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Abstract. Sequential truel is a duel-like game between three players. Each players is endowed with his own
marksmanship. At each turn, a player whose turn is to shoot can target any of the remaining alive opponents
or abstain from shooting. The game ends when there is only one player alive or when all alive players abstained
from shooting one after another. The single survivor obtains the “survivor” prize 1, while the payoff of all other
players is 0. In the case the truel ends due to “inactivity”, all the players receive the payoff of 0. It is a deeply
studied game with paradoxical finding that the weakest player has the highest probability of surviving in many
settings, especially when the player can abstain from shooting. Here we present an explicit construction that
contradicts this finding. There exists a mixed strategy subgame perfect equilibrium in which the strongest play-
er has the highest probability of survival. This equilibrium exists for a specific order of play, in which the two
stronger opponents act before the weakest one. When it exists, there are multiple subgame-perfect equilibria,
including the existing stationary construction, in which two stronger opponents target each other.

Keywords: sequential truel, subgame perfect equilibrium, survival of the weakest.
JEL Classification: C7, C73.
UDC: 519.837.3

For reference: Ilinskiy D.G., Izmalkov S.B., Savvateev A.V. (2024). Survival of the strongest
in a sequential truel. Economics and Mathematical Methods, 60, 1, 133—140. DOI: 10.31857/
S0424738824010111 (in English).

1. INTRODUCTION

A truel is a duel-like competition between three players, in which the players fight for survival or for
a prize by targeting (shooting at) opponents. Only one opponent can be targeted at a time. Originally, the
sequential truel appeared as a brain teaser and has been part of many collections of mathematical puzzles
(Phillips, 1937; Kinnaird, 1946; Gardner, 1966; Mosteller, 1987). The problem statement can be written as
follows. Each of the three players is endowed with marksmanship — the probability of eliminating the op-
ponent with a shot. Three players are different, with marksmanships of 0.3, 0.5, and 1 (or 0.5, 0.8, and 1).
Whom should they target? Who wins? These problems have a paradoxical answer — the weakest player has
the highest chance of surviving while the strongest player (a sure shot) has the lowest survival odds. There
is also an extra layer to the problem — the weakest player might do even better by intentionally abstaining,
e.g., by shooting in the ground or in the air.

M. Shubik (Shubik, 1964, 43—46) coined the term truel and described it as an example of a game in
which the pursuit of individual goals leads to a paradoxical result. D. Kilgour (Kilgour, 1975) initiated
a game-theoretic analysis of sequential truels as infinitely repeated games with and without abstentions. He
considered undominated Nash equilibria in stationary strategies and showed that if the players marksman-
ships are different from each other, then the equilibrium is essentially unique, and for many values of the
parameters the weakest player has the strongest survival odds. This happens because for two stronger op-
ponents it is optimal to target each other, while the weakest player can simply stay aside and wait until one
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134 UIBUHCKUN, U3MAJIKOB, CABBATEEB

of the stronger opponents is eliminated. Many variations of truels have been considered: sequential truels
with arbitrary duel values (Kilgour, 1978), simultaneous truels (Kilgour, 1972), truels with random order of
shooting, finitely many rounds or bullets, possibilities for cooperation, target-undetectable or silent truels
(Kilgour, Brams, 1997; Bossert, Brams, Kilgour, 2002). P. Amengual and R. Toral (Amengual, Toral, 2006)
analyse different versions of the sequential game, and analyse them as Markov chains with three absorbing
states (i.e. the possible victories of each of the players). A qualitatively robust prediction appears to follow
from existing results: whenever there is a fight, the two strongest opponents shoot at each other, and, unless
the marksmanships are dramatically different, the weakest player has the highest survival odds.

