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ЛЮДИ НАУКИ

К ВОСЬМИДЕСЯТИПЯТИЛЕТИЮ
НИКОЛАЯ АЛЕКСЕЕВИЧА ИЗОБОВА

23 января 2025 г. исполнилось 85 лет выдающемуся учёному, всемирно известному спе-
циалисту в области обыкновенных дифференциальных уравнений, академику Национальной
академии наук Республики Беларусь, профессору, доктору физико-математических наук,
члену редакционной коллегии журнала “Дифференциальные уравнения”, крупнейшему ор-
ганизатору науки и образования Николаю Алексеевичу Изобову.

Николай Алексеевич родился в деревне Красыни Лиозненского района Витебской обла-
сти. В 1958 г. окончил среднюю школу с отличием, а в 1965 г. — математический факультет
Белорусского государственного университета со специализацией по дифференциальным урав-
нениям, которым и посвятил всю дальнейшую научную деятельность. Н.А. Изобов в 1966 г.
поступил в аспирантуру и уже в 1967 г. блестяще защитил кандидатскую диссертацию под
руководством проф. Ю.С. Богданова. В 1979 г. в Ленинградском университете защитил док-
торскую диссертацию, автореферат которой (как одной из лучших диссертаций) опубликован
в журнале “Математические заметки”. В 1980 г. Николай Алексеевич был избран членом-
корреспондентом Академии наук БССР, а в 1994 г. — действительным членом Национальной
академии наук Беларуси.

С ноября 1980 г. Н.А. Изобов работает в Институте математики НАН Беларуси по-
следовательно в должностях: старшего научного сотрудника (1980–1986 гг.), заведующего
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лабораторией теории устойчивости (1986–1993 гг.), заведующего отделом дифференциаль-
ных уравнений (1993–2010 гг.), главным научным сотрудником (с 2010 г. и по настоящее
время). Кроме того, в 1996–1999 гг. он заведовал кафедрой высшей математики факультета
прикладной математики Белорусского государственного университета. С 1994 г. в течение
10 лет возглавлял Экспертный совет по математике ВАК Республики Беларусь.

В настоящее время Николай Алексеевич является членом редколлегий научных журна-
лов “Дифференциальные уравнения” (в 1969–1990 гг. был заместителем главного редактора
этого журнала), “Memoirs on Differential Equations and Mathematical Physics”, “Весцi Нацыя-
нальнай акадэмii навук Беларусi. Серыя фiзiка-матэматычных навук”, “Труды Института
математики”.

Основными направлениями научных исследований Николая Алексеевича являются: тео-
рия характеристических показателей Ляпунова, теория устойчивости по линейному прибли-
жению, линейные системы Коппеля–Конти, уравнения Эмдена–Фаулера и линейные системы
Пфаффа. Им введены понятия экспоненциальных показателей и сигма-показателей линейной
системы, которые в настоящее время принято называть показателями Изобова.

Н.А. Изобовым опубликовано около 250 научных работ, в том числе 3 монографии, одна
из которых издана в Кембридже. Под его руководством подготовлено и защищено более 20
кандидатских и докторских диссертаций.

Николай Алексеевич награждён орденом Франциска Скорины (2000 г.), Почётной гра-
мотой Совета Министров Республики Беларусь (2000 г.), нагрудным знаком отличия имени
В.М. Игнатовского НАН Беларуси (2020 г.), удостоен Государственной премии Республи-
ки Беларусь за цикл работ “Исследование асимптотических свойств дифференциальных и
дискретных систем” (2000 г.), стал лауреатом Премии Международной академической из-
дательской компании “Наука/Интерпериодика” за лучшую публикацию в издаваемых ею
журналах (диплом подписан Президентом РАН Ю.С. Осиповым (2009 г.)), а также получил
премию НАН Беларуси за цикл работ “Современное развитие первого метода Ляпунова:
теория и приложения” (2013 г.).

Желаем дорогому Николаю Алексеевичу крепкого здоровья, бодрости, долгих активных
лет жизни и успехов во всех его начинаниях.

