ПРЕДЕЛЬНАЯ ДИНАМИКА МОДЕЛИ РАКА С АНГИОГЕННЫМ ПЕРЕКЛЮЧЕНИЕМ И КОМБИНИРОВАННОЙ ТЕРАПИЕЙ
- Авторы: Старков К.Е.1, Канатников А.Н.2
-
Учреждения:
- Центр исследований и разработок в области цифровых технологий Национального политехнического института
- Московский государственный технический университет имени Н.Э. Баумана
- Выпуск: Том 61, № 10 (2025)
- Страницы: 1299–1315
- Раздел: ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- URL: https://journals.rcsi.science/0374-0641/article/view/355386
- DOI: https://doi.org/10.7868/S3034503025100017
- ID: 355386
Цитировать
Аннотация
Ключевые слова
Об авторах
К. Е. Старков
Центр исследований и разработок в области цифровых технологий Национального политехнического института
Email: konstarkov@hotmail.com
Тихуана, Мексика
А. Н. Канатников
Московский государственный технический университет имени Н.Э. Баумана
Email: skipper@hmsiu.ru
Москва, Россия
Список литературы
- Folkman, J. Angiogenesis and apoptosis / J. Folkman // Seminars in Cancer Biology. — 2003. — V. 13. — P. 159–167.
- Ramjiawan, R.R. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? / R.R. Ramjiawan, A.W. Griffioen, D.G. Duda // Angiogenesis. — 2017. — V. 20. — P. 185–204.
- Chaplain, M.A.J. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development / M.A.J. Chaplain // Math. Computer Modelling. — 1996. — V. 23. — P. 47–87.
- Anderson, A.R. Continuous and discrete mathematical models of tumor-induced angiogenesis / A.R. Anderson, M.A.J. Chaplain // Bull. Math. Biol. — 1998. — V. 60. — P. 857–899.
- Plank, M.J. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins / M.J. Plank, B.D. Sleeman, P.F. Jones// J. Theor. Biol. — 2004. — V. 229. — P. 435–454.
- Angiogenesis and vascular remodelling in normal and cancerous tissues / M.R. Owen, T. Alarco´n, P.K. Maini, H.M. Byrne // J. Math. Biol. — 2009. — V. 58. — P. 689–721.
- Nagy, J.D. Evolution of uncontrolled proliferation and the angiogenic switch in cancer / J.D. Nagy, D. Armbruster // Math. Biosci. Engin. — 2012. — V. 9. — P. 843–876.
- A cancer model for the angiogenic switch / L. Viger, D. Fabrice, R. Martin, C. Letellier // J. Theor. Biol. — 2014. — V. 360. — P. 21–33.
- Li, D. Stability of a mathematical model of tumour-induced angiogenesis / D. Li, W. Ma, S. Guo // Nonlin. Analysis: Model. Control. — 2016. — V. 21. — P. 325–344.
- Kareva, I. Escape from tumor dormancy and time to angiogenic switch as mitigated by tumor-induced stimulation of stroma / I. Kareva // J. Theor. Biol. — 2016. — V. 395. — P. 11–22.
- A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis / C. Letellier, S.K. Sasmal, C. Draghi [et al.] // Chaos, Solitons & Fractals. — 2017. — V. 99. — P. 297–311.
- Vilanova, G. A mathematical model of tumour angiogenesis: growth, regression and regrowth / G. Vilanova, I. Colominas, H. Gomez // J. Royal Society Interface. — 2017. — V. 14. — Art. 20160918.
- Zheng, X. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy / X. Zheng, M. Sweidan // J. Math. Biol. — 2018. — V. 787. — P. 1589– 1622.
- Starkov, K.E. On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies / K.E. Starkov // Phys. Lett. A. — 2018. — V. 382. — P. 387–393.
- Starkov, K.E. A cancer model for the angiogenic switch and immunotherapy: tumor eradication in analysis of ultimate dynamics / K.E. Starkov // Int. J. Bifurcat. Chaos. — 2020. — V. 30. — Art. 2050150.
- Glick, A. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors / A. Glick, A. Mastroberardino // Discr. Contin. Dynam. Systems-B. — 2020. — V. 26. — P. 5281–5304.
- The effect of tumor angiogenesis agents on tumor growth dynamics: a mathematical model / A. Mohseni, M. Pooyan, S. Raiesdana, M.B. Menhaj // Frontiers Biomed. Technol. — 2025. — V. 12. — P. 143–160.
- 3D tumor angiogenesis models: recent advances and challenges / S.M. Bhat, V.A. Badiger, S. Vasishta [et al.] // J. Cancer Res. Clinic. Oncology. — 2021. — V. 147. — P. 1–18.
- Angiogenesis and vessel co-option in a mathematical model of diffusive tumor growth: the role of chemotaxis / A. Gandolfi, S. De Franciscis, A. d’Onofrio [et al.] // J. Theor. Biol. — 2021. — V. 512. — Art. 110526.
- Kuznetsov, M. Antiangiogenic therapy efficacy can be tumor-size dependent, as mathematical modeling suggests / M. Kuznetsov, A. Kolobov // Mathematics. — 2024. — V. 12, № 2. — Art. 353.
- Rodrigues, D.S. Understanding the antiangiogenic effect of metronomic chemotherapy through a simple mathematical model / D.S. Rodrigues, P.F.A. Mancera, S.T.R. Pinho // Physica A. — 2016. — V. 464. — P. 251–266.
- d’Onofrio, A. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999) / A. d’Onofrio, A. Gandolfi // Math. Biosci. — 2004. — V. 191. — P. 159–184.
- Pinho, S.T.R. A mathematical model of chemotherapy response to tumour growth / S.T.R. Pinho, D.S. Rodrigues, P.F.A. Mancera // Canad. Appl. Math. Quarterly. — 2011. — V. 19. — P. 369–384.
- Kirschner, D. Modeling immunotherapy of the tumor-immune interaction / D. Kirschner, J.C. Panetta // J. Math. Biol. — 1998. — V. 37. — P. 235–252.
- Крищенко, А.П. Локализация инвариантных компактов динамических систем / А.П. Крищенко // Дифференц. уравнения. — 2005. — Т. 41, № 12. — С. 1597–1604.
- Krishchenko, A.P. Localization of compact invariant sets of the Lorenz system / A.P. Krishchenko, K.E. Starkov // Phys. Lett. A. — 2006. — V. 353. — P. 383–388.
Дополнительные файлы


