
временем микроволнового нагрева и содержани-
ем железа. Типовая ГНС с УП 2794 м2/г, объемом 
пор 1.48 см3/г и плотностью упаковки 0.74 г/см3 
задают высокие гравиметрические и  объемные 
емкости 529 Ф/г и  392 Ф/см3 при 1  А/г с  удер-
жанием 62.5% емкости при 100  А/г в  трехэлект-
родной системе в 6 моль/л КОН. В двухэлектрод-
ной системе ГНС обладает плотностью энергии 
18.6  Вт ч/кг (13.8  Вт ч/л) при высокой удельной 
мощности 504 Вт/кг.

Окислительно-восстановительные ковалент-
ные органические каркасы (COFs) представляют 
собой новый класс материалов для хранения энер-
гии из-за значительного количества их активных 
центров, четко очерченных каналов и  высокой 
площади поверхности. Однако их низкая электро-
проводность и низкая электрохимическая доступ-
ность к  активным центрам серьезно ограничи-
вают их практическое применение. В  статье [57] 
описано изготовление электрода на основе ан-
трахинона COFs/композитного аэрогеля и графе-
на (DAAQ–COFs/GA) путем электростатической 
самосборки между отрицательно заряженными 
нанослоями оксида графена и  модифицирован-
ными положительно заряженными наноцветками 
DAAQ–COFs. Благодаря иерархической пористой 
структуре и быстропротекающим реакциям окис-
лительно-восстановительных центров электрод 
обладает высокой удельной емкостью 378 Ф/г при 
1 А/г и быстрой кинетикой с емкостным вкладом 
около 93.4% при 3 мВ/с. Кроме того, электрод 
DAAQ–COFs/GA, не содержащий связующего 
вещества, и электрод из чистого графенового аэ-
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рогеля (GA) были собраны в асимметричный су-
перконденсатор (ASC) с  плотностью энергии до 
30.5  Вт ч/кг при удельной мощности 700  Вт/кг. 
Данная работа демонстрирует большой потенци-
ал разработки высокопроизводительных накопи-
телей энергии на основе COF.

В работе [58] представлен простой метод полу-
чения графена с иерархической пористой струк-
турой путем активации оксида графена с  помо-
щью двухступенчатого процесса термического 
отжига. Сначала GO обрабатывали при 600°C бы-
стрым термическим отжигом на воздухе с после-
дующим термическим отжигом в  N2. Приготов-
ленный графеновый порошок содержал большое 
количество щелевых нанопор с  большой УП 
653.2 м2/г и с площадью микропористой поверх-
ности 367.2 м2/г. Пористую структуру можно было 
легко настроить, контролируя степень окисления 
GO и  второй процесс отжига. При использова-
нии графенового порошка в  качестве электро-
да суперконденсатора была достигнута удельная 
емкость 372.1 Ф/г при 0.5 А/г в электролите 1 М 
H2SO4. Производительность суперконденсатора 
была очень стабильной, демонстрируя сохране-
ние удельной емкости на 103.8% после 10 000 ци-
клов при 10  А/г. Систематически исследовано 
влияние пористой структуры на производитель-
ность суперконденсатора путем варьирования со-
отношений между микро-, мезо- и макропорами.

Активированный восстановленный оксид 
графена (a-rGO) представляет собой матери-
ал с  жесткой 3D-пористой структурой, высокой 
УП и иерархическим типом пористой структуры. 
Используя варьирование параметров активации 
и механическую обработку после синтеза, в  [59] 
получили два набора материалов с широким ди-
апазоном УП по БЭТ ~1000–3000  м2/г, а  также 
существенные различия в распределении пор по 

размерам и  содержании поверхностного кисло-
рода. Эффективность активированного графена 
в качестве электрода в суперконденсаторе с элек-
тролитом КОН коррелировала со структурными 
параметрами материалов и  водосорбционными 
свойствами. Было установлено, что a-rGO явля-
ется гидрофобным материалом, о чем свидетель-
ствует пренебрежимо малая величина УП БЭТ по 
H2О, определяемая с помощью анализа изотерм 
сорбции водяного пара. Однако общий объем 
пор, определенный с помощью сорбции водяно-
го пара и сорбции жидкой воды, практически не 
отличался от объема, полученного при анализе 
изотерм сорбции азота. Наилучшие гравиметри-
ческие и объемные емкости в электролите КОН 
были достигнуты не для образцов с наибольшим 
значением УП БЭТ (N2) для материалов с 80–90% 
от общего объема пор в микропорах и повышен-
но УП по БЭТ (H2О). Сравнение характеристик 
электродов, изготовленных с  использованием 
rGO и a-rGO, показывает, что более гидрофиль-
ная поверхность благоприятна для хранения за-
ряда в суперконденсаторах с электролитом КОН.

На рис.  2 приведены интегральная и  диффе-
ренциальная кривые распределения пор по раз-
мерам (ширине). Как видим, дифференциальная 
кривая имеет два явных максимума и один слабо 
выраженный максимум. УП по БЭТ равна очень 
большой величине 3030 м2/г.

В  [60] сообщается о  разработке бесшовно-
го мезопористого углеродного листа, состояще-
го из сплошных графеновых стенок, который 
проявляет необычайно высокую стабильность 
в  условиях высокого напряжения. Данный ма-
териал имеет высокую УП 1500  м2/г и  содержит 
очень мало краевых участков углерода (всего 4% 
от количества, присутствующего в  обычных ак-
тивированных углях), и его можно использовать 
для сборки симметричных суперконденсато-
ров с высокой стабильностью для электролита 1 
MEt3MeNBF4/карбонат пропилена. Работа при 
высоком напряжении 4.4 В приводит к увеличе-
нию плотности энергии в 2.7 раза по сравнению 
с  использованием обычного активированного 
угля.

Производство черного щелока, лигнина, 
углеродных нанослоев и  многослойного графе-
на, полученного при каталитической никелевой 
графитизации, было осуществлено с целью полу-
чения электродных материалов суперконденса-
торов (Ni@WE) экологически чистым способом 
[61]. NaCO-активация, допирование никелем 
и  каталитическая графитизация выполнялись 
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Рис.  2. Интегральная и  дифференциальная кривые 
распределения пор по размерам (ширине) [59].
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синхронно; при этом естественная иерархиче-
ская пористая структура древесины частично 
сохранялась. Циклическая вольтамперометрия 
(CV), гальваностатическая спектроскопия заря-
да-разряда и  электрохимическая импедансная 
спектроскопия Ni@WE подтвердили, что обра-
зец, спеченный при 1000°C, имеет удельную ем-
кость 163.7 Ф/г при частоте сканирования 0.2 В/с. 
Кроме того, более высокая плотность энергии 
26.2 Вт ч/кг при плотности мощности 124.6 Вт/кг 
была получена в ЭХСК, а 89.37% емкости сохра-
няется даже после 2000 циклов.

В  [3] описаны электрохимические свойства 
и  характеристики аккумулирования энергии вы-
сокой плотности твердотельного суперконден-
сатора на основе графеновых нанослоев. Гра-
феновый электрод изготовлен в  электролите, 
содержащем 1-бутил‑3-метилимидазолия тетраф-
торборат (BMIMBF4) (ионная жидкость) LiClO4. 
Допирующая добавка была заключена в полимер-
ную матрицу в  виде геля. Мезопористый графе-
новый электрод был сформирован путем диспер-
гирования в  аморфном поливинилиденфториде, 
в  результате чего был получен графен с  мини-
мальным количеством слоев (<5 слоев). Исполь-
зуя обилие ионов в  ионно-жидкостном гелевом 
электролите и  их эффективный доступ к  графе-
новым слоям через мезопоры, на основе данных 
циклической вольтамперометрии была получена 
высокая удельная емкость 214 Ф/г. Импедансные 
исследования показывают низкое сопротивление 
переносу заряда и  импеданс Варбурга, что ука-
зывает на высокую диффузионную способность 
к переносу ионов. Данные заряда-разряда показы-
вают, что графеновый суперконденсатор, вслед-
ствие наличия широкого (~2 В) окна потенциалов 
в ионно-жидкостном электролитном геле, значи-
тельно повысил плотность энергии до 33.3 Вт ч/кг 
при плотности мощности 3 кВт/кг при высокой 
~3 A/г плотности разрядного тока. Сообщается 
об интеграции графеновых суперконденсаторов 
с солнечными элементами и хранении электроэ-
нергии, генерируемой светом.

Трехмерный (3D) пористый графен с плоски-
ми нанопорами и иерархической пористой струк-
турой привлек большой интерес в  [48] вслед-
ствие его применения в  суперконденсаторах 
из-за большой УП, очень высокой проводимости 
и уникальной пористой структуры. Сочетая в се-
бе преимущества как пористых материалов, так 
и графена, 3D-пористый графен рассматривает-
ся как воплощение идеи для создания иерархи-
ческого гибрида с  комплексными электрохими-

ческими характеристиками с  целью получения 
высокой удельной энергии. В данном обзоре бы-
ли обобщены достижения последних лет в обла-
сти изготовления 3D-пористых структур на ос-
нове графена с  микро-, мезо- и  макропорами, 
а также исследованы взаимосвязи между структу-
рой и электрохимическими свойствами, а также 
обсуждено их применение в суперконденсаторах. 
На рис. 3 приведено СЭМ-изображение 3D-гра-
фена с макропорами, образованными путем уда-
ления порообразователя Na2CO3.

В работе [48] пористые частицы с  иерархи-
ческой пористой структурой активированно-
го угля, покрытые графеном, получали мето-
дом распылительной сушки водной суспензии 
GO/мальтодекстрина с  последующей карбони-
зацией и  активацией. Изготовленные частицы 
типа “ядро-оболочка” имели высокую удельную 
поверхность (до 2457 м2/г) и показали очень вы-
сокую удельную емкость (до 405 Ф/г при 0.2 А/г, 
299 Ф/г при 1 А/г и 199 Ф/г при 50 А/г) наряду 
с  превосходной стабильностью циклирования, 
высокой плотностью энергии и  высокой плот-
ностью мощности в  электролите KOH. Кроме 
того, самопроизвольное формирование структу-
ры “ядро-оболочка” в процессе распылительной 
сушки было подтверждено расчетами по методу 
DFT с использованием химического анализа XPS 
и  метода TEM. Эта проектируемая и  контроли-
руемая стратегия распылительной сушки может 
быть внедрена для разработки новых композит-
ных материалов со структурой “ядро-оболоч-
ка” для потенциальных применений в хранении 
энергии, катализе и адсорбции.

﻿1 мкм

Рис. 3. СЭМ-изображение 3D-графена с макропора-
ми, образованными путем удаления порообразовате-
ля Na2CO3 [48].
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На рис.  4 изображены дифференциальные 
кривые распределения пор по размерам (по ши-
рине) для различных материалов с иерархической 
пористой структурой, описанных в [48].

1.2. Влияние допирования и облучения
Одним из эффективных способов повыше-

ния электрохимических характеристик графенов 
является их допирование различными химиче-
скими веществами. Согласно [50], графен, до-
пированный азотом, получают микроволновым 
методом с  ЭДА (этилендиамином) в  качестве 
источника азота. Результаты экспериментов по-
казывают, что атомы азота из привитых молекул 
ЭДА на поверхности графена эффективно до-
пируются в  графеновые решетки. Образец NGS 
(допированные азотом графеновые нанолисты) 
демонстрирует высокие удельные емкости 197 
и 151 Ф/г при плотности тока 0.5 и 5 A/г в водном 
растворе 6.0 моль KOH соответственно. Кроме 
того, суперконденсатор демонстрирует высокую 
способность работы при больших токах: сохране-
ние 77 и 70% при плотностях тока 5 и 40 А/г со-
ответственно. Кроме того, при этом достигается 
снижение емкости ниже 2% после 5000 циклов 
заряда и разряда, что свидетельствует о длитель-
ной электрохимической стабильности.

В  работе [51] N-допированные графены на 
основе оксида графена и 3,3′,4,4′-тетрааминоди-
фенилоксида (TADPO) были получены с  помо-
щью одностадийного гидротермального метода. 
Полученные данные свидетельствуют о том, что 
в  ходе реакции образовывались бензимидазо-
льные кольца, а  весовое содержание азота в  по-
лученном материале варьировалось от 12.3 до 

14.7% в зависимости от исходной концентрации 
TADPO. Благодаря окислительно-восстанови-
тельной активности бензимидазольных колец 
новые N-допированные графеновые материа-
лы продемонстрировали высокую удельную ем-
кость, достигавшую 340 Ф/г при 0.1 А/г, что было 
значительно выше, чем у образца восстановлен-
ного оксида графена, полученного в аналогичных 
условиях без применения TADPO (169 Ф/г при 
0.1  А/г). Полученный суперконденсатор также 
продемонстрировал хорошую циклическую ста-
бильность после 5000 циклов.

В  работе [52] двухступенчатый золь-гель-ме-
тод применялся для получения образцов графе-
на, допированных азотом, с большой площадью 
поверхности, различающихся по величинам УП 
и по содержанию азота. В некоторых электроли-
тах наблюдалось более высокое влияние удельной 
поверхности и пористости на емкостные характе-
ристики графена, чем содержание азота. Все об-
разцы обладали более высокими емкостными ха-
рактеристиками, чем оксид графена и образец без 
азота, но с более высоким содержанием кислот-
ного электролита, чем щелочной, что дает объем-
ную удельную емкость ~118 Ф/см3 с кулоновской 
эффективностью >99% и  удержанием емкости 
>80% после 10 000 последовательных циклов. Ис-
ходя из веса активного материала, максимальная 
гравиметрическая плотность энергии достигала 
39 Вт ч/кг в кислом электролите при 0.1 А/г, что 
почти в 2.6 раза больше, чем у оксида графена без 
азота, используемого в этом исследовании.