R. Shubik (Shubik, 1954) used a three-person duel to model ‘what sort of individual is best suited to sur-
vive, when every man acts for himself and by himself’. He pointed out immediate applications of truels to
the analysis of elections, political competition, and multi-country interaction, arguing that a weaker coun-
try can benefit if it gets itself in the middle of a non-cooperative conflict between two stronger countries.
Truels and N -els were used for modeling decisions in intense conflict situations (Cole, Phillips, Hartman,
1977), evolutionary biology to explain persistent extensive variation in competitive skills (Archetti, 2012),
dynamic targeted competition, where actions can be directed at a particular opponent (Dubovik, Parak-
honyak, 2014), negative advertising, especially in political campaigning (Skaperdas, Grofman, 1995; Rich-
man, 2020). (Toral, Amengual, 2005) consider a variant of a truel — a game of opinion making or dynamic
persuasion, in which players try to convince the others in their opinion on some matter and so all players
are active until the consensus is reached. In all these applications the central feature is the advantage of the
weakest player. Recently, in the article M. Wegener and E. Mutlu (Wegener, Mutlu, 2021) offered a model
of network formation and evolution, in which players of three possible types (marksmanships) engage in
truels with their neighbors. The authors assume that players target the strongest among the remaining op-
ponents but not of the similar type, and show that the evolutionary pressures over network actually lead to
strongest types surviving more often.

In this paper we challenge the existing findings regarding the survival of the weakest. We present a novel
subgame-perfect equilibrium construction for a sequential truel in which the strongest player has the largest
survival odds. We depart from the existing literature in three key elements: 1) we allow players to use non-
stationary (and non-Markovian) strategies; 2) we consider mixed strategies; 3) we explicitly define the con-
ditions and outcomes for a ‘peace’ scenario — the game ends if all the three players abstain in a row. This
equilibrium exists for a specific order of play, in which the two stronger opponents act before the weakest
one. When it exists, there are multiple subgame-perfect equilibria including the existing stationary construc-
tion in which two stronger opponents target each other.

In equilbrium, the strongest opponent, player y abstains if the middle-skilled player  has not targeted
v previously; player B abstains if the weaker player o targeted v in the previous round, and randomizes be-
tween abstaining and targeting vy, if o shot at . If both stronger players abstain, the weaker player o has to
target someone and randomizes between the opponents. The player o’s incentives to target 3 are provided
by the expectation that B then targets y with some positive probability, in which case o ends up in a duel
shooting first. In turn, randomization by o is needed to provide incentives for y to abstain. In essence, the
two stronger players tacitly collude to force o to target someone. The strongest player benefits when o tar-
gets 3, which can happen in a subgame-perfect non-stationary equilibrium!

2. SEQUENTIAL TRUEL

There are three players competing for being the sole survivor (winner) in a sequential duel-like game. At the
beginning of the truel all players are alive. At each turn, a player whose turn is to shoot can target any of the re-
maining alive opponents or abstain from shooting (delope, e.g. shoot at the air or shoot at the ground). A targeted
player is eliminated with probability equal to the marksmanship of the shooter. All the players observe who was
the intended target and what is the outcome of the shot. The order of shooting is chosen in advance, and once and
for all. No player can have two turns while some other (alive) player had none. Eliminated players do not shoot.
The truel ends when all but one player was eliminated or when all alive players abstained from shooting one after
another. The single survivor obtains the ‘survivor’ prize, the payoff to which is normalized to 1, while the payoff
of all the other players is 0. In the case the truel ends due to ‘inactivity’, all the players receive the payoff of 0. The
solution concept is subgame perfect equilibrium (SPE).

In our game-theoretic analysis we consider not only pure strategies for players that specify a particular tar-
get (or abstaining) after any history that can arise but also mixed strategies, where each player can randomize
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SURVIVAL OF THE STRONGEST IN A SEQUENTIAL TRUEL 135

over its pure strategies and, in particular, randomly choose its target (or abstain) with some probabilities when
called to act. The payoff from a mixed strategy is an expectation of the profits from pure strategies .

We refer to the players by their marksmanship, o, B, v, and suppose that «a <B<vy, y=1.Let o* =1—0a and
B* =1- be the probabilities of surviving a shot from a respective player. Denote by seq the order (sequence) of
shooting. For instance, if seq = Byo., then player B shoots first, then player y shoots (if alive), then player o, then
again player § and so on. We write seq(k) with k =0, 1 or 2 to highlight the number of successive abstentions
prior to the first player in seq shooting. Finally, let y**? and z:* be, respectively, the lowest and the highest SPE
payoffs to player / if the sequence of shooting is seq. For mstance y“BY“) is the minimal SPE payoff of player o
for the sequence ofy for the subgame following one abstention (by player v).