Редакционная коллегия
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Интерес к исследованию функционально-дифференциальных и, в частности, дифференци-
ально-разностных уравнений и задач для них обусловлен двумя причинами. Во-первых, для
таких обобщений дифференциальных уравнений оказываются неприменимыми некоторые
методы, “хорошо работающие” для классических уравнений, а также возникают качественно
новые эффекты в решениях, не имеющие места в классических случаях. Во-вторых, такие
уравнения встречаются в разнообразных приложениях (механика деформируемого твёрдого
тела, процессы вихреобразования и формирования сложных когерентных пятен, модели-
рование колебаний кристаллической решетки, нелинейная оптика, нейронные сети и др.),
включая те, которые невозможно описать классическими моделями математической физи-
ки. Существенные результаты в исследовании задач для функционально-дифференциальных
уравнений различных классов были получены А.Л. Скубачевским [1, 2], В.В. Власовым [3, 4],
А.Б. Муравником [5], А.В. Разгулиным [6], Л.Е. Россовским [7], В.Ж. Сакбаевым [8] и дру-
гими авторами.

Будем называть согласно [1] дифференциально-разностным уравнение, содержащее как
дифференциальные операторы, так и операторы сдвига.

К настоящему времени подробно изучены задачи для эллиптических (как в ограни-
ченных, так и в неограниченных областях) и параболических дифференциально-разностных
уравнений. В значительно меньшей степени исследованы гиперболические дифференциально-
разностные уравнения. В работах [9, 10] впервые рассмотрены двумерные гиперболические
уравнения с оператором сдвига в старшей производной, действующим по пространствен-
ной переменной. Цель настоящей статьи — построить в явном виде с помощью извест-
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6 Н.В. ЗАЙЦЕВА

ной операционной схемы [11] решение модельной начальной задачи в полосе для такого
уравнения.

Обозначим через 𝐷= {(𝑥, 𝑡) : 𝑥∈R, 0< 𝑡<𝑇} область координатной плоскости 𝑂𝑥𝑡, где
𝑇 > 0 — заданное действительное число, пусть 𝐷= {(𝑥, 𝑡) : 𝑥∈R, 0⩽ 𝑡⩽𝑇}.

Требуется найти функцию 𝑢(𝑥, 𝑡)∈𝐶1(𝐷)∩𝐶2(𝐷), удовлетворяющую уравнению

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑎2

𝜕2𝑢(𝑥−ℎ, 𝑡)
𝜕𝑥2

, (𝑥, 𝑡)∈𝐷, (1)

где 𝑎> 0, ℎ ̸=0 — заданные действительные числа, и начальному условию

𝑢(𝑥, 0)=0, 𝑥∈R. (2)

Определение. Классическим решением задачи (1), (2) будем называть функцию 𝑢(𝑥, 𝑡),
непрерывную и непрерывно дифференцируемую по переменным 𝑥 и 𝑡 в множестве 𝐷; дважды
непрерывно дифференцируемую по 𝑥 и 𝑡 в 𝐷; удовлетворяющую в каждой точке области 𝐷
соотношению (1); такую, что для каждой точки 𝑥0 ∈R предел функции 𝑢(𝑥0, 𝑡) при 𝑡→+0
существует и равен нулю.

2. ПОСТРОЕНИЕ РЕШЕНИЯ ЗАДАЧИ

Для нахождения решения задачи (1), (2) согласно операционной схеме [11] применим к
уравнению (1) и начальному условию (2) (формально) преобразование Фурье по переменной
𝑥, действующее по правилу

̂︀𝑢(𝜉, 𝑡) :=𝐹𝑥[𝑢(𝑥, 𝑡)] =

+∞ˆ

−∞

𝑢(𝑥, 𝑡)𝑒𝑖𝜉𝑥 𝑑𝑥.