В  [63] для синтеза графена, допированного 
азотом, был разработан однокамерный, не ис-
пользующий растворителей и  катализаторов 
мгновенный джоулев нагрев и  получен графен, 
флэш-допированный азотом (FNG). Прекурсо-
ры аморфного технического углерода и  мочеви-
ны быстро превращаются в высококачественный 
графен менее чем за 1 с под действием короткого 
электрического импульса с яркой вспышкой излу-
чения абсолютно черного тела. Готовый продукт 
FNG отличается высокой графитизацией и иерар-
хической пористой структурой. Он обеспечивает 
высокую нормированную по площади поверх-
ности емкость 152.8 мкФ/см2 при 1 А/г, высокую 
скорость зарядно-разрядных процессов с  боль-
шим сохранением емкости 86.1% даже при очень 
большом токе 128 А/г, а время релаксации состав-
ляет 30.2 мс. Кроме того, собранный симметрич-
ный квазитвердотельный суперконденсатор об-
ладает высокой плотностью энергии 16.9 Вт ч/кг 
и максимальной удельной мощностью 16.0 кВт/кг, 
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Рис.  4. Дифференциальные кривые распределения 
пор по размерам (по ширине) для различных матери-
алов с иерархической пористой структурой, описан-
ных в [48].
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а  также большой циклической стабильностью 
(91.2% от начальной емкости сохраняется после 
10 000 циклов). Эти высокие характеристики по-
казывают, что FNG является многообещающим 
кандидатом для использования высокопроизво-
дительных суперконденсаторов.

3D-губчатый графен, допированный азотом 
(АГ), был экономично приготовлен в  работе [53] 
с помощью нового одностадийного метода из от-
ходов полиэтилентерефталата (ПЭТ), смешанных 
с мочевиной при различных температурах. Иссле-
довано влияние температуры и количества моче-
вины на образование АГ. Измерения с помощью 
циклической вольтамперометрии и  импедансной 
спектроскопии показали, что фиксация азота, 
влияющая на структуру и морфологию приготов-
ленных материалов, улучшает распространение 
заряда и диффузию ионов. Полученные материа-
лы демонстрируют высокие характеристики элект-
родов суперконденсаторов с удельной емкостью до 
405 Ф/г при 1 А/г. Для оптимального образца ре-
гистрировали высокие величины плотности энер-
гии 68.1 Вт ч/кг и удельной мощности 558.5 Вт/кг 
в 6 М КОН. Образцы АГ показали высокую цикли-
ческую стабильность с  удержанием 87.7% емко-
сти после 5000 циклов при 4 А/г. Таким образом, 
приготовленный АГ считается перспективным, 
дешевым материалом, используемым в  системах 
хранения энергии, а используемый метод является 
экономически эффективным и экологически чи-
стым методом массового производства АГ, а также 
открывает возможности переработки отходов для 
широкого спектра применений. На рис.  5 пред-
ставлены ЦВА-кривые, из которых следует, что 
они имеют форму, близкую к прямоугольной, что 
соответствует заряжению ДЭС. При малых же то-
ках видно влияние также фарадеевских реакций, 
что выражается в характерном отклонении формы 
этих кривых от прямоугольной.

В работе [64] описывается высокоориенти-
рованный, эффективно допированный азотом 
графеновый пленочный электрод (NGF), вклю-
чая его конструкцию. NGF обладает уникальной 
структурой, обеспечивающей высокую плотность 
упаковки (до 1.64 г/см3) и эффективный перенос 
ионов одновременно. Симметричные суперкон-
денсаторы на основе NGF (NGF-SC) показали 
удельную емкость 370 Ф/см3 или 226 Ф/г при на-
веске 11.2  мг/см2 в  водном электролите. В  этом 
случае сохранение емкости составило 90.1% по-
сле 100 000 циклов. В ионной жидкости NGF-SC 
показал высокую емкость 352 Ф/см3 или 215 Ф/г 
при 11.2 мг/см2 и при окне потенциалов 0–3.5 В, 

обеспечивая сверхвысокую плотность энергии 
138 Вт ч/л. При 3H-конструкции и высокой мас-
совой нагрузке плотность энергии всего ЭХСК 
NGF-SC достигает 65 Вт ч/л, что намного выше, 
чем у коммерческих суперконденсаторов. Приме-
чательно, что такой NGF-SC продемонстрировал 
длительный срок службы до 50 000 циклов с  со-
хранением 84.8%, что является рекордом.

Пористые волокна графена, допированные 
азотом и  серой (NS-GFs), синтезировались пу-
тем гидротермальной самосборки с  последую-
щим термическим отжигом, демонстрируя вы-
сокие емкостные характеристики 401 Ф/см3 при 
400 мА/см3 из-за синергетического эффекта двой-
ного допирования гетероатомами [65]. Изготов-
леный симметричный полностью твердотельный 
суперконденсатор с  поливиниловым спиртом/
H2SO4 гелевым электролитом и оксидом графена 
обладал высокой емкостью 221 Ф/см3 и высокой 
плотностью энергии 7.7 мВт ч/см3 при 80 мА/см3. 
Интересно, что преобразование солнечно-тепло-
вой энергии с 0.1 мас. % оксида графена расши-
ряет диапазон рабочих температур суперконден-
сатора до 0°C. Кроме того, эффект фотокатализа 
гетероатомов с  двойным допированием увели-
чивает емкость NS-GFs. При температуре окру-
жающей среды 0°C емкость увеличивается до 
182 Ф/см3 при солнечном излучении из-за отлич-
ного поглощения солнечного света и  эффектив-
ного преобразования солнечно-тепловой энергии 
оксидом графена, предотвращая замерзание во-
дного электролита.

В  [20] представлен композит углерода/графе-
на (PCG), полученный из пыльцы, с  допирова-
нием азотом и  серой с  взаимосвязанной струк-
турой “сфера в  слое”, в  которой углеродные 
микросферы с  иерархической структурой могут 
служить “пористыми прокладками”, предот-
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Рис. 5. ЦВА-кривые для супереконденсатора на ос-
нове электродов, разработанных в [53].
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вращающими агломерацию нанослоев графена. 
Оптимизированный композит PCG, изготов-
ленный с 0.5 мас. % оксида графена (PCG‑0/5), 
продемонстрировал высокую удельную емкость 
(420 Ф/г при 1 А/г), скоростные характеристики 
(280 Ф/г при 20  А/г) и  отличную циклическую 
стабильность с сохранением 94% емкости после 
10000 циклов. Симметричный ЭХСК обеспечива-
ет высокую плотность энергии 31.3 Вт ч/кг в ней-
тральной среде.

В работе [66] были исследованы суперконден-
саторные характеристики с допированными фос-
фором графеновыми электродами, которые были 
синтезированы в одну стадию по методу Юджеля. 
Образование графеновых слоев в структуре мезо-
пор наблюдали методом сканирующей электрон-
ной микроскопии. Методом рентгеновской фото-
электронной спектроскопии идентифицированы 
обычный фосфор и фосфор, включенный в функ-
циональные группы –[(–PO)] и –(PO), образую-
щиеся на внутренней поверхности электрода. Для 
электрохимической характеризации электродов 
использовали циклическую вольтамперометрию 
и  электрохимическую импедансную спектроско-
пию. Также были проведены циклические испы-
тания заряда-разряда в  течение 1000  циклов для 
определения циклической стабильности элект-
родных материалов. По мере увеличения числа 
циклов в процессе синтеза электродов количество 
различных молекулярных функциональных групп 
на поверхности увеличивалось. Наибольшая ем-
кость равна 301.3 мФ/см2 при плотности тока 
10 мA/cм2 в растворе серной кислоты.

В работе [67] приводится простой подход к полу-
чению фосфатно-функционализированных угле-
родистых композитов на основе графена. Гомо-
генное осаждение тонкого слоя фенольной смолы 
на поверхность слоев оксида графена достигалось 
с  использованием ортофосфорной кислоты в  ка-
честве катализатора полимеризации и функциона-
лизационного агента. В  результате последующего 
пиролиза композита были получены однородные 
пластинчатые микроструктурированные пористые 
углерод-графеновые композиты, сочетающие в се-
бе ускоренную молекулярную диффузию и  уско-
ренный перенос электронов. Для выяснения влия-
ния GO и пористости на работу суперконденсатора 
также были получены и  испытаны свободный от 
графена образец и  KOH-активированный компо-
зит с использованием водных и органических элек-
тролитов. Установлено, что наличие активации GO 
и КОН приводит к увеличению удельной поверхно-
сти в сочетании с прогрессирующим расширением 
пор. В результате КОН-активированный композит 
достиг удельных емкостей 211 и 105 Ф/г при исполь-
зовании 1 M H2SO4 и 1.5 M Et4NBF4 электролитов 
соответственно. Установлено также, что фосфор-
ная функционализация электродов дает возмож-
ность достичь рабочее напряжение 1.3 В в водном 
электролите, что приводит к значительному увели-
чению плотности энергии ячейки. Наконец, как не-
активированные, так и активированные компози-
ты на основе графена обеспечивают очень хорошее 
сохранение емкости, плотности энергии и мощно-
сти, а также стабильности циклирования.

В [68] описано использование графеновых аэ-
рогелей, допированных бором (B-GA), которые 
были изготовлены простым гидротермальным 
методом. Эти B-GA характеризуются высокой УП 
и  большой мезопористостью. Суперконденсато-
ры с B-GA обладают высокой удельной емкостью 
308.3 Ф/г при 1 А/г. Более того, B-GA обеспечи-
вают высокую стабильность при циклировании, 
а именно 92% сохранения емкости после 5000 ци-
клов при 1 А/г, что выше, чем у недопированных 
графеновых аэрогелей (86%). Улучшение харак-
теристик происходит за счет сочетания мезопо-
ристой структуры, высокой УП и обилия дефек-
тов B-GA. Данное исследование демонстрирует 
значительный потенциал электродов B-GA для 
высокопроизводительных суперконденсаторов. 
На рис. 6 приведено схематическое изображение 
молекулярного строения графенового аэрогеля, 
допированного бором (B-GA).

В [69] методом химического осаждения из 
газовой фазы с  помощью электронных нитей 
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Рис.  6. Схематическое изображение молекулярного 
строения графенового аэрогеля, допированного бо-
ром (B-GA) [68].
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(EA‑HFCVD) был синтезирован допированный 
бором алмаз (BG/BDD). Атомы бора эффективно 
допируют графен и алмаз, а листы борированно-
го графена (BG) выращиваются вертикально на 
борированном алмазе (BDD). Содержание бора 
в  BG влияет на характеристики BG/BDD-элек-
трода, и  электрод имеет высокую удельную ем-
кость. Электрохимическое поведение электрода 
BG/BDD анализировалось как при положитель-
ных, так и  отрицательных окнах потенциалов 
в  трехэлектродных электрохимических ячейках 
с  использованием насыщенного водного NaCl 
в качестве электролита. Затем изготавливался сим-
метричный суперконденсатор (SSC) для оценки 
практического применения электрода BG/BDD. 
Устройство на базе BG/BDD работает при высо-
ком напряжении 3.2 В. SSC обеспечивает высокую 
плотность энергии 79.5 Вт ч/кг при удельной мощ-
ности 221  Вт/кг и  высокую удельную мощность 
18.1 кВт/кг при плотности энергии 30.7  Вт ч/кг; 
он также сохраняет 99.6% своей удельной емко-
сти в диапазоне 0–2.5 В. Следовательно, данный 
ЭХСК имеет существенное преимущество в  ста-
бильности при высоких рабочих напряжениях.

Таким образом, было показано, что суперкон-
денсаторы, в которых используется допирование 
графенов бором, обладают высокими электрохи-
мическими характеристиками.

В  исследовании [70] был реализован одно-
стадийный метод изготовления различных элек-
тродов из оксида графена, допированых гетеро-
атомами –S, –N, –Cl, в  качестве электродных 
материалов для суперконденсаторов большой 
емкости. Методом рентгеновской фотоэлектрон-
ной спектроскопии установлено образование 
групп –ClO2, –ClO3, –SOx (x:2, 3) и –NO2 в элек-
тродах на основе оксида графена. Исследованы 
детальные механизмы образования этих групп. 
Электроды из оксида графена, легированные се-
рой, азотом и хлором, использовались в качестве 
электродных материалов для суперконденсато-
ров. Емкости электродов из оксида графена, до-
пированых –S, –N и –Cl, были определены как 
206.4, 533.2 и  1098 мФ/см2 соответственно, при 
плотности тока 10 мА/см2.

В [71] была исследована стабильность и элек-
трохимические свойства графена, допированно-
го атомами B, N, P и S. Атомы B, N, P и S проч-
но связываются с графеном, и все исследованные 
системы проявляют металлическое поведение. 
В то время как графен с большой УП может уве-
личивать емкость ДЭС, его низкая квантовая 
емкость ограничивает его применение в  супер-

конденсаторах. Это прямой результат ограничен-
ной плотности состояний вблизи точки Дирака 
в исходном графене. Установлено, что допирова-
ние N и S с одной вакансией имеет относитель-
но стабильную структуру и  высокую квантовую 
емкость. Предполагается, что такие электроды 
могут быть использованы в  качестве идеальных 
электродов для симметричных суперконденсато-
ров. Преимущества некоторых содопированных-
графеновых систем были продемонстрированы 
путем вычисления квантовой емкости. Было об-
наружено, что графен, допированный N/S и N/P 
с одной вакансией, подходит для асимметричных 
суперконденсаторов. Повышенная квантовая ем-
кость способствует формированию локализован-
ных состояний вблизи точки Дирака и/или сдви-
гов уровня Ферми за счет введения допирующего 
и вакантного комплекса. На рис. 7 приведена ди-
аграмма Рагона для симметричного ЭХСК на ос-
нове BG/BDD и других исследованных ЭХСК на 
основе графена. Как видим, в работе [71] получе-
ны высокие характеристики.

1.3. Способы получения 
восстановленного оксида графена

Получение высококачественных графенопо-
добных структур и материалов экологически чи-
стым способом до сих пор трудно достижимо. 
Недавние исследования показали, что лазерное 
облучение соответствующих прекурсоров пред-
ставляет большой потенциал и  универсальность 
для реализации высококачественного выращи-
вания графеноподобных материалов при низких 
затратах. В  работе [72] представлено подробное 
исследование лазерной трансформации гомо-
генизированного сушеного коринфского изю-
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Рис. 7. Диаграмма Рагона для симметричного ЭХСК 
на основе BG/BDD и  других исследованных ЭХСК 
на основе графена [71].
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ма (Vitisvinifera L., var. Apyrena) в графеноподоб-
ный материал. Это одноэтапный процесс, так 
как преобразование сырья из биомассы происхо-
дит в условиях окружающей среды. Дифракция, 
комбинационное рассеяние света и электронная 
микроскопия показали, что структура продук-
та, облученного лазером, значительно отлича-
ется от структуры графитового углерода. Анализ 
XPS показывает очень высокое соотношение 
C/O, равное 19, после разложения сырой био-
массы. Сочетание турбостратической структуры 
и  практически полного удаления форм кисло-
рода приводит к  сверхнизкому сопротивлению, 
что подтверждает успешную модификацию сы-
рья до графеноподобной структуры с  высокой 
степенью sp-гибридизации. Дополнительным 
достоинством данного подхода является то, что 
этот процесс может индуцировать как рост гра-
феноподобных структур на облучаемой мишени, 
так и  дает высококачественные графеноподоб-
ные порошки. Последние были использованы 
для подготовки электродов для симметричных 
суперконденсаторов, демонстрирующих более 
высокую производительность по сравнению с су-
перконденсаторами на основе графена, приго-
товленного другими лазерными методами.