Some of our parametric assumptions, such as y =1, unequal marksmanships, and 0 payoffs to the ‘peace’
outcome, are made to simplify the exposition. For example, all results (with slight modification in state-
ments) are true for y in small neighbourhood of 1, but will require more technical details.

Some other parametric assumptions, such as three abstentions mean ‘peace’ are needed to complete
specification of the game, which in turn allows for analysis of mixed-strategy equilibria. It would be inter-
esting to know, how equilibria are affected when the number of abstentions that terminate the game or the
‘peace’ payoff vary, but this is left for future analysis.

There are six possible sequences of players, which can be divided in two groups: either B acts immediately
after o or vise versa. Since our main goal is to present an explicit construction of equilibria in which the
strongest player obtains high payoffs we will concentrate on the first case. Once we present the new equilib-
rium for sequence By in Section 6, as a corollary, we obtain a similar construction for sequence yBo, in
which o acts immediately after B. Since we need to stimulate player o to shoot in our equilibrium, it is cru-
cial that oo must be the last player to shoot.

Lemma 1. The minimal and maximal SPE payoffs of players o. and B satisfy the following inequalities

pa of B
P N — > oaff = _— < af = _
1_(xxBx’y[3 By[i B JpE z(x yoc 1_a*B*

l—o*PB*

(Dots here denote any of the appropriate order of shooting.)

yg~-2ay5a = ’z[;-syﬁaz

_
1-o*B*

P r o o f. The minimal SPE payoff of player o (or ) cannot be lower than what the player o (or ) can
obtain by targeting y and, if successful, ending up in a duel shooting second. Clearly, there would be no
abstentions in any duel. Similarly, the maximal possible payoff a player can get cannot be higher than that
from a duel against the weakest of the opponents shooting first.m

3. PLAYER y STRATEGIES

Lemma 2. /n any SPE player y does not target o. if B is alive. Player y’s minimal SPE payoff for any sequence
of moves in which y shoots first is bounded from below: yIrzor

P r o o f. If player y shoots at another player, the target is eliminated and y ends up in a duel with the
remaining player where that player shoots first. A duel with the weakest opponent is preferred. Thus, player y
can guarantee payoff of o by targeting [3.=

Can vy obtain a higher payoff than o/ in equilibrium when v is the first to act? For this to happen, y has to shoot
in the air and one of the opponents has to target the other one with positive probability in the future, so that vy
reaches a duel shooting first. Otherwise, if players o and [ target y or abstain each time they act, player y has to
target someone to end up in a duel (shooting second) to obtain positive payoff, which is at most o.".

4. PLAYER B STRATEGIES

So, from here on we consider sequences of players in which B shoots immediately after o.

! For example, consider two possible strategies of the player o always target B (if not eliminated, otherwise target y) and always
target y (if not eliminated, otherwise target ). Fix some strategies of the players B and y. Payoffs in the game (expected probability
of being a sole survivor) are well defined once all the strategies are specified, and let o and m,, be the payoffs to the player o from
the two considered pure strategies. Suppose that the player o considers a mixed strategy: flip a c01n and if heads target (3 always and
if tails target y always. Then the player o’s payoff from this strategy is simply 0.5 ©t, g + 0.5 7, . Of course, more complex mixed
strategies can be considered, e.g., those that implement randomization at any time a player acts. In the example, the player o can
flip a coin between two players (if available) any time it has a shot. In equilibrium, a player’s mixed strategy has to give the maximal
and identical payoff to the pure strategies it randomizes over.

BOKOHOMUKA U MATEMATUYECKUWE METOIbl TomM60 Nel 2024



136 UIBUHCKUN, U3MAJIKOB, CABBATEEB

Lemma 3. For all sequences of players in which player B shoots immediately after o, player B never targets d.