В  работе [73] сообщается об одновременном 
отшелушивании и  восстановлении оксида гра-
фена и  графеновых нанослоев (GNPs) способом 
быстрого микроволнового облучения, чтобы пре-
одолеть препятствия, связанные с  низкой элек-
трической проводимостью и  склонностью к  по-
вторному агрегированию, а  также реализовать 
весь свой потенциал в  качестве материалов для 
электродов суперконденсаторов. Морфологиче-
ские исследования выявили пористую структуру 
микроволнового оксида графена (MW‑GO) и ми-
кроволновых графеновыхнанослоев (MW‑GNPs), 
что показало отшелушивание материалов на ос-
нове графена. Суперконденсатор был изготовлен 
с использованием смеси MW-GO, MW-GNP и по-
липиррола и показал удельную емкость 137.2 Ф/г 
при циклировании, стабильность 89.8% после 
1000 циклов заряда/разряда.

В работе [74] графен получали путем облуче-
ния эксимерным лазером оксида графита, рас-
творенного в водном электролите при различных 
энергиях лазера и  времени облучения. Морфо-
логию и  структуру лазерно-восстановленного 
графена охарактеризовали с  помощью скани-
рующей электронной микроскопии, малоугло-
вой рентгеновской дифракции и  рентгеновской 
фотоэлектронной спектроскопии. Результаты 

рентгеновской дифракции подтверждают, что де-
оксигенация слоев оксида графита происходила 
практически полностью для всех использован-
ных условий лазерного облучения. Графен, по-
лученный данным методом, представляет собой 
хаотично агрегированный, скомканный, неу-
порядоченный и  мелкий листовой твердый ма-
териал. В  качестве электродного активного ма-
териала для суперконденсаторов использовали 
восстановленный лазером графен, а  его удель-
ную емкость оценивали в двухэлектродной ячей-
ке с водным раствором 0.5 М Na2SO4 или в 1 М 
электролите на основе тетраэтиламмония те-
трафторбората ацетонитрила. Установлено, что 
удельная емкость графена, изготовленного с ис-
пользованием лазера, зависит от энергии и вре-
мени облучения лазером. Наибольшая удельная 
емкость была определена равной 141 Ф/г при 
1.04 А/г и 84 Ф/г при 1.46 А/г в водных электро-
литах и электролитах с ACN (ацетонитрил) соот-
ветственно. Сравнение характеристик суперкон-
денсаторов на основе графена затруднено из-за 
разнообразия методов получения материалов.

В работе [75] сравниваются графены, получе-
ные несколькими способами. К  ним относятся 
анодный и катодный электрохимически вспучен-
ный графен, жидкофазный вспученный графен, 
оксид графена, восстановленный оксид графе-
на и  графеновые наноленты. Восстановленный 
оксид графена показал самую высокую емкость 
около 154 Ф/г в 6 М КОН при 0.5 А/г, что было 
объяснено влиянием функциональных кисло-
родсодержащих групп, дающих дополнительную 
псевдоемкость. Однако сохранение емкости бы-
ло плохим из-за низкой проводимости. Для срав-
нения, анодный электрохимически вспученный 
графен показал емкость около 44 Ф/г и  проде-
монстрировал превосходное удержание емкости 
благодаря своей более высокой проводимости. 
Эти результаты подчеркивают важность соответ-
ствия метода производства графена конкретному 
применению. Например, оксид графена и  ано-
дный электрохимически вспученный графен луч-
ше всего подходят для применения в ЭХСК с вы-
сокой энергией и мощностью соответственно.

Часто синтез графенов включает в себя исполь-
зование токсичных химических веществ, которые 
угрожают окружающей среде. В  связи с  недав-
ним смещением внимания к  синтезу наномате-
риалов из сельскохозяйственных отходов из-за 
их легкой доступности, экономичности и, самое 
главное, экологичности, в  работе [76] впервые 
был представлен новый и “зеленый” синтез ма-
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лослойных графеновых слоев с  использованием 
кожуры граната в  качестве прекурсора при низ-
кой температуре 80°C. Морфология поверхно-
сти и  микроструктурные свойства определялись 
с  помощью просвечивающей электронной ми-
кроскопии, энергодисперсионной рентгенов-
ской спектроскопии, рентгеновской дифракции, 
инфракрасной спектроскопии с преобразовани-
ем Фурье (FTIR), УФ-видимой спектроскопии 
(UV-vis), а электрические свойства определялись 
измерениями эффекта Холла. Суперконденса-
тор также исследовался с помощью циклической 
вольтамперометрии (CV), гальваностатического 
зарядно-разрядного циклирования и электрохи-
мической импедансной спектроскопии. Полу-
ченный суперконденсатор обеспечивал емкость 
3.39  мФ/см2 при плотности тока 15.6 мкА/см2, 
что делает такой графен хорошим материалом для 
электрохимических запоминающих устройств.

В  [77] сообщается о  простом и  экономичном 
способе изготовления водорастворимых графено-
вых слоев с использованием угля. Синтезирован-
ные слои графена, полученного из угля (CDG), 
были охарактеризованы методами рентгеновской 
дифракции, просвечивающей электронной ми-
кроскопии высокого разрешения (HRTEM), по-
левой эмиссионной сканирующей электронной 
микроскопии (FESEM), рамановской инфракрас-
ной (FTIR) с преобразованием Фурье (FTIR), уль-
трафиолетовой видимой (UV–vis) спектроскопии 
и  фотолюминесценции (PL). Наличие краевых 
кислородных функций в  листах CDG приводит 
к  индуцированию флуоресцентных свойств. Для 
определения электрохимических свойств CDG 
были проведены измерения циклической воль-
тамперометрии (CV), заряда-разряда и  электро-
химической импедансной спектроскопии в  раз-
личных электролитах. Значение удельной емкости 
CDG в 1 М Na2SO4 оказалось равным 277 Ф/г при 
скорости развертки 5 мВ/с. CDG демонстрируют 
стабильность длительных циклов, т. е. значение 
удельной емкости остается на уровне ~91% после 
2000 циклов при плотности тока 10 мА/г.

Учитывая небиоразлагаемую природу пла-
стика, его переработка и вторичная переработка 
имеют решающее значение для обеспечения эф-
фективного управления отходами и  сохранения 
ресурсов. В работе [78] сообщается о малозатрат-
ном и  экологически чистом способе переработ-
ки пластиковых отходов для производства боль-
шого количества графеновых нанослоев (GN) 
с помощью двухступенчатого процесса пиролиза. 
Чтобы проанализировать полезность GN, син-

тезированных этим способом, было изучено их 
емкостное поведение с различными токоотвода-
ми, такими как медная лента (CuT), стекло из ок-
сида индия-олова (ITO), графитовый лист (GS) 
и  алюминиевый лист (AlS) в  PVA (поливинило-
вый спирт)-H3PO4 в гелевом электролите. Полу-
ченные результаты подтверждают, что токоотвод 
AlS обеспечил самую высокую удельную емкость 
38.78 Ф/г. Таким образом, настоящее исследова-
ние показывает экономически эффективный ва-
риант достижения экономики замкнутого цикла 
за счет переработки пластиковых отходов с  ис-
пользованием систем хранения энергии.

В [79] сообщается о процессе переработки пла-
стиковых отходов в  графеновые нанослои (GN) 
и их последующее применение в сенсибилизиро-
ванных красителем солнечных элементах (DSSC) 
и  суперконденсаторах. Бентонитовая наноглина 
была использована в  качестве агента для разло-
жения пластиковых отходов с  использованием 
двухстадийных методов пиролиза при 450 и 945°C 
в инертной атмосфере N2 для получения GN. На-
личие GN с  небольшим количеством слоев бы-
ло подтверждено рамановской спектроскопией, 
XRD и  HRTEM. Кроме того, для идентифика-
ции и количественного анализа функциональных 
групп в  GN также были проведены ИК-фурье 
и  EDX-анализы. Использование GN в  качестве 
материала активного слоя электродов суперкон-
денсаторов обеспечило высокую удельную ем-
кость 398 Ф/г при скорости развертки 0.005 В/с. 
Суперконденсатор также показал значитель-
ную плотность энергии и  плотности мощности 
38 Вт ч/кг и 1009.74 Вт/кг соответственно. Таким 
образом, этот метод показал пользу переработки 
пластиковых отходов для сохранения экологии 
и высоких электрохимических характеристик.

Многие виды сельскохозяйственных отходов 
можно рассматривать в качестве обильного и не-
дорогого источника углерода для крупномасштаб-
ного производства материалов графенового типа. 
В [80] было показано, что широко доступные ко-
косовые отходы могут быть эффективно преобра-
зованы в восстановленный оксид графена путем 
простого каталитического процесса с использова-
нием ферроцена в качестве эффективного и недо-
рогого катализатора. Структура и морфология из-
готовленных материалов были охарактеризованы 
методами XRD, SEM и TEM. Полученные резуль-
таты подтвердили образование высококачествен-
ного восстановленного оксида графена. Было 
обнаружено, что этот материал показал высокие 
характеристики в ЭХСК и отличную циклическую 



Электрохимия      том 61       № 1       2025

18	 ВОЛЬФКОВИЧ	

стабильность. Таким образом, восстановленный 
оксид графена, полученный простым экологиче-
ски чистым способом из этого типа сельскохозяй-
ственных отходов, может быть хорошим кандида-
том на роль электродов суперконденсатора.

Древесина, как разновидность материалов 
биомассы, имеет потенциальную прикладную 
ценность во многих аспектах. В работе [81] спро-
ектировали и изготовили композитный материал 
из карбонизированного оксида графена oxide@
PVA (CWCC–rGO@ПВС) с высокой удельной ем-
костью, высокой гибкостью, деформируемостью 
и способностью вырабатывать электроэнергию из 
окружающей среды, используя в качестве основы 
карбонизированные древесные ячейки (CWCC). 
GO, как промежуточный продукт, связывается 
с CWCC в виде связей C–C, а полученный про-
межуточный продукт CWCC–rGO соединяется 
с  ПВС (поливиниловый спирт) с  образованием 
водородных связей. Получившийся в  результате 
окончательный гибрид CWCC–rGO@ПВС де-
монстрирует высокие электрохимические харак-
теристики, включая высокую удельную емкость 
288 Ф/г, удержание емкости 91%, плотность энер-
гии 36 Вт ч/кг и плотность мощности 3600 Вт/кг.

В работе [82] рассмотрены конструкция и спо-
соб сборки наноцеллюлозно-графеновых компо-
зиционных материалов, применяемых для гиб-
ких суперконденсаторов. Механическая гибкость, 
удельная емкость, электрохимические характери-
стики, циклическая стабильность, возобновляе-
мость и биоразлагаемость принимаются во внима-
ние, чтобы оценить характеристики композитных 
материалов и достоинства этого материала.

В статье [83] описывается новая методика полу-
чения хлопьев графена высокой плотности (HDGF) 
для высокопроизводительных суперконденсато-
ров. HDGF получают путем измельчения на мел-
кие кусочки термически восстановленной плен-
ки оксида графена. Высокая плотность упаковки, 
а также быстрый перенос электронов и ионов бы-
ли достигнуты одновременно за счет нарушения 
непрерывности графеновой пленки при сохране-
нии ее плотной структуры. Изготовленный HDGF 
обладал высокой гравиметрической емкостью 
(237 Ф/г) и объемной емкостью 261 Ф/см3, а также 
превосходной стабильностью циклов с 98% от на-
чальной емкости после 10 000 циклов. Кроме того, 
симметричный суперконденсатор, использующий 
HDGF в качестве электродных материалов, может 
получить объемную емкость до 16 Вт ч/л при плот-
ности мощности 88  Вт/л в  водной системе. Эта 
стратегия обеспечивает новый способ разработки 

суперконденсаторов большой объемной емкости 
для хранения энергии в будущем.

Миниатюризация накопителей энергии имеет 
решающее значение для разработки портативных 
электронных устройств следующего поколения. 
Микросуперконденсаторы (МСК) обладают боль-
шим потенциалом для работы в  качестве встро-
енных микроисточников питания и  накопителей 
энергии, дополняющих аккумуляторы и системы 
сбора энергии. Масштабируемое производство 
материалов для суперконденсаторов с использова-
нием экономически эффективных и  высокопро-
изводительных методов обработки имеет реша-
ющее значение для широкого применения МСК. 
В  [84] сообщается, что мокроструйное фрезеро-
вание графита позволяет увеличить производ-
ство графена в качестве материала для суперкон-
денсаторов. Рецептура получения графеновых 
чернил на водной/спиртовой основе позволяет 
выполнять трафаретную печать гибких МСК, не 
содержащих металлов. Эти МСК обладают по-
верхностной емкостью до 5.296 мФ/см2 для одного 
электрода, что соответствует очень высокой объ-
емной емкости 1.961 Ф/см3. МСК с трафаретной 
печатью могут работать при плотности мощности 
более 20 мВт/см2. Устройства демонстрируют пре-
восходную устойчивость к циклам заряда-разряда 
(10 000 циклов), циклам изгиба (100 циклов при ра-
диусе изгиба 1 см) и складыванию (до углов 180°).

В  последнее время технологии печати стали 
перспективными методами изготовления элек-
трохимических накопителей энергии (ЭХНЭ), 
в то время как недавно разработанные принтеры 
позволили значительно улучшить напечатанные 
электроды за счет более низкой стоимости, бо-
лее легкой подготовки, более высокой произво-
дительности и  улучшенных электрохимических 
и механических свойств. В [85] представлен обзор 
технологий печати для производства ЭХНЭ и ос-
новное внимание уделено материалам на основе 
графена. Была рассмотрена струйная, аэрозоль-
ная, трафаретная, рулонная и 3D-печать, прове-
ден обзор новейшей литературы, представлены 
иллюстративные примеры технического приме-
нения технологий печати для хранения энергии 
и электрохимические характеристики.

2. Композиты с графенами

2.1. Композиты с оксидами металлов
Композиты графенов с оксидами переходных 

металлов, как правило, отличаются высокими 
электрохимическими характеристиками, обу-
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словленными как эффективными характеристи-
ками графенов, так и  псевдоемкостными свой-
ствами оксидов переходных металлов [41, 86–137]. 
Оксиды металлов являются распространенными 
материалами для электродов суперконденсато-
ров, демонстрируя высокую плотность энергии 
и  мощности, а  также длительный срок службы. 
В композитах графен и оксиды металлов проде-
монстрировали сочетание высокой циклической 
стабильности графена и  высокой емкости окси-
дов металлов, которые значительно улучшают 
комплексные свойства нанокомпозитов. В  [41] 
освещены современные разработки графеновых 
композитов с  оксидами металлов (MGr) (и  при 
допировании азотом) в  области электрохими-
ческих конденсаторов с  учетом их синергетиче-
ских свойств. Показано, что композиты MGr, 
по сравнению с индивидуальными материалами, 
достигли существенного повышения скоростной 
способности, емкости и  стабильности циклиро-
вания. Изложен обзор характеристик, подходов 
к  приготовлению и  применению графена (Gr). 
Подробно описан механизм реализации различ-
ных видов электрохимической емкости. Нако-
нец, обсуждались будущие перспективы и  про-
блемы композитов MGr для хранения энергии.

В исследовании [86] металлическая токосъем-
ная пленка была нанесена на гибкую подложку 
в виде микросетки путем селективного лазерного 
спекания наночастиц серебра.

Удельная емкость составила 5.8 мФ/см2 при 
1.5  мА/см2 с  электролитом ПВС-H3PO4. Затем 
было проведено электроосаждение наночастиц 
диоксида марганца (MnO2), что еще больше уве-
личило емкость до 49.1 мФ/см2 при 1 мА/см2 
в 0.5 М Na2SO4. В результате уменьшение емко-
сти оставалось ниже 10% в течение 10 000 циклов 
заряда/разряда.

В  работе [87] был представлен новый подход 
к  созданию электродов с  иерархической струк-
турой, позволяющей суперконденсаторам со-
хранять свою емкость при механической дефор-
мации. Электроды изготавливаются сначала 
путем выращивания вертикальных графеновых 
нанослоев (VGN), а  затем осаждения диоксида 
марганца (MnO2) на проволоках из пластичного 
никеля. Из двух таких электродов изготавлива-
ют симметричный суперконденсатор, исполь-
зующий твердотельный электролит, содержа-
щий карбоксиметилцеллюлозу и сульфат натрия. 
Этот суперконденсатор достигает высокой емко-
сти до 56  мФ/см2, высокой плотности энергии 
7.7 МВт ч/см2 и и высокой плотности мощности 

5 МВт ч/см2. Эти исключительные свойства об-
условлены синергией между VGN и  MnO2, где 
высокопористые VGN выполняют важную функ-
цию механически прочной платформы с  боль-
шой площадью поверхности, позволяющей на-
носить на нее псевдоемкостной материал MnO2. 
Суперконденсаторам, изготовленным из этих 
электродов, можно придавать различные формы 
путем сгибания и скручивания с небольшой поте-
рей производительности. Многообещающие ре-
зультаты, представленные в  этом исследовании, 
открывают новый путь для изготовления высоко-
производительных накопителей энергии для но-
симой электроники и беспроводной связи.

В работе [88] созданы электроды из углеродно-
го волокна (CF), модифицированного вертикаль-
но ориентированными графенами (VG), и  диок-
сида марганца (MnO2), а также при допировании 
азотом. Результаты показывают, что гибриди-
зация VG и  MnO2 создает значительный синер-
гетический эффект, приводящий к  увеличению 
поверхностной емкости электрода. Этот синер-
гетический эффект объясняется двойным влия-
нием на VG-увеличение эффективной площади 
поверхности и электропроводности, которые обе-
спечивают лучшее распределение MnO2, а  так-
же высокопроводящую сеть. Суперконденсатор 
на основе гибридного электрода CF/VG/ MnO2 
и  полимерного электролита имеет удельную ем-
кость на площадь поверхности 30.7 мФ/см2, плот-
ность энергии 12.2 мВт/кг, а плотность мощности 
2210.3 мВт/кг. Кроме того, механические характе-
ристики демонстрируют прочность на растяже-
ние 86 МПа и прочность на изгиб 32 МПа для этой 
конструкции суперконденсатора.

Работа [89] посвящена получению композит-
ных тонких пленок диоксида марганца (MnO2)/
оксида графена (GO), допированных серебром 
(Ag) и  азотом. Исследование методом БЭТ по-
казало, что нанолисты MnO2–Ag3/GO обладают 
удельной поверхностью 192 м2/г. Специально за-
данная морфология в виде цветка и соединенные 
между собой нанослои электродов MnO2–Ag3/GO 
позволили достичь высоких электрохимических 
характеристик. Максимальная удельная емкость 
877 Ф/г при скорости сканирования 5 мВ/с по-
лучена для электрода MnO2–Ag3/GO, испытан-
ного в 1 М Na2SO4 с сохранением 94.57% емкости 
после 5000 циклов. Гибкий твердотельный сим-
метричный суперконденсатор на основе компо-
зита – ​MnO2Ag3/GO выдавал удельную энергию 
57  Вт ч/кг при удельной мощности 1.6  кВт/кг 
и сохранении 94% емкости после 10 000 циклов.
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В работе [39] гидротермальным методом были 
синтезированы нанокристаллы CuMnO и компо-
зит CuMnO/графеновая квантовая точка (с допи-
рованием фосфором), и они были использованы 
при создании суперконденсатора нового типа. 
GQD были применены для увеличения удельной 
емкости и повышения эффективности суперкон-
денсатора. Как известно, ква́нтовая то́чка  – ​это 
фрагмент проводника или полупроводника, но-
сители заряда которого ограничены в  простран-
стве по всем трем измерениям. Размер квантовой 
точки настолько мал, чтобы квантовые эффек-
ты были существенными. Для идентификации 
синтезированного нанокомпозита, изучения его 
морфологии, структуры и  площади поверхно-
сти использовались различные методы. Для ре-
гистрации и  отслеживания электрохимического 
поведения синтезированного нанокомпозита, ис-
пользуемого в  качестве электродного материала, 
применялись циклическая вольтамперометрия 
(CV) и электрохимическая импедансная спектро-
скопия (EIS). Исследование изменения емкости 
электродов CuMnO/GQD и  CuMnO2 в  течение 
5000 последовательных циклов заряда/разряда 
показало, что стабильность электрода из нано-
композита выше и  его емкость после этого ко-
личества циклов достигает 83.3%, в то время как 
емкость электрода, изготовленного из наночастиц 
CuMnO, достигает 65.4% от исходной. Удельная 
емкость нанокомпозита CuMnO/GQD и наноча-
стиц CuMnO при плотности тока 1 А/г составила 
520.2 и 381.5 Кл/г соответственно. Максимальная 
удельная энергия асимметричного суперконденса-
тора CuMnO/GQD/AC, полученная при удельной 
мощности 1108.1 Вт/кг, равна большой величине 
47.9 Вт ч/кг. Емкость асимметричного суперкон-
денсатора уменьшилась всего на 13.3% после 5000 
циклов заряда и разряда, что является очень хоро-
шим сроком службы по сравнению с аналогичны-
ми материалами. Все эти результаты указывают на 
то, что нанокомпозит CuMnO/GQD может рас-

сматриваться как возможный вариант скоростно-
го и стабильного суперконденсатора.

Миниатюрные суперконденсаторы на осно-
ве графена, полученные путем лазерной конвер-
сии подходящих прекурсоров, в последнее время 
привлекают внимание для производства малога-
баритных устройств для хранения энергии. В ра-
боте [90] с помощью технологии LightScribe ® был 
осуществлен однокамерный синтез наночастиц 
TiO, встроенных в пористые электроды на основе 
графена, путем преобразования материалов-пре-
курсоров методом поглощения инфракрасного 
лазерного излучения. Улучшенные электрохими-
ческие характеристики суперконденсаторов были 
достигнуты благодаря сочетанию фарадеевских 
реакций, происходящих с наночастицами оксида 
металла, с обычным заряжением ДЭС, имеющим 
место в пористом графене. Микросуперконденса-
торы, состоящие из TiO-графеновых электродов, 
были протестированы с использованием двух ги-
дрогелевых полимерных электролитов на основе 
поливинилового спирта/HPO и поливинилового 
спирта/HSO соответственно. В  устройствах на 
основе TiO-графен получена удельная емкость 
до 9.9 мФ/см2, что соответствует объемной емко-
сти 13 Ф/см3 и удваивает характеристики супер-
конденсаторов на основе графена. Микросупер-
конденсаторы достигли удельной поверхностной 
энергии и  удельной поверхностной мощности 
0.22 и  39 мкВт/см2, а  также цикличности более 
3000 циклов. Эти высокие результаты позволяют 
предположить, что наноструктуры TiO-графена, 
полученные лазером, являются замечательными 
кандидатами в микросуперконденсаторы для эко-
логически чистых, крупномасштабных и недоро-
гих применений. На рис.  8 показано изменение 
емкости на протяжении 3000 зарядно-разрядных 
циклов при токе 5 мA/cм2 для микросуперкон-
денсаторов, разработанных в [90].

В работе [91] продемонстрирован простой ме-
тод получения функционализированного губча-
того нанокомпозита графена/гидрогенизирован-
ного из нанотрубок диоксида титана (FG–HTiO2), 
допированного бором (в виде взаимосвязанных, 
пористых 3-мерных (3D) сетевых слоев. Такая 
структура 3D-сети обеспечивает лучший контакт 
на границе электрод/электролит и  ускоряет ки-
нетику переноса заряда. Изготовленный компо-
зит FG–TiO2 охарактеризовался методами рент-
геновской дифракции, ИК-фурье, сканирующей 
электронной микроскопии (FESEM), спектро-
скопии комбинационного рассеяния света, тер-
могравиметрического анализа (ТГА), спектроско-
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Рис. 8. Изменение емкости на протяжении 3000 за-
рядно-разрядных циклов при токе 5 мA/cм2 для ми-
кросуперконденсаторов, разработанных в [90].
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пии поглощения и просвечивающей электронной 
микроскопии. Синтезированные материалы оце-
нены применительно к  их использованию в  су-
перконденсаторах в  0.5 M H2SO4 с  использова-
нием циклической вольтамперометрии (CV) при 
различных скоростях сканирования потенциалов 
и гальваностатических испытаний заряда/разря-
да при различных плотностях тока. FG–HTiO2 
электроды показали максимальную удельную 
емкость 401 Ф/г при 1 мВ/с. Плотность энергии 
составила 78.66 Вт ч/кг при плотности мощности 
466.9 Вт/кг при 0.8 А/г.

В  [92] описывается простая и  не требующая 
связующих веществ методика получения слоистых 
двойных гидроксидов β-Ni(OH)2/никель-кобальта 
(β-Ni(OH)2/NiCo) в сочетании с графеном, моди-
фицированным фтором (FG) в качестве электрода 
суперконденсатора. Электроды (β-Ni(OH)2/NiCo) 
получены гидротермальным методом путем син-
хронного электрохимического расслоения гра-
фита во фтормодифицированный графен и  ис-
пользования композита (β-Ni(OH)2/NiCo). Эта 
гибридная структура (β-Ni(OH)2/NiCo) модифи-
цированного графена в  качестве электрода су-
перконденсатора демонстрирует высокую прово-
димость, быструю диффузию ионов и  высокую 
механическую прочность. В  результате электрод 
β-Ni(OH)2/NiCo@FG обладает очень высокой 
емкостью (3996 мФ/см2 при 1 мА/см2), высокой 
скоростной способностью и увеличенным сроком 
службы. β-Ni(OH)2/NiCo в  сочетании с  недопи-
рованным электрохимически расслоенным гра-
феном демонстрирует значительно улучшенную 
циклическую стабильность (сохранение емкости 
79% после 1000 циклов при токе 5 мА/см2), пре-
восходящую таковую у β-Ni(OH). Таким образом, 
эта методика имеет большой потенциал для улуч-
шения характеристик электродов.

В  работе [93] сообщается о  простом синтезе 
пористых нанокомпозитов графен-NiO (PGNO) 
с помощью уникальной системы смешанных рас-
творителей с  использованием сольвотермическо-
го подхода. Микроскопическая характеристика 
пористого графена (PG) показывает наличие пор 
в листах графена; NiO (NO) показывает чешуйча-
тую структуру, а композит PGNO показывает за-
крепление нанохлопьев NO на листах PG. Серия 
электродных материалов была получена путем ва-
рьирования процентного состава PG (и материалы 
были обозначены как 5–30 PGNO соответствен-
но). Электрохимическое исследование показало 
высокую величину емкости 511 Ф/г при скорости 
развертки 5 мВ/с для композита 10 PGNO в 3-элек-

тродном методе и 80% сохранения начальной ем-
кости после 10 000 циклов при плотности тока 
8 А/г. Изготовленный симметричный гибридный 
суперконденсатор с  использованием электродов 
PGNO также показал хорошее значение емкости 
86.0 Ф/г при скорости развертки 5 мВ/с. Изготов-
ленное устройство сохраняло 84% начальной ем-
кости в  конце 10 000 циклов при плотности тока 
8 А/г, демонстрируя хорошую электрохимическую 
устойчивость и скоростную способность материа-
ла. Также был оценен процентный вклад емкости 
ДЭС и псевдоемкости в общую удельную емкость 
суперконденсатора PGNO.