P r o o f. Suppose not, and that there exists an SPE in which  targets a.. Consider a subgame where this
happens. If B eliminates o, then y eliminates 3 in the next round with probability 1. Therefore, 3 has to ex-
pect a substantial continuation payoff Uy following a miss: B*uﬁ > yg‘y"‘, or, from Lemma 1

u, 2

B, oB
B Bx l—OL*B*. (1)

X

Let us focus on seq = yof3 and the equilibrium in which 3 obtains u,. As follows from Lemma 2, player y
has to abstain with positive probability for B to get a positive payoff as otherwise y eliminates . Player y then
receives at least o, while oo who moves next obtains at least y**. Combined, the sum of payoffs of all three
players has to be at least ygBY +u, +a". From Lemma 1 and inequality (1), this sum exceeds

GBooB B o . oBropp _B-oBro-2oBrop’
I-ap* B l-ap” B*(1-a*B*) a+P-20p-PB2+of?

since B? > of — that is a contradiction.

Thus, we have shown that for considered sequences of players in any SPE neither  nor y target o.. This
is consistent with previous findings (Shubik, 1954; Kilgour, 1975; Toral, Amengual, 2005), yet here we have
derived it without assumptions of stationarity, pure strategies, or necessity of targeting someone.

5. PLAYER o STRATEGIES

We explore first, what player o can get by abstaining.

Lemma 4. For any SPE, for any subgame in which player o, has a chance to abstain without ending the game,
we have (here k=0 or 1) y®® >q.

In addition, for sequences yo3(0) and yo(2) player vy targets B, while for sequence Byo(1) player B targets .

P r o o f. Suppose player o abstains. If B also abstains, then 7y targets B (who obtains payoff 0), while
o ends up in the duel with y shooting first, getting payoff o.. Thus, § will not abstain, and target y instead.

If B eliminates y, then o, obtains y** = o / (1 - OL*B*) >o. If B misses and vy targets 3, then o. obtains payoft a.
Finally, if  misses and y abstains, we come to the subgame in which o can again abstain, and, as above, either
guarantee herself at least o or reach a subgame in which she can abstain, and so on. In expectation over all pos-
sible outcomes, player o obtains at least o in any SPE whenever she (he) can abstain.

Player y does not abstain if o can abstain next round, and thus vy targets B for sequence yo3(0). Indeed,
since o can abstain and guarantee herself payoff o, by targeting B, player y obtains o.". If y abstains, then 3
obtains a positive payoff, in this case, what remains to v is strictly smaller than o.*.

In turn, if player B knows that o is able to abstain, she will expect that o abstains and then vy targets [3.
So, player B should target y and not abstain in this case.m

Thus, having an option to abstain allows player o to guarantee herself a decent payoff as the other play-
ers target each other. Will o actually abstain in equilibrium? Suppose that  and vy target each other also
when o targets one of them (as in (Kilgour, 1975)). Then, for « it is better to target v, since the duel with

the weaker of the two opponents is preferred. By targeting vy, player o obtains payoff ocyEOc +o [Bygﬁ + B*OL:|,
and by abstaining she gets By*® +[*c.

Therefore, targeting v is better for o, if
o o
BOL > a[j + *a’ B >
yo' 2Byt B - B BI—OL*B

Bro>a(B+B —opp) B> 1-apBs B<opp.

We have shown the following lemma.

—+ Brou;

Lemma 5. A subgame perfect equilibrium in which neither 3 nor y abstain exists. In this equilibrium, player
B targets v, player vy targets B, and player o. targets y if B < o.*B*B* and abstains if B> o *B*B*.