Нанолисты оксида графена, а  также двумер-
ный Ni(OH)2 с очень хорошей однородностью бы-
ли получены методом Хаммерса и гидротермаль-
ным методом соответственно [94]. Нанолисты 
Ni(OH)2, обработанные катионными поверхност-
но-активными веществами и  оксидом графена 
с отрицательными зарядами, перемешивали друг 
с другом методом электростатической самосбор-
ки. После отжига были получены гибридные дву-
мерные нанолистыкомпозита восстановленного 
оксида графена NiO–(NiO–rGO). Благодаря си-
нергетическим эффектам электрод NiO–rGO об-
ладает оптимизированными электрохимически-
ми характеристиками, в  отличие от чистых NiO 
или rGO. Результаты показывают, что нанолисты 
NiO однородно диспергированы на поверхности 
нанолистов rGO, а гибридный электрод с наноли-
стами NiO–rGO может обеспечить высокую ем-
кость 343 Кл/г (при 1 A/г). Кроме того, электроды, 
состоящие из нанолистов NiO–rGO, использо-
вались для сборки симметричного суперконден-
сатора. Плотность энергии изготовленного су-
перконденсаторного устройства может достигать 
5.4 Вт ч/кг при плотности мощности 0.43 кВт/кг 
при работе в диапазоне напряжений 0–1.4 В. Кро-
ме того, симметричный суперконденсатор также 
демонстрирует превосходное удержание емкости 
на уровне 90% после 10 000 циклов (10 А/г).

В [95, 96] изучали композитные структуры из 
никель-кобальтита/графена (NiCo O/GQD), ко-
торые демонстрируют повышенную электропро-
водность и функционируют как электродные ма-
териалы с более высокой плотностью энергии по 
сравнению с GQD (GQD это графеновые кванто-
вые точки) и NiCoO. Электрохимические харак-
теристики композита NiCoO/GQD получены ме-
тодом гальваностатического заряда-разряда для 
трехэлектродных систем с  электролитом 0.1  М 
гидроксидом калия. Обнаружено, что наблю-
даемая удельная емкость для композита состав-
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ляет большую величину 481.4 Ф/г при 0.35 A/г. 
Это выше, чем у  графеновых квантовых точек 
(45.6 Ф/г) и связано с повышением электропро-
водности и  диффузией ионов, которые быстрее 
перемещаются между электродами и электроли-
том. Эти результаты демонстрируют уникальные 
характеристики изготовленных композитов в ка-
честве перспективных электродных материалов 
для применения в суперконденсаторах.

Нанокомпозит W18O49 с  восстановленным ок-
сидом графена (rGO) из нанопроволок (NW) рас-
сматривается в  [97] в  качестве нового активного 
материала для электродов суперконденсаторов. 
Он демонстрирует высокую удельную емкость 
и отличные скоростные характеристики в водном 
электролите AlCl3. Электрохимические исследо-
вания показывают, что присутствие rGO ускоряет 
диффузию ионов Al3+ в нанокомпозите, тем самым 
обеспечивая больше ионов для интеркаляцион-
ной псевдоемкости. Изготовленный асимметрич-
ный суперконденсатор W18O49NWs-rGO//rGO де-
монстрирует высокую удельную емкость 365.5 Ф/г 
при 1 А/г и отличную циклическую стабильность 
с  сохранением 96.7% емкости при 12 000 циклов. 
Важно отметить, что он обеспечивает высокую 
плотность энергии 28.5  Вт ч/кг при плотности 
мощности 751 Вт/кг, что является самым высоким 
значением плотности энергии для всех известных 
устройств на основе суперконденсатора W18O49.

В [98] были получены многослойные графено-
вые пленки, равномерно покрытые тонким слоем 
V2O5 (композит графен/V2O5), за счет сочетания 
лазерного восстановления и  низкотемператур-
ного атомно-слоевого осаждения. Чтобы прове-
рить влияние кристалличности на электрохими-
ческие характеристики композита графен/V2O5, 
сначала проводили высокотемпературный отжиг, 
а  затем детальное сравнительное исследование 
аморфного и  кристаллического покрытия ком-
позитом. Было показано, что графен, покрытый 
аморфным V2O5, может обеспечить более высо-
кую производительность электрода суперконден-
сатора (т. е. удельную емкость, плотность энергии 
и циклическую стабильность), чем у кристалли-
ческого аналога.

В  работе [30] пентаоксид ванадия (V2O5) был 
выращен на графене микроволновым методом, ко-
торый является простым, быстрым, энергосбере-
гающим и эффективным. Благодаря этому методу 
микроволнового синтеза однородные наночасти-
цы V2O5 с размерами примерно 20 нм равномер-
но распределены по графену. Результирующий 
композит V2O5/графен использовался в  симме-

тричных суперконденсаторах, показав удельную 
емкость 673.2 и 474.6 Ф/г при 1 и 10 А/г соответ-
ственно, и сохранение 96.8% емкости после 10 000 
циклов при 1  А/г. Кроме того, суперконденсато-
ры продемонстрировали высокие характеристики 
плотности энергии и мощности (46.8 Вт ч/кг при 
499.4 Вт/кг и 32.9 Вт ч/кг при 4746.0 Вт/кг), кото-
рые превосходят многие аналогичные устройства.

Композиты наночастиц оксидов металлов 
(MONP)-графен являются высоко ценными кан-
дидатами в качестве электродных материалов для 
электрохимических суперконденсаторов. В  [99] 
была описана разработка универсального подхода 
к изготовлению электродов ЭХСК путем импрег-
нирования MONP (M  = Ti, Ni, Sn), синтезиро-
ванных методом лазерной абляции в жидкости на 
лазерно-индуцированном графене (LIG). Типич-
ный микросуперконденсатор (МСК) SnO2/LIG 
обеспечивает удельную емкость 18.58 мФ/см2 при 
скорости сканирования 10 мВ/с, что в  5.2 раза 
больше, чем у немодифицированного LIG. Кро-
ме того, микросуперконденсатор демонстрирует 
длительную циклическую стабильность (сохра-
няет 82.15% удельной емкости после 5000 циклов) 
и  хорошую механическую гибкость (удельная 
емкость снижается на 5% при угле изгиба 150°). 
MONP и  LIG изготавливаются с  использовани-
ем одной и  той же системы лазерной обработ-
ки, без использования химических лигандов или 
восстановителей в процессе синтеза, что является 
экономически эффективным и экологически чи-
стым методом. Этот простой и  понятный метод 
обеспечивает высокоэффективное решение для 
крупномасштабного изготовления МСК.

В работе [100] получены нанокомпозиты вос-
становленного оксида графена/оксида лантана. 
Восстановленный оксид графена с большой удель-
ной поверхностью был удачно допирован окси-
дом лантана. Восстановленные композиты оксида 
графена/оксида лантана изготавливались в каче-
стве электродного материала для суперконденса-
тора, который продемонстрировал значительную 
удельную емкость 156.25 Ф/г при плотности тока 
0.1  А/г и  высокую стабильность циклирования. 
Материал сохраняет 78% своей первоначальной 
эффективности заряда-разряда после 500 циклов. 
Высокие электрохимические характеристики 
композитного материала могут быть связаны с на-
несением наночастиц оксида лантана на поверх-
ность восстановленного оксида графена, которые 
увеличивают эффективную проводящую площадь 
восстановленного оксида графена и площадь кон-
такта между электролитом и графеном. Компози-
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ты из оксида графена и лантана могут значительно 
улучшить стабильность и электрические характе-
ристики суперконденсаторов и  имеют большой 
потенциал для химических датчиков, микроэлек-
троники, хранения и преобразования энергии.

В работе [101] представлен гибридный тип на-
копителя энергии, состоящий из электродов на 
основе композита из пластин графена и  окси-
да цинка. Этот композит проявляет как электро-
химические характеристики суперконденсатора 
с высокой плотностью мощности, так и аккумуля-
тора с  достаточно высокой плотностью энергии, 
по сравнению с  каждым отдельным материалом. 
Улучшенные характеристики гибрида коррелиро-
вали со структурой электродов. Для повышения 
электрохимических характеристик суперконден-
саторов необходимо иметь четко определенную 
массу, форму и площадь поверхности электродных 
материалов. В этой работе была представлена ори-
гинальная конструкция монтажного устройства, 
позволяющая точно определить все критические 
параметры электродных материалов  – ​конкрет-
ную массу и  площадь поверхности. С  помощью 
первоначальной установки было создано супер-
конденсаторное устройство, которое также могло 
действовать как аккумулятор из-за его высоких 
значений плотности энергии, поэтому его назвали 
superbat. В данной работе в качестве первого элек-
трода была использована 3D-графеновая пена 
из-за ее большой поверхности, в то время как для 
второго электрода были использованы нанокри-
сталлы ZnO из-за их дефектной структуры. Бы-
ло получено высокое значение удельной емкости 
448 Ф/г, что было связано не только с качеством 
синтеза, но и  с  выбором материалов электродов 
и  электролитов. Более того, каждый компонент, 
использованный в  конструкции гибридного су-
перконденсатора, также сыграл ключевую роль 
в достижении высокого значения емкости. Резуль-
таты продемонстрировали высокую производи-
тельность и стабильность устройства.

В работе [102] были синтезированы компози-
ты Ni3Si2/NiOOH/графеновые наноструктуры 
путем химического осаждения из газовой фазы 
при низком давлении. В атмосфере, богатой угле-
родом, атомы высоких энергий бомбардирова-
ли поверхность Ni и Si и уменьшали свободную 
энергию при термодинамическом равновесии 
твердых частиц Ni–Si, значительно катализируя 
рост нанокристаллов Ni–Si. Электрохимические 
измерения показали, что данные нанострукту-
ры обладают сверхвысокой удельной емкостью 
1193.28 Ф/г при 1 A/г. При их интеграции в твер-

дотельный суперконденсатор он обеспечивает 
высокую плотность энергии до 25.9 Вт ч/кг при 
плотности мощности 750 Вт/кг, что можно отне-
сти отдельно к Ni3Si2/графеновому скелету, обе-
спечивающему большую УП, а  также к  NiOOH 
в  щелочном растворе. На рис.  9 приведены 
TEM-изображения Ni3Si2/NiOOH/графеновых 
наноструктур, полученных в работе [102].

В  работе [113] положительные электроды без 
связующего изготавливались методом электрохи-
мического осаждения, при котором наностерж-
ни (CuONRs), выращенные непосредственно на 
медной пене (CF), декорируются биметалличе-
скими наноматрицами кобальт–цинк–сульфид 
(Co–Zn–S NAs). Изготовленные композиты Co–
Zn–S@CuO–CF обладают очень высокой удель-
ной емкостью 317.03 мА  ч/г при 1.76  А/г, а  так-
же очень хорошей циклической стабильностью 
(удержание 113% после 4500 циклов). Отрицатель-
ные электроды были дополнительно изготовлены 
путем прямого осаждения нанолистов сульфи-
да железа (Fe–S NSs) на оксид графена, показав 
замечательную удельную емкость 543.9  Ф/г при 
0.79 A/г. Имея преимущества вследствие получе-
ния высоких значений удельной энергии и удель-
ной мощности (25.71 Вт ч/кг и 8.73 кВт/кг) наря-
ду с приемлемой стабильностью, изготовленный 
асимметричный суперконденсатор является 
очень перспективным.

В  [104] описывается изготовление гибких ми-
кросуперконденсаторов на основе гибридных ма-
териалов из одностенных углеродных нанотрубок 
с  лазерно-индуцированными графеновыми во-
локнами (LIGF), декорированными наночасти-
цами диоксида марганца (MnO2). ОСУНТ нано-
сят на поверхность LIGF и  пространство между 
ними, что может связывать LIGF с  образовани-
ем более проводящих путей и обеспечивать более 
активные области для роста наночастиц MnO2. 
Благодаря синергетическому эффекту между про-
водящей сетью LIGF одностенными наноуглеро-
дистыми наночастицами и  наночастицами MnO2 
с  высокой теоретической емкостью, полученные 
гибкие МСК на основе гибридных электродов 
LIGF–C4/MnO2 обеспечивают высокую емкость 
156.94  мФ/cм2, что примерно в  8  раз выше, чем 
у МСК на основе LIGF–MnO2 (20 мФ/см2). Кро-
ме того, LIGF–C4/MnO2  также демонстрируют 
значительную удельную энергию 21.8 мкВт ч/см2, 
долговременную стабильность циклирования, су-
щественную модульную интеграцию и очень высо-
кую механическую гибкость (с сохранением 90.5% 
емкости после 1200 циклов гибки). Таким обра-
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зом, предложенная в  данной работе конструкция 
гибридных электродных материалов обеспечивает 
простой и новый метод разработки гибких накопи-
телей энергии с высокими эксплуатационными ха-
рактеристиками, что открывает большие перспек-
тивы для применения в носимой электронике.

Таким образом, было показано, что суперкон-
денсаторы, в  которых используются композиты 
графенов с  оксидами металлов, обладают высо-
кими электрохимическими характеристиками.

2.2. Композиты с сульфидами 
и селенидами металлов

Другими видами интенсивно разрабатывае-
мых в последнее время композитов с графенами 

являются композиты с сульфидами и селенидами 
переходных металлов. В  работах [105–135] была 
разработана система сорастворения в  глубоком 
эвтектическом растворителе (DES) путем смеши-
вания воды и ацетонитрила с типичным электро-
литом DES, состоящим из ацетамида и перхлората 
лития. Добавление сорастворителей не только ре-
шает проблемы высокой вязкости и низкой про-
водимости DES, но и создает некоторые уникаль-
ные свойства. Например, наличие воды улучшает 
огнезащитные свойства электролита DES. На-
против, добавление ацетонитрила дополнительно 
улучшает ионную проводимость без ущерба для 
широкого окна электрохимической стабильности 
(ESW). Было исследовано влияние количества со-
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Рис. 9. TEM-изображения Ni3Si2/NiOOH/графеновых наноструктур, полученных в работе [102].
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растворителя в  DES и  оптимального молярного 
соотношения между сорастворителями. Когда мо-
лярное соотношение ацетонитрила к воде состав-
ляет 4.4 : 1, гибридный DES демонстрирует лучшие 
физические свойства, включая широкое окно по-
тенциалов ESW (2.55  В), высокую проводимость 
(15.6 мСм/см) и  низкую вязкость (5.82 мПа с). 
Кроме того, была проведена серия спектроскопи-
ческих измерений, чтобы понять взаимодействие 
между компонентами электролита. С другой сто-
роны, было продемонстрировано использование 
гидрогеля, состоящего из MoS2 и  восстановлен-
ного оксида графена (rGO) в качестве электрод-
ных материалов для суперконденсаторов. Этот 
гидрогель унаследовал пористую структуру гидро-
геля rGO и  высокую проводимость MoS2. Нако-
нец, были изготовлены высоковольтные симме-
тричные суперконденсаторы с  использованием 
гибридного DES и гидрогеля в качестве электро-
лита и  электрода соответственно. Оптимизиро-
ванный суперконденсатор работает при широком 
окне рабочего напряжения 2.3 В и достигает мак-
симальной плотности энергии 31.2  Вт ч/кг при 
плотности мощности 1164 Вт/кг. Кроме того, этот 
ЭХСК продемонстрировал сохранение 91% емко-
сти после 20 000 циклов.