It is trivial to check that the described strategies indeed form an SPE. Note that if p>B*B* or
B> 0.5(3 —\/g) =~ (.3820, player o abstains no matter what o is.
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SURVIVAL OF THE STRONGEST IN A SEQUENTIAL TRUEL 137

6. NOVEL SPE CONSTRUCTION: SURVIVAL OF THE STRONGEST

Can it happen in equilibrium that players B or ¥ or both abstain? Consider sequence Byo. To abstain,
player B should expect that y will also abstain with high probability in the next round and that o later (not
necessarily immediately in round 3) will target v, hoping for a duel with o in which B shoots first. In turn,
for player vy to abstain, player y should expect that o will be shooting at B with positive probability, as oth-
erwise y’s expected payoff is strictly below a*. For both  and 7y to abstain, player o has to target someone!

Theorem (main result). For sequence Pyo. and o.> 0.5, there exists a mixed SPE in which players B and y
abstain with positive probabilities, while player o. mixes between the opponents. The equilibrium utilities U, of the
players (i e{a.,B,Y}) are given by the following formulas:

v =p-2P_ oy _gerapre
P l—ap Y o+q po’ . P
where p=0f" /[0 (B-0B'B")], g =0,

P r o o f. Consider the following profile of strategies — a candidate for the equilibrium. Player y abstains
for seq = yaf3(1) (following an abstention by P if it is the only one in a row) and targets  in any other sub-
game. Player [ abstains in round 1 and for any subgame in which o targeted and missed y in the previous
round. If o targeted and missed B, then § mixes between abstaining and targeting y. (This will provide in-
centives for o to target .) For all other subgames, player 3 targets y. Finally, player o mixes shooting at
and vy for seq = affy(2), and abstains in all other subgames.

For the transition matrix between subgames for the proposed profile of strategies see Figure. Each deci-
sion node is marked by the acting player with the number of previous abstentions in the brackets. Only the
transitions following misses are shown. Horizontal arrows point to the intended target, T stands for absten-
tion. In figure 1 p and ¢ are the probabilities with which players B and o target 7y in their mixed strategies.

For the suggested profile to be an SPE, the following set of conditions has to be satisfied. Here, U, is the
equilibrium utility of player i, p*=1-p,and ¢" =1-q. By U ,(J) we denote the utility of player i using pure
strategy shooting j.

Uﬁ—oc Uﬁ+a[q1—oc*|3*+q x0 _BI—OL*B*’UY_‘][(XXO-'—OL U7]+q [oc><1+oc p Uy+oc o ]2& ,
Bro o

U (Y)=ax —+o'U_=ax0+o*| pB —+ ppra+pU_|=U_(P).
o l_a*B,x o l_a,LB* o o
Probability ¢ can be found from the condition for player B to be indifferent between targeting y and

abstaining: )
0P B

=0 , q=0o"P.

Similarly, from the indifference condition for player o we can find p:
of* o . . ap?

U = = + pB*o+ p* ;

o) 1-aB* [pﬁl—oc*[i* ot 1—0(*[5"‘}

B =a"(pB+p P +pB (1-a'B)); B =’ (pB+p — pB'o’B); p=

of”
o (B-0pB)

2 Y mdl duel oy

Figure. Transitions in equilibrium
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138 UIBUHCKUN, U3MAJIKOB, CABBATEEB

Finally, we need to check that y prefers abstaining from targeting . From the expression for y above we
can compute

T l-atg-aiqipt a+gipot
We want to show that UY >a”, when o> o . We have

(UY —oc*)(oc+q*poc*)=q*poc*oc* (B -D+oa(¢ -’ )=a(a-g)-¢ pooBp=o(a—aP)- po'aP(l-a'p)=
o

~Borpp L@ BB B )~ (proc) (B-pocp)]
If B>0>0.5, then a>a’, B>B", and a—aB>a" —aB=pa’, p—aBP" >P—aBR. Therefore, the
difference of products in the above expression is positive. =

The presented equilibrium construction clearly favors the strongest player as compared to the equilibrium in
Lemma 5. In this equilibrium player y had to rely on both § and o missing their shots to survive. In the new con-
struction, the same scenario following 3 targeting y occurs as well, but with probability less than one, while in
a complementary event of o targeting 3 and making a shot, y wins the prize. The probability of this complimentary
event is maximized in this equilibrium.