Композит полипиррол (PPy) на восстановлен-
ном графене с  вертикально ориентированным 
сульфидом MoS2 изготавливался в  [106] с помо-
щью одноступенчатого гидротермального мето-
да (MP–rGO). Ультратонкие нанолисты MoS2, 
смешанные с ламелями PPy, хорошо покрывают-
ся rGO, образуя тройную наноструктуру. Ламели 
PPy формируются на rGO с  помощью наноли-
стов MoS2 в  результате окислительно-восстано-
вительной реакции между тетратиомолибдатом 
аммония и пирролом. Проводимость MoS2 была 
эффективно повышена за счет использования 
PPy и  rGO, а  MoS2/PPy (MP) наногибрид на-
деляет MoS2 низкокристалличностью, а  PPy  – ​
аморфностью. Электрод MP–rGO имеет высо-
кую удельную емкость 1942 Ф/г (215.8 мА ч/г) 
при плотности тока 1 А/г и удовлетворительную 
устойчивость при циклировании. Был собран 
асимметричный суперконденсатор MP-rGO/
AC, обладающий высокой плотностью энергии 
39.1 Вт ч/кг при удельной мощности 0.70 кВт/кг, 
что подтверждает его потенциальное применение 
в накопителях энергии. На рис. 10 приведены за-
висимости удельной емкости от удельного тока 
для образцов, разработанных в [106].

Кобальтовый пентландит (CoS) в  последнее 
время стал перспективным электродным матери-

алом для накопителей энергии. Гибрид CoS и гра-
фена синтезировали гидротермальным методом 
[107]. Хлопья CoS небольшого размера тонко 
осаждаются на поверхности графенового листа, 
и  получается взаимосвязанная структура CoS/
графен. Результаты электрохимических испыта-
ний показали, что электрод CoS/графен обеспе-
чивает высокую зарядную емкость 540 Кл/г в те-
чение 1 мин и сохраняет 74.5% емкости в течение 
14 с. Гибридный суперконденсатор в сборе с элек-
тродом, включающим CoS, обеспечивает высо-
кую плотность энергии 37 Вт ч/кг при плотности 
мощности 170 Вт/кг, а 15.3 Вт ч/кг может поддер-
живаться даже при высокой плотности мощности 
12 кВт/кг. Очень высокие электрохимические ха-
рактеристики следует объяснить большим коли-
чеством активных центров, улучшенными харак-
теристиками переноса заряда и  максимальным 
емкостным вкладом электрода CoS/графен.

Селенид никеля и  его нанокомпозиты (селе-
нид-графен никеля; NiSe/G, графен, легирован-
ный азотом и бором, обозначенные как NiSe/NG 
и NiSe/BG соответственно), были получены с ис-
пользованием гидротермального метода, и эти ма-
териалы были использованы для хранения энер-
гии [108]. Данные материалы были исследованы 
с  помощью различных аналитических и  морфо-
логических методов, таких как рентгеновская 
дифрактометрия и  анализ FESEM. Далее подго-
товленные материалы были исследованы электро-
химическими методами, такими как вольтамперо-
метрия и контролируемый потенциостатический 
тест для расчета емкости, энергии и  плотности 
мощности изготовленного электрода. Электрохи-
мическое поведение графеновых нанокомпозитов 
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селенида никеля было исследовано в  электроли-
те КОН. Было обнаружено, что NiSe/NG показал 
удельную емкость 99.03 Ф/г при плотности мощ-
ности 0.55 Вт/кг. Результаты доказали, что допи-
рование графеном дает синергетический эффект.

В [109] разработали легкий шаблонный метод 
получения пористых полых микросфер селени-
да меди-кобальта, обернутых в проводящие сети 
восстановленного оксида графена (rGO–CCSe). 
Синтезированный электрод способен обеспечить 
значительное сохранение емкости на уровне 91.5% 
после 6000 циклов заряда благодаря продуманно-
му структурному дизайну и использованию пре-
имуществ биметаллической синергии на атом-
ном уровне, с очень высокой удельной емкостью 
724 Кл/г при 2 А/г. Кроме того, была изготовлена 
асимметричная ячейка с использованием полого 
микросферического электрода rGO–CCSe для 
достижения очень высоких значений плотности 

энергии (57.8 Вт ч/кг). Графеновый проводящий 
носитель вместе с кубиками CCSe аккумулятор-
ного типа создают синергетический эффект, ко-
торый объясняет столь высокие электрохимиче-
ские характеристики (рис. 11а). Из рис. 11б видно, 
что существенный вклад в  емкость rGO–CCSe 
и CCSe вносит псевдоемкость. Из рис. 11в видно, 
что имеет место незначительное уменьшение ем-
кости в процессе циклирования электрода rGO–
CCSe на протяжении 6000 циклов [109].

В работе [110] сообщается о получении нано-
частиц NiSe2 при допировании азотом восстанов-
ленного оксида графена (N–rGO/NiSe2) с помо-
щью простого двухстадийного метода, который 
включает гидротермальное получение Ni(OH)2 
прекурсорный, а затем сольвотермический синтез 
композитов N–rGO/NiSe2 с различным содержа-
нием N–rGO. Свежеприготовленные композиты 
N–rGO/NiSe2 охарактеризованы методами рент-
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геновской дифракции, рамановской спектроско-
пии, рентгеновской фотоэлектронной спектро-
скопии высокого разрешения, автоэмиссионной 
сканирующей электронной микроскопии, про-
свечивающей электронной микроскопии, энер-
годисперсионной рентгеновской спектроско-
пии и БЭТ. Результаты показывают, что N–rGO 
действует как защитник наночастиц NiSe2, пре-
дотвращая их агрегацию, что приводит к  увели-
чению удельной поверхности и  электропрово-
дности материала. Оптимизированный композит 
N–rGO/NiSe2 может обеспечить очень высокую 
удельную емкость 2451.4 Ф/г при плотности тока 
1 A/г (рис. 12). Используя активированный уголь 
(AC) в качестве отрицательного электрода и опти-
мизированный композит N–rGO/NiSe2 качестве 
положительного электрода, был создан асимме-
тричный суперконденсатор. Он стабильно рабо-
тал в  потенциальном окне 0–1.6  В  и  обеспечи-
вал высокую максимальную плотность энергии 
40.5 Вт ч/кг при плотности мощности 841.5 Вт/кг. 
Кроме того, асимметричный суперконденсатор 
N–rGO/NiSe2/AC продемонстрировал хорошую 
циклическую стабильность (рис. 12).

Таким образом, было показано, что суперкон-
денсаторы, в  которых используются компози-
ты графенов с  селенидами, обладают высокими 
электрохимическим характеристиками.

2.3. Композиты с частицами металлов
Высокую эффективность работы в  суперкон-

денсаторах продемонстрировали электроды на 
основе композитов, допированных частицами 
металлов. В  [122], чтобы увеличить запасенную 
энергию, дефектный графен был допирован на-
ночастицами Ni. Во время первого цикла заряда 
в  водном электролите (3.5 М KOH) было обна-
ружено, что Ni, прикрепленный к  графену, лег-
ко превращается в Ni(OH) на наноуровне. Такой 
обратимый фарадеевский механизм приводил 
к  увеличению удельной емкости электродов 
на порядок, достигая очень высокой величины 
1900 Ф/г при 2 мВ/с в 3.5 М КОН. Был изготов-
лен асимметричный суперконденсатор путем со-
пряжения отрицательного электрода из чистого 
графена с положительным графеновым электро-
дом, декорированным никелем. Такой суперкон-
денсатор был успешно циклирован в  диапазоне 
напряжений 0–1.5  В, достигнув максимальной 
удельной энергии 37  Вт ч/кг и  максимальной 
удельной мощности 5 кВт/кг. Суперконденсатор 
показал хорошую обратимость и сохранение 72% 
удельной энергии на протяжении 10 000 циклов.

В [123] был изготовлен электрод методом полу-
чения бумаги с волокнами, модифицированными 
серебром, и волокнами, модифицированными ок-
сидом графена (GO), с последующим восстановле-
нием GO. Ag- и GO-модифицированные волокна 
были получены путем in situ выращивания наноча-
стиц Ag и самосборки листов GO на целлюлозных 
волокнах соответственно. Волокна, модифициро-
ванные Ag, действуют как гибкий токоприемник 
с многочисленными трехмерными взаимосвязан-
ными путями переноса электронов, что позволяет 
использовать восстановленные GO-модифициро-
ванные волокна в качестве электродных материа-
лов для достижения высокой проводимости и вы-
сокой производительности. Простая сушка может 
снизить вес суперконденсатора на 40%, чтобы об-
легчить транспортировку и хранение, а эффектив-
ность емкости может быть восстановлена при не-
обходимости путем смачивания.

В  [124] был успешно получен эффективный 
электрод на текстильной основе путем введе-
ния наночастиц серебра (AgNPs) на поверхность 
хлопчатобумажной ткани (CF) с  восстановлен-
ным оксидом графена (rGO). Электрод CF с  по-
крытием Ag/rGO показал высокую удельную ем-
кость 426  ±10 Ф/г в  0.5М NaOH. Симметричные 
суперконденсаторные ячейки на основе компози-
та Ag/rGO/CF обладали очень большим ресурсом 
(126% сохранение начальной удельной емкости по-
сле 1000 циклов заряда-разряда) и хорошими ско-
ростными характеристиками. Слой покрытия rGO 
наделяет электрод отличной электропроводно-
стью, большой УП и большой емкостью ДЭС. В то 
же время химическое покрытие серебром улучша-
ет емкостные свойства за счет увеличения прово-
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димости и индуцирует псевдоемкостные эффекты. 
Таким образом, благоприятные синергетические 
эффекты rGO, AgNPs и 3D-иерархической струк-
туры CF приводят к высоким электрохимическим 
характеристикам. Полностью твердотельный гиб-
кий симметричный суперконденсатор был собран 
с  использованием этой композитной ткани. Он 
продемонстрировал высокую электрохимическую 
стабильность при механическом изгибе (89% на-
чальной емкости сохраняется после 1000 циклов 
гибки) и обеспечил высокую плотность энергии до 
34.6 Вт ч/кг (при плотности мощности 125 Вт/кг).

3. Композиты 
с электронопроводящими 

полимерами (ЭПП)
Одним из достижений электрохимии послед-

них 25–30 лет была разработка ЭПП. Электрон-
ная проводимость ЭПП осуществляется в процес-
се его допирования противоионами вследствие 
образования делокализованных π-электронов 
или дырок и переноса их под воздействием элек-
трического поля по системе полисопряженных 
двойных связей, которыми обладает любой ЭПП. 
К  ЭПП относятся: полиацетилен (PAc), полиа-
нилин (PANi), поли- (п-фенилен) (PPh), поли-
тиофен (PT), полипиррол (PPy), полипорфин 
(PP) и  их производные. Поскольку во многих 
ЭПП могут протекать квазиобратимые электро-
химические зарядно-разрядные процессы, то они 
широко используются в  ЭХСК [125–150]. ЭПП 
добавляют псевдоемкостную фарадеевскую ем-
кость в суммарную емкость композитов.

Растущее развитие гибких и  носимых су-
перконденсаторов стимулировало индустрию 
интеллектуальной электроники. Проводящие 
полимерные гидрогели считаются наиболее пер-
спективными и  жизнеспособными источника-
ми для изготовления гибких суперконденсато-
ров, а  также для питания гибких миниатюрных 
электронных устройств. Как сообщается в [127], 
проводящие полимерные гидрогели могут быть 
синтезированы с  помощью многочисленных 
способов физического и  химического связыва-
ния. Проводящие полимерные гидрогели в  ка-
честве электродов обладают сочетанием высокой 
электропроводности, выдающихся электрохими-
ческих характеристик и уникальной трехмерной 
пористой морфологии с характеристиками набу-
хания, идеального взаимодействия с  электроли-
том, экологичности, прочности и  механической 
гибкости. Эти особенности делают их идеальны-
ми вариантами для гибких суперконденсаторов. 

Проводящие полимеры, такие как полипиррол, 
полианилин и  поли (3,4-этилендиокситиофен): 
полистиролсульфонат (PEDOT: PSS), являются 
эффективными электродными материалами для 
суперконденсаторов с  вышеупомянутыми важ-
ными свойствами. Эти проводящие полимеры 
в композитном гибриде с графеновым гидрогелем 
применяются в  качестве электродных материа-
лов в высокоэффективных и стабильных гибких 
суперконденсаторах. Впоследствии эти высоко-
эффективные гибкие суперконденсаторы будут 
способствовать развитию носимой электроники, 
а также экологически чистого транспорта.

Электронопроводящие полимеры потенци-
ально могут стать электродами ЭХСК следующе-
го поколения из-за их низкой стоимости, легких 
методов синтеза и высокой псевдоемкости. Ком-
позиты на основе графена/ЭПП демонстрируют 
достаточно высокие электрохимические харак-
теристики при использовании в  качестве элект-
родных материалов для ЭХСК. В [128] обобщены 
методы синтеза и электрохимические характери-
стики композитов графен/ЭПП для ЭХСК. Кро-
ме того, обсуждается метод синтеза электродных 
материалов для улучшения электрохимических 
характеристик.

В  работе [129] для сборки суперконденсатора 
успешно использовался прочный высокоэффек-
тивный графеновый электрод, модифицирован-
ный полианилином. Графен ковалентно связался 
с допированным полианилином (SPANi) и поэто-
му используется в суперконденсаторах. Слоистый 
же графен, модифицированный 4-аминобензой-
ной кислотой (ABF–G), сначала был прикреплен 
к анилиновым функциональным группам. Затем 
анилин, мономер о-аминобензолсульфоновой 
кислоты и  окислитель добавляли в  водную дис-
персию ABF–G для достижения полимеризации 
на поверхности ABF–G. Этот ковалентно свя-
занный тонкопленочный электродный материал 
ABF–G (SPANi–ABF–G), модифицированный 
SPANi, затем использовался для изготовления су-
перконденсаторов. Суперконденсатор с  предла-
гаемыми электродами SPANi–ABF–G обладает 
высоким значением удельной емкости 642.6 Ф/г 
при плотности тока 1  А/г. После испытаний на 
срок службы 5000 циклов этот суперконденсатор 
продемонстрировал сохранение зарядной и  раз-
рядной емкости 100 и 98.13% при плотности тока 
1 и 2 А/г соответственно. Эти удержания емкости 
выше, чем у суперконденсаторов с проводящими 
полимерными электродами. Полученные резуль-
таты доказывают, что электродные материалы, 
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приготовленные с  использованием ковалентно 
связанного графена и  PANi, могут значительно 
улучшить характеристики суперконденсаторов.