For a specific example, consider o.=0.8, 3=0.9, y=1. Then ¢ =0.18, p ~ 0.4454 and players payoffs are
U, ~0.0816, U[5 ~0.1653, UY ~0.7531. In the equilibrium from lemma 5, U =1—U§ —U? ~0.8147,

US=U, ~0.1653, U"=B'0" =0.02.

Corollary 1. Ifo.> 0.5 and the sequence of players is Pyo., then there exists a continuum of subgame perfect equilibria
in which player B earns the same expected payoff as in the equilibrium in Theorem, and payoffs of players o and y vary:

U . takes any value from " o" to the value from the Theorem.

P ro o f. Consider the equilibrium construction in the Theorem. Player 3 in the first round can instead shoot
at y with some probability r. The higher is » the higher is U , (and lower U Y). For » =1 we obtain the payoffs as in
Lemma 5withU, = o m

Corollary 2. For sequence yBow and sufficiently high o, there exists an SPE with players v and [ abstaining (with
probability 1), and vy earning the highest expected payoff.

P ro of. The equilibrium construction here is similar to the one in Theorem with one correction to account
for B shooting immediately after y and not before. Player v is going to abstain if o did not abstain and 3 did not
target y previously. Player o, is going to mix targets, hoping that B will target y with positive probability. Differently
from above, player [ is going to abstain with probability 1 whenever y abstained in the previous round and o did
not target 3 in the round before. If o targets 3, 3 survives, y abstains, then [ is going to randomize between abstain-
ing and shooting at y. Similarly to Theorem 1, this will provide incentives for o to shoot at [3. m

Condition o > 0.5 in Theorem 1 is a simple sufficient condition for the equilibrium we present. The exact con-
dition on o and 3 jointly is for the expression at the end of the proof of Theorem to be positive to guarantee that
U Y > o, If . < 0.5, when shooting first, y can get payoffa.” > 0.5 (simply shooting B) and therefore also get highest
payoff among the players.

Clearly our equilibrium construction also extends for values of y less than but close to 1 (while y > [3). When vy
is close to 1, the payofis of all the players are similar to those in Theorem 1, and the equilibrium is supported by
probabilities ¢ and p, that make players o and B to randomize their actions. Certainly, ¢ and  should be adjusted
depending on v, but as long as they are within (0, 1) the equilibrium construction works.

With our assumptions of three abstentions leading to “peace” outcome and y =1 similar mixed strategy equilib-
ria do not exist for other sequences of play, in particular, when ¢ is the first player to act and there are no previous
abstentions. If we consider a different assumption on abstentions, for instance, if the “peace” realizes once some
player abstains for the second time following abstentions by every player, then the presented equilibrium construc-
tion exists for all sequences of play. Player o randomizes over § and vy, and if abstains, the other two players abstain
as well, forcing player o to pick a target.

Corollary 3. Suppose that there is no limit on how many abstentions lead to the “peace” outcome. “Peace” is reached
only if all three players abstain forever. Then, for any sequences of players and sufficiently high o, there exists an SPE
with players y and B abstaining (with probability 1), and y earning the highest expected payoff.

P roof. The above constructions can be amended by specifying that both players 3 and y necessarily abstain
if player o abstains. Clearly then, abstaining forever is not optimal for player .. =
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SURVIVAL OF THE STRONGEST IN A SEQUENTIAL TRUEL 139

7. CONCLUSION

Truels and N -els are fascinating conflicts with numerous applications that bring in new insights with each
new wave of attention to them. The theory of truelts started with the survival of the weakest observation
which was and continues to be the main driver of interest in truels. It continued with abstentions as a stra-
tegic choice which the weakest player is likely to make. An abstention is a practically feasible strategy so it
has to be modeled formally. This eventually lead to a cooperative element in the analysis (Bossert, Brams,
Kilgour, 2002) — players can potentially cooperate even if they are fighting for survival and only one sur-
vives. Our novel equilibrium construction can also be interpreted like that: two strongest players cooperate
to force the weakest player to shoot hoping that one of them survives and be the first to shoot in the ensuing
duel. In this paper we show: it is not necessary that the stronger opponents target each other in equilibrium
and that other types of SPE equilibria exist, with the strongest player having largest odds of surviving and
in which multiple people abstain from shooting with positive probability.