В  [130] пленка на основе графена (CNT@
PANi/rGO/TA) была изготовлена из биомассы 
с использованием электроактивного танина (TA), 
который служит клеем, приклеивающим углерод-
ные нанотрубкик композиту (CNT@PANi), и для 
склеивания с восстановленным оксидом графена. 
Благодаря тонкому слою PANi на CNT@PANi на-
нопроволоки интеркалируются в промежуточные 
слои rGO, тем самым связывая нанослои и обра-
зуя четко определенную пористую многослойную 
структуру. Полученная пленка CNT@PANi/rGO/
TA обладает высокой механической прочностью 
(174.6 МПа) и ударной вязкостью (9.17 МДж м3). 
Между тем полностью твердотельный гибкий 
суперконденсатор в  сборе с  CNT@PANi/rGO/
TA демонстрирует высокую емкость 548.6 Ф/см3 
и очень высокую производительность 70.5% от 1 
до 50 А/г. Даже при –40°C удельная емкость су-
перконденсатора составляет до 454.9 Ф/см–3, т. е. 
примерно 83% от емкости, получаемой при ком-
натной температуре.

В обзорной статье [131] представлены послед-
ние достижения в  области синтеза, изготовле-
ния и характеризации гибридных нанокомпози-
тов PANi@r–GO для суперконденсаторов. Также 
представлены рыночные данные для таких ЭХСК.

Для разработки высокоэффективных су-
перконденсаторов в  [132] химическим мето-
дом были успешно изготовлены исходный PANi 
и  нанокомпозиты PANi с  высокопроводящим 
двумерным графеном. Электрохимические свой-
ства готовых твердотельных суперконденсаторов, 
установленные для исходных полианилиновых 
композитов (PANi/PVA/PANi) и нанокомпозитов 
на основе полианилина/графена (PANi-графен/
PVA/PANi-графен), были исследованы метода-
ми ЦВА, гальваностатики и  электрохимической 
импедансной спектроскопии. Электрохимиче-
ское устройство на основе электродов PANi об-
ладает емкостью ~160 Ф/г при сохранении ~64% 
емкости. Эта емкость полианилиновых элект-
родов была значительно увеличена до ~1412 Ф/г 
с сохранением ~89% емкости после 10 000 циклов 
заряда-разряда, при содержании 8 мас. % графе-
новых нанослоев в электродах ПАНи. Суперкон-
денсатор на основе нанокомпозита полианилина 
с  содержанием 8 мас.  % графена также обладал 
очень высокими значениями плотности энергии 
(~1382 Вт ч/кг) и мощности (~49 786 Вт/кг).

В  качестве перспективных материалов для 
электродов суперконденсаторов широко изучены 
нанокомпозиты графеновых материалов и прово-
дящих полимеров. В работе [133] была исследована 
гетероструктура композита графен/PANi, состоя-
щая из монослоя графена и полианилина, а также 
его электрохимическая работа в  суперконденса-
торе. Синтез основан на функционализации гра-
фена фениленсульфоновыми группами и окисли-
тельной полимеризации анилина персульфатом 
аммония в условиях реакции, и не дающих объ-
емного полианилина. Сканирующая электрон-
ная микроскопия, атомно-силовая микроскопия 
и рамановская спектроскопия показали селектив-
ное образование полианилина на графене. Рама-
новская спектроскопия in situ и циклическая воль-
тамперометрия (обе в микрокапельной установке) 
подтвердили обратимость полианилиновых окис-
лительно-восстановительных переходов и  элек-
трохимического допирования графена. После 
увеличения в течение начальных 200 циклов из-за 
образования дефектов бензохинон-гидрохинон 
в  полианилине удельная поверхностная емкость 
сохранялась в течение 2400 циклов с удержанием 
±1% при 21.2 мкФ см–2; это на порядок выше, чем 
емкость исходного графена.

В работе [134] демонстрируется простой синте-
тический метод ковалентной прививки анилино-
вого тетрамера (TANI), основного строительного 
блока PANi к 3D-графеновым сетям с перфторфе-
нилазида для создания гибридного электродного 
материала для суперконденсаторов со сверхдли-
тельным сроком службы. Конструкция, которая 
заменяет длинноцепочечный PANi на коротко-
цепочечный TANI и  вводит ковалентные связи 
между TANI и 3D-графеном, значительно повы-
шает стабильность циклического заряда-разряда 
суперконденсаторов на основе PANi. Материал 
электрода, а также изготовленные симметричные 
полностью твердотельные суперконденсаторы де-
монстрируют необычайно долгий срок службы 
(сохранение емкости >85% после 30 000 циклов 
заряда-разряда). Емкость может быть дополни-
тельно увеличена за счет быстрых и  обратимых 
окислительно-восстановительных реакций на 
поверхности электрода с  использованием окис-
лительно-восстановительного электролита при 
сохранении превосходной стабильности циклов 
(сохранение 82% емкости после 100 000 циклов 
для симметричного полностью твердотельного 
устройства). Несмотря на то что проводящие по-
лимеры, как известно, ограничены своей низкой 
циклической стабильностью, эта работа предлага-
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ет эффективную стратегию для достижения уве-
личенного срока службы суперконденсаторов.

В работе [135] представлено получение гидро-
фильных нанослоев оксида графена методом жид-
костно-сдвигового отслаивания. Нанослои окси-
да графена применялись для синтеза трехмерных 
композитов графен/полианилин, которые при-
менялись непосредственно в качестве электродов 
суперконденсаторов. Композиты обладают луч-
шими электрохимическими свойствами (грави-
метрическая емкость 483 Ф/г при 1 А г) по срав-
нению с материалами, изготовленными из смеси 
графена, оксида графена и  полианилина в  каче-
стве прекурсоров. Кроме того, симметричный су-
перконденсатор, изготовленный из композитов, 
продемонстрировал высокую плотность энергии 
17.9 Вт ч/кг при плотности мощности 500 Вт/кг.

В  работе [9] при полимеризации для получе-
ния PANi контролировали время электрохимиче-
ской полимеризации, что привело к образованию 
графеновой бумаги с покрытием (PANi-Графен). 
Свежеприготовленный электрод показал высо-
кую поверхностную емкость 176 мФ/см2 в трехэ-
лектродной ячейке при плотности тока 0.2 мА/см2, 
что примерно в 10 раз больше, чем у чистой гра-
феновой бумаги из-за псевдоемкостного пове-
дения PANi. Что еще более важно, полностью 
твердотельный симметричный конденсатор, со-
бранный с двумя электродами PANi-Графен с по-
лимерным электролитом, имел поверхностную 
емкость 123  мФ/см2, что соответствует поверх-
ностной плотности энергии 17.1 мкВт·ч/см2 и по-
верхностной плотности мощности 0.25  мВт/см2. 
Симметричный конденсатор сохранил 74.8% ем-
кости после 500 испытаний на изгиб от 0 до 120°, 
что свидетельствует о хорошей гибкости и меха-
нической стабильности.

В  [136] был исследован синтез стабильного, 
проводящего и  высокоактивного политиофена, 
обогащенного графеновыми нанопластинками 
(GNPL), путем химической полимеризации in situ. 
Рентгеноструктурные исследования подтвердили 
формирование готовых наноматериалов. Морфо-
логические исследования показали, что политио-
фен успешно закрепляется на поверхности GNPL 
в  процессе полимеризации. Элементное карти-
рование показало наличие углерода, кислорода 
и серы в электроде GNPLs/PTh. Измерения мето-
дом циклической вольтамперометрии показали, 
что электрод GNPLs/PTh имеет максимальную 
удельную емкость 960.71  Ф/г при скорости ска-
нирования 10 мВ/с. Гравиметрическая емкость 
изготовленных электродов достигала 673 Ф/г при 

плотности тока 0.25 А/г, что соответствует плот-
ности энергии 2.25 Вт ч/кг. Исследование цикли-
ческой стабильности показало, что суперконден-
сатор на основе GNPLs/PTh может сохранять 
84.9% начальной емкости после 1500 последова-
тельных циклов CV, что свидетельствует об отлич-
ной циклической стабильности материала.

В  исследовании [137] композитные пленки 
восстановленного оксида графена (rGO) и  по-
ли(3,4-этилендиокситиофен) полистиролсуль-
фоната (PEDOT: PSS) были приготовлены мето-
дом испарения растворителя с  использованием 
PEDOT: PSS в качестве связующего для фиксации 
ориентированного графена с целью обеспечения 
его хорошей проводимости и  сильных π–π-упа-
ковочных взаимодействий со слоями графена. 
Анализы с  использованием сканирующей элек-
тронной микроскопии (СЭМ), адсорбции-де-
сорбции азота и малоуглового рассеяния рентге-
новских лучей показали, что слои графена были 
хорошо выровнены при приложении магнитного 
поля, хотя без магнитного поля они были ориен-
тированы случайным образом. В качестве матери-
ала электрода конденсатора композит ориентиро-
ванного rGOи (PEDOT: PSS) продемонстрировал 
удельную емкость 169/г с сохранением около 70% 
емкости при плотности тока 50 А/г, а его кривые 
CV сохраняют прямоугольную форму при скоро-
сти сканирования напряжения 2 В/с.

В [138] разработали высокоактивную 2D-на-
ноструктуру, состоящую из армированного про-
водящего полипиррола с  декорированным rGO 
и гибридным комплексом оксидов металлов Ni/W 
(PPy–G–Ni–W) для применения в  суперконден-
саторах. Гибридная 2D-платформа показала за-
мечательную удельную емкость 597 и 557 Ф/г при 
измерениях CV- и  гальваностатического анализа 
соответственно, при использовании трехэлектрод-
ной системы. Разработанный суперконденсатор 
продемонстрировал очень высокую стабильность, 
сохранив 98.2% своей общей производительности 
после 5000 циклов заряда-разряда. Аналогичным 
образом, исследования в  двухэлектродной элек-
трохимической ячейке, состоящей из PPy–G–
Ni–W/PPy–G–Ni–W, показало удельные емкости 
361 и 342 Ф/г при скорости сканирования и плот-
ности тока 2 мВ/с и 0.5 А/г с использованием ме-
тодов CV и гальваностатики соответственно. При 
этом была получена высокая плотность энергии 
14.4 Вт ч/кг при плотности мощности 275 Вт/ кг. 
Что еще более важно, устройство сохранило 96.4% 
своей общей удельной емкости после 5000 циклов 
заряда-разряда (рис.  13), что подчеркивает высо-
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кую емкость, мобильность и  сверхстабильность 
разработанного ЭХСК по отношению к реальным 
энергетическим приложениям.

4. Композиты с MXenes
MXenes представляют собой класс двумерных 

неорганических соединений, которые состоят из 
атомарно тонких слоев карбидов, нитридов или 
карбонитридов переходных металлов. MXenes 
имеют различные гидрофильные поверхностные 
группы. О MXenes впервые сообщили в 2012 г., и их 
исследования претерпевают экспоненциальный 
рост. С 2020 г. количество патентов о MXenes пре-
высило количество журнальных статей о MXenes, 
что свидетельствует о том, что они потенциально 
являются коммерчески успешными материалами. 
В последние годы MXenes стали применяться в су-
перконденсаторах [5, 139–146].

Большая популярность портативной умной 
электроники интенсивно стимулировала раз-
витие накопителей энергии и  других передовых 
продуктов, таких как дисплеи и сенсорные пане-
ли. Интерактивные устройства, такие как смарт-
фоны, планшеты и другие сенсорные устройства, 
требуют механически прочных прозрачных про-
водящих электродов (TCE). Разработка прозрач-
ного суперконденсатора в  качестве источника 
питания имеет важное значение для прозрачной 
электроники следующего поколения. В  послед-
нее время графен и  MXene  – ​два представителя 
большого двумерного семейства, показали от-
личную электронную проводимость и  привлек-
ли большое внимание исследователей в  области 
хранения энергии. Важно отметить, что высоко-
производительные TCE являются необходимыми 

условиями для создания прозрачных суперкон-
денсаторов. В обзорах [139, 140] представлен все-
сторонний анализ гибких TCE на основе графена 
и MXene, охватывающий подробные методы из-
готовления тонких пленок, оценки, ограничения 
производительности, а также подходы к преодо-
лению этих ограничений. Особое внимание уде-
лено фундаментальным аспектам TCE, таким как 
перколяция и проводимость.

Новый материал 2D Ti3C2TxMXene (Tx  – ​по-
верхностные функциональные группы) широко 
изучается в области суперконденсаторов. Тем не 
менее электрохимические характеристики су-
перконденсаторов снижаются из-за присутствия 
Ti3C2Tx. Однако синтезированный в  [140] гиб-
кий композит Ti3C2Tx/композитная мембрана/
графен эффективно устраняет этот недостаток. 
В отличие от использования традиционного вос-
становленного оксида графена, структурная це-
лостность и крупные чешуйки графена синтези-
ровались в данной работе с помощью безводного 
хлорида железа FeCl3. Собранный симметричный 
суперконденсатор без связующего показал высо-
кую плотность энергии 13.1 Вт ч/кг при удельной 
мощности 75 Вт/кг. В статье представлен новый 
взгляд на анализ механизма ингибирования са-
моукладки MXene.

Несмотря на то что при использовании элек-
тродов с  MXene в  суперконденсаторах были по-
лучены большие емкости, относительно высокое 
сопротивление ограничивает область примене-
ния этих материалов. В  работе [141] сообщается 
об инновационном простом методе изготовления 
MXene, обернутого графеном в сочетании с плаз-
менным отшелушиванием. Этот метод включает 
в себя два ключевых аспекта: 1) включение оксида 
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ве (а) PPy, (б) G–Ni–W [138].
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графена (GO) в MXene и 2) плазменное отшелу-
шивание GO-модифицированного MXene. По-
лученные материалы, обозначаемые как MXene@
rGO, имеют слоистую структуру с восстановлен-
ным оксидом графена на поверхности MXene. Бы-
ли изготовлены полностью твердотельные гибкие 
суперконденсаторы из материалов MXene@rGO. 
По сравнению с  обычными MXene, суперкон-
денсаторы MXene@rGO показали в два раза бо-
лее высокую удельную емкость, а также отличную 
циклируемость и механическую стабильность.