Using mixed strategies is another important element of our construction. This allows to break the curse
of the strongest player, viz. being everyone’s target. In our construction, using a mixed strategy by player
o provides the incentive for the strongest player to abstain from shooting, while using a mixed strategy by
player B conditional on some histories of playing provides the incentive for o to mix. It is easy to overlook
such possibilities if the strategies are assumed to be stationary.

Many questions remain for further research. In particular, it would be valuable to characterize the whole
set of achievable subgame perfect equilibrium payoffs for different values of parameters for truels. Are there
any other kinds of equilibria in N-els with N > 3 players?
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Annoramus. [TocienoBarenbHast TPY3JIb — OMWH U3 BUIOB Ty3JIU UTS TPEX UTPOKOB. Y KaXKIOTO UTPO-
Ka — CBOI YpOBeHb METKOCTU. ITPOKM XOIST MO OUepenu, B KaxkIOM payH/Ie BbIOMpasi B KaUecTBe
1IeJIM OMHOTO M3 OCTaBIIMXCS B KMBBIX UTPOKOB WJIM — YKJIOHSISICh OT CTpeibObl. Mirpa 3akaHuuBa-
€TCs1, KOTJa B XKMBBIX OCTAETCSI TOJIBKO ONWH UTPOK, UM — TIPU TPeX MOCeN0BaTeIbHBIX YKIOHEHU -
SIX OT CTPeIbObl. EMMHCTBEHHBII BBKUBIIHNIA ITOTyYaeT BBIMTPHITT TTOOSIUTENS, PaBHBIHN 1, a ocTalb-
Hble noiydatot 0. B ciyuae koraa ayab 3aKaHUYMBAETCSl «MUPHBIM» CIIOCOOOM, BCE UTPOKU MOJTy4aloT
BBIMTPBIL, paBHbIi 0. DTa Urpa n3yuyeHa 1OCTAaTOYHO XOPOIIO, U OOJIBIIMHCTBO UCCAeNOBaHU MO-
CBSIIIIEHO TapaJoKCaJTbHOMY BBIBOAY O TOM, UTO CaMblil CIa0bIii UTPOK UMEET HarOOJIbIITYI0 BEPOSIT-
HOCTb BBIKMBAHUSI BO MHOTHX YCJIOBUSIX, 0COOEHHO KOTJa Y UTPOKOB €CTh BO3MOKHOCTD YKIIOHUTHCS
OT CcTpeNbObl. B MTaHHOI cTaThe MbI MPEnCTaBIsieM KOHCTPYKIIMIO paBHOBECHSI, KOTOPOE OMPOBEPTaeT
JAHHBII BHIBOI. A UMEHHO: CYIIIECTBYET CMEIlIaHHOE PaBHOBECHE, COBEPIIEHHOE Ha MOALITpax, B KO-
TOPOM CWIbHEHIIINIA UTPOK MMeeT HauOOJIbIITYI0 BEPOSATHOCTb BRLKUTH. JJaHHOE paBHOBecHeE Cyllle-
CTBYET IIPU OTPEACTICHHOM MOPSAKE UTPOKOB, B KOTOPOM ABOE CUILHEHIIINX CTPEISIOT Tepen cllabeii-
muM. Ecim oHo cyliecTByeT, To MMeeTcsl HAOOp paBHOBECUA, COBEPIIIEHHBIX Ha TIOBITPAX, BKIIOUAst
CTallMOHAPHOE, B KOTOPOM JIBO€ CUJIbHENIIINX CTPEISIIOT APYT B IpyTa.

Kimouenbie ciioBa: mocienoBareibHas TPY3Jib, COBEPIICHHOE Ha IMOOLIIPaX paBHOBECHE, BELDKMBAHLE
cliabeiiiiero.
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S0424738824010111 (Ha aHr1.).

BKOHOMUKA U MATEMATUYECKUWE METOObl TomM60 Nel

2024