В  работе [142] изготавливался суперконден-
сатор сверхвысокой емкости с  использовани-
ем нанослоистого MXene в  качестве активного 
электродного материала, а никелевая фольга ис-
пользовалась в  качестве токосъемника. Высо-
кокачественный титан для Ti3C2Tx, получаемый 
из надосадочной жидкости, в  процессах травле-
ния и  промывки существенно повышает удель-
ную емкость. В качестве другой методики на по-
верхность никелевой фольги наносился графен, 
выращенный методом химического осаждения 
из газовой фазы. Графен, выращенный непо-
средственно на никелевой фольге, используется 
в  качестве токосъемника, образуя электродную 
структуру Ti3C2Tx/графен/Ni. Установлено, что 
емкость суперконденсаторов на основе графена 
более чем в 1/5 раза превышает емкость без гра-
фена. Высокая удельная емкость ~542 Ф/г дости-
гается при скорости сканирования 5 мВ/с. Кро-
ме того, суперконденсатор на основе графена 
демонстрирует квазипрямоугольную форму на 
циклических вольтамперометрических кривых 
и  симметричное поведение на гальваностатиче-
ских кривых заряда/разряда. Циклическая ста-
бильность до 5000 циклов подтверждается сохра-
нением высокой емкости при высокой скорости 
сканирования 1000 мВ/с.

Из известной формулы для плотности энер-
гии [2] следует, что расширение окна напряже-
ния и  увеличение емкости являются эффектив-
ными способами повышения плотности энергии 
суперконденсаторов. Тем не менее устройства на 
основе водного электролита обычно имеют ок-
но напряжения менее 1.2 В с учетом электролиза 
воды, а химически преобразованный графен дает 
посредственную емкость. Согласно [143], много-
электронные окислительно-восстановительные, 
структурно стабильные π-каркасы индантрона 
(IDT:(6,15-дигидродинафто[2,3-а;2’,3’-h]фена-
зин‑5,9,14,18-тетраон)) были эффективно свя-
заны с  восстановленным оксидом графена для 
образования молекулярного гетероперехода IDT@

rGO. Такие электроды, не содержащие проводя-
щих агентов и связующих веществ, обеспечивали 
максимальную емкость до 345 Ф/г в  диапазоне 
потенциалов от –0.2 до 1.0  В. Пленочный элект-
род-партнер – ​Ti3C2Tx MXene, работающий в ди-
апазоне отрицательных потенциалов от –0.1 до 
–0.6 В, давал емкость до 769 Ф/г. Благодаря реа-
лизованным потенциалам IDT@rGO гетеропере-
ходного положительного электрода Ti3C2Tx MXene 
и  отрицательного электрода  – ​поливиниловый 
спирт/H2SO4  – ​гибкий асимметричный супер-
конденсатор на основе гидрогелевого электролита 
обеспечивал увеличенное окно напряжения 1.6 В 
и  впечатляющую плотность энергии 17  Вт ч/кг 
при высокой удельной мощности 8 кВт/кг, а так-
же эффективную скоростную способность и боль-
шой срок службы (сохранение 90% емкости после 
10 000 циклов), а также исключительную гибкость.

По мере роста спроса на носимые электрон-
ные устройства растет и  интерес к  небольшим, 
легким и деформируемым устройствам хранения 
энергии. Среди этих устройств проволочные су-
перконденсаторы считаются ключевыми компо-
нентами носимых устройств из-за их геометри-
ческого сходства с  тканым волокном. Одним из 
потенциальных методов создания устройств WSC 
является метод послойной сборки (LbL), который 
представляет собой метод изготовления электро-
дов “снизу вверх”. WSC означает конформное 
и  адгезионное покрытие функционального ма-
териала на проволочной подложке, что трудно 
получить с помощью других методов обработки, 
таких как вакуумная фильтрация или нанесение 
покрытий распылением. Технология сборки LbL 
позволяет получать удобные и  прочные покры-
тия, которые можно наносить на различные под-
ложки и формы, включая проволоку. В исследо-
вании [144] сообщается о  WSC, изготовленных 
с  использованием LbL-сборки чередующихся 
слоев положительно заряженного восстановлен-
ного оксида графена, функционализированного 
поли(диаллилдиметиламмония хлоридом) и  от-
рицательно заряженными нанослоями Ti3C2Tx 
MXene, эффективно нанесенными на нити из ак-
тивированного угля. В этой конструкции добав-
ленная пленка LbL увеличивает емкость, плот-
ность энергии и плотность мощности на 240, 227 
и 109% соответственно, по сравнению с пряжей 
с  активированным углем без покрытия, обеспе-
чивая высокую удельную и  объемную емкость 
(237 Ф/г, 2193 Ф/см3). Кроме того, WSC обладает 
хорошей механической стабильностью, сохраняя 
90% своей первоначальной производительности 
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после 200 циклов гибки. Данное исследование 
демонстрирует, что LbL-покрытия на углерод-
ных нитях перспективны в качестве накопителей 
энергии для волокнистой электроники.

Материалы 2D-MXene привлекли присталь-
ное внимание в  области хранения энергии. Тем 
не менее MXene обычно подвергаются серьез-
ной переукладке для повышения стабильности, 
что значительно препятствует их дальнейшему 
коммерческому применению. В  статье [145] для 
подавления окисления и самоукладки MXene де-
монстрируется эффективный и  быстрый способ 
самосборки для получения 3D-пористого компо-
зита MXene/графен (PMG), устойчивого к окис-
лению. Самоорганизующаяся 3D-пористая ар-
хитектура может эффективно предотвращать 
окисление слоев MXene без видимых изменений 
электропроводности на воздухе при комнатной 
температуре, гарантируя высокую электропрово-
дность и большое количество электрохимических 
активных центров, доступных ионам электроли-
та. Электрод PMG обладает высокой удельной 
емкостью 393 Ф/г при 10 В/с, превосходной про-
изводительностью и выдающейся устойчивостью 
при циклировании. Кроме того, асимметричный 
суперконденсатор в собранном виде обладал вы-
сокой плотностью энергии 50.8  Вт ч/кг и  заме-
чательной стабильностью циклов с  ухудшением 
удельной емкости всего на 4.3% после 10 000 ци-
клов. Эта работа прокладывает новый путь для 
решения важных проблем с MXene в будущем.

Ожидается, что двумерные (2D) материалы во-
йдут в число самых эффективных соединений для 
использования в  энергетике. Способность нака-
пливать энергию в  двух двумерных материалах, 
восстановленном оксиде графена и  NbCMXene 
за счет создания гетеросборки, впервые было осу-
ществлено в работе [146] путем двойного допиро-
ванияазотом на обеих решетках с  использовани-
ем метода сверхкритической обработки флюидов. 
Как известно, сверхкритический флюидный син-
тез гетеросборки на основе 2D/2D MXene уника-
лен и самобытен. Высокая способность к аккуму-
лированию заряда композитами N–(NbC/rGO) 
и типичная кинетика реакции способствуют очень 
высоким электрохимическим характеристикам 
благодаря этой уникальной синтетической мето-
дике. Таким образом, N–(NbC/rGO) демонстри-
рует исключительные электрохимические характе-
ристики с высокой удельной емкостью 816 Ф/г при 
плотности тока 1 А/г и замечательной плотностью 
энергии 29  Вт ч/кг в  водном электролите H2SO4 
и 33 Вт ч/кг в неводном электролитеTEABF4/аце-

тонитрил. Кроме того, после 100 000 циклов сохра-
няется 100% от начальной емкости в квазитвердо-
тельном электролите на основе PVA/HSO4.

5. Квантовые точки
Нобелевскую премию по химии в  2023 г. по-

лучили сразу три ученых за одно открытие. Мун-
ги Бавенди, Луис Брюс и  Алексей Екимов удо-
стоились высшей научной награды за открытие 
и синтез квантовых точек – ​полупроводниковых 
нанокристаллов с  уникальными оптическими 
и электронными свойствами.

Ква́нтовая то́чка – ​это фрагмент проводника 
или полупроводника, носители заряда которо-
го ограничены в  пространстве по всем трем из-
мерениям. Размер квантовой точки должен быть 
настолько мал, чтобы квантовые эффекты были 
существенными.

Включение новых функциональных компо-
нентов в  трехмерный графеновый (3DG) каркас 
улучшает характеристики суперконденсаторов на 
основе 3DG в электродах за счет адаптации струк-
туры и свойств каркаса. В последнее время мате-
риалы с  квантовыми точками стали применять-
ся суперконденсаторах [7, 32, 94, 113, 147–150]. 
В работе [147] графеновые квантовые точки были 
включены в 3DG путем одноступенчатой гидро-
термической обработки GQD и  оксида графена 
(GO). Путем простой регулировки соотношения 
GQDs/GO по весу были сформированы различ-
ные композиты GQD/3DG. Максимальное соот-
ношение составило 80%, в то время как компози-
ты, полученные с соотношением GQDs/GO 40% 
для электродов, показали максимальную удель-
ную емкость 242 Ф/г для суперконденсаторов, 
что означает увеличение на 22% по сравнению 
с чистыми электродами 3DG (198 Ф/г). Это улуч-
шение характеристик было, в основном, связано 
с более высокой электропроводностью и большей 
площадью поверхности композитов GQD/3DG. 
Изготовленные композиты GQD/3DG в качестве 
электродов для суперконденсаторов показали 
высокую электрохимическую стабильность. Их 
емкость сохраняла 93% от первоначального зна-
чения после 10  000 циклов заряда-разряда.

Несмотря на то что активированные угли 
с  большой площадью поверхности широко ис-
пользуются в  суперконденсаторах, они обычно 
имеют ограниченные емкость и  скоростные ха-
рактеристики, в первую очередь из-за низкой про-
водимости и  медленной электрохимической ки-
нетики, вызванной их аморфной микропористой 
структурой. В  статье [148] предлагается простая 
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стратегия повышения электрохимических харак-
теристик АУ путем встраивания высококристал-
лизованных графеновых квантовых точек. Бла-
годаря образованию общих проводящих сетей 
кинетика переноса заряда и миграции ионов в АУ 
значительно улучшается, облегчая транспортиров-
ку и хранение ионов электролита в глубоких и раз-
ветвленных микропорах. В  результате квантовые 
точки графена встраиваются в  активированный 
уголь, обладающий микропористой структурой 
с удельной площадью поверхности 2829 м2/г. Это 
приводит к  получению высокой двойнослойной 
емкости 388 Ф/г при 1А/г, а  также к  отличным 
скоростным характеристикам с сохранением 60% 
емкости при 100  А/г в  двухэлектродной системе. 
Емкостные и скоростные характеристики намного 
выше, чем у АУ без графеновых квантовых точек, 
а также у большинства пористых углей, о которых 
сообщается в литературе. Эта стратегия открывает 
новые возможности для разработки современных 
пористых углеродных материалов для высокопро-
изводительного хранения энергии.

В  работе [149] сообщается о  математическом 
моделировании для исследования вклада кванто-
вых точек в общую дифференциальную емкость 
функционализированного графена в  качестве 
материала электродов суперконденсаторов на 
водной основе. Рассмотрены эффекты включе-
ния азота и  кислорода в  квантовую и  двойнос-
лойную емкость графена в  четырех различных 
моделях суперконденсаторов с водными электро-
литами Li2SO4 и  LiTFSI. Было обнаружено, что 
суммарная дифференциальная емкость ограни-
чена двойнослойной емкостью. Лучшая модель 
системы электрод/электролит была получена для 
симметричного суперконденсатора, собранного 
из эпоксидных/гидроксил-функционализиро-
ванных графеновых электродов, пропитанных 
1 М Li2SO4 водным электролитом.

В  [150] сообщаетcя о  простом гидротермаль-
ном методе синтеза квантовых точек CeO2/Ce2O3, 
закрепленных на слоях восстановленного окси-
да графена (rGO) различных весовых фракций, 
для применения в качестве электрода суперкон-
денсатора. Из всех протестированных образцов 
образец, содержащий 7 мас. % rGO (CrGO3), из-
меренный методом термогравиметрии, проде-
монстрировал самую высокую удельную емкость 
1027 Ф/г при 1 А/г наряду с хорошей циклической 
стабильностью. При плотности тока 4 А/г обра-
зец CrGO3 показал сохранение заряда 79% после 
5000 циклов, тогда как при 20 А/г он показал со-
хранение заряда в  85% после 3000 циклов. Зна-

чения, полученные для электрода CrGO3, выше, 
чем для всех предыдущих электродов на основе 
церия и rGO, что позволяет предположить его по-
тенциальное использование в  суперконденсато-
рах. Просвечивающая электронная микроскопия 
высокого разрешения четко выявила кристалли-
ческие наночастицы CeO2 (~5 нм), равномерно 
распределенные на слоях rGO, а также несколь-
ко плоскостей решетки, указывающих на присут-
ствие некоторого количества Ce2O3, смешанного 
с  CeO2. Рентгеновская фотоэлектронная спек-
троскопия (РФЭС) выявила наличие смешанных 
оксидов, содержащих, в основном, CeO2 с неко-
торой фазой Ce2O3 на поверхности.

Заключение
В  данном обзоре рассмотрена литература, 

в  основном последних лет, по актуальной те-
ме применения графенов в суперконденсаторах. 
Проанализировано влияние пористой структу-
ры графенов, влияние допирования и  облуче-
ния графенов. Рассмотрены способы получе-
ния графенов, композиты графенов с оксидами, 
сульфидами и  селенидами металлов, композиты 
с частицами металлов, с электронопроводящими 
полимерами, с MXenes, а также квантовые точки. 
Для различных типов графенов и их композитов 
приведены электрохимические характеристики.

Особенно высокие электрохимические харак-
теристики получены для композитов графенов 
с полианлином, с оксидами металлов, с селенида-
ми, с MXenes и при допировании графенов бором.

Были получены следующие максимальные 
величины удельной энергии: 40.5  Вт ч/кг (для 
NiSe2), 78.66 Вт ч/кг (для TiO2), 79.5 Вт ч/кг (для 
допирования бором), 1382 Вт ч/кг (полианилин).
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