В результате получим задачу в образах Фурье

𝑑2̂︀𝑢(𝜉, 𝑡)
𝑑𝑡2

+𝑎2𝜉2𝑒𝑖ℎ𝜉̂︀𝑢(𝜉, 𝑡)= 0, (3)

̂︀𝑢(𝜉, 0)=0, 𝜉 ∈R. (4)

Характеристические корни уравнения, соответствующего уравнению (3), определяются
по формуле

𝑘1,2=±𝑖 𝑎𝜉𝑒𝑖ℎ𝜉/2,

тогда общее решение уравнения (3) имеет вид

̂︀𝑢(𝜉, 𝑡)=𝐶1(𝜉) cos(𝑎𝜉𝑒
𝑖ℎ𝜉/2𝑡)+𝐶2(𝜉) sin(𝑎𝜉𝑒

𝑖ℎ𝜉/2𝑡),

где 𝐶1(𝜉) и 𝐶2(𝜉) — произвольные постоянные, зависящие от параметра 𝜉 ∈R. Подставив
данную функцию в начальное условие (4), получим 𝐶1(𝜉) = 0. Так как задача (3), (4) —
задача с неполными начальными данными, положим

𝐶2(𝜉)= (𝑎𝜉𝑒𝑖ℎ𝜉/2)−1

и запишем окончательный вид её решения:

̂︀𝑢(𝜉, 𝑡)= sin(𝑎𝜉𝑒𝑖ℎ𝜉/2𝑡)

𝑎𝜉𝑒𝑖ℎ𝜉/2
, 𝜉 ∈R.
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Применив теперь к найденной функции (формально) обратное преобразование Фурье,
получим по аналогии с [12] следующие соотношения:

𝐹−1
𝜉 [̂︀𝑢(𝜉, 𝑡)] = 1

2𝜋

+∞ˆ

−∞

̂︀𝑢(𝜉, 𝑡)𝑒−𝑖𝑥𝜉 𝑑𝜉=
1

2𝜋𝑎

+∞ˆ

−∞

sin(𝑎𝜉𝑡𝑒𝑖ℎ𝜉/2)

𝜉𝑒𝑖ℎ𝜉/2
𝑒−𝑖𝑥𝜉 𝑑𝜉=

=
1

2𝜋𝑎

[︃ +∞ˆ

0

sin (𝑎𝜉𝑒−𝑖ℎ𝜉/2𝑡)

𝜉
𝑒𝑖(𝑥+ℎ/2)𝜉 𝑑𝜉+

+∞ˆ

0

sin (𝑎𝜉𝑒𝑖ℎ𝜉/2𝑡)

𝜉
𝑒−𝑖(𝑥+ℎ/2)𝜉 𝑑𝜉

]︃
=

=
1

2𝜋𝑎

+∞ˆ

0

[︂
sin ((𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉)

𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)
+
sin ((𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉)

𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉. (5)

Замечание 1. Если положим в (5) ℎ=0, то получим 𝜃(𝑎𝑡−|𝑥|)/(2𝑎) — фундаментальное
решение волнового оператора 𝜕2/𝜕𝑡2−𝑎2𝜕2/𝜕𝑥2, где 𝜃 — функция Хевисайда.

Так как полученный несобственный интеграл в (5) расходится, введём согласно [11]
регуляризатор 𝑓(𝜉) для выражения (5) — функцию, удовлетворяющую условиям:

1) 𝑓(𝜉) положительно определена и непрерывна на множестве [0,+∞);
2) для любого числа 𝜀> 0 имеют место равенства

lim
𝜉→+∞

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)𝜉𝜀=0, lim
𝜉→+∞

𝑓(𝜉)𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)𝜉𝜀=0; (6)

3) при любом значении 𝑡∈ [0, 𝑇 ] сходятся интегралы

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (7)

4) при любом значении 𝑡∈ (0, 𝑇 ] сходятся интегралы

+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (8)

Примером такой функции, удовлетворяющей условиям 1)–4), является, например, функ-
ция 𝑓(𝜉)= 𝜉𝛽𝑒−𝐶𝑇𝜉, где 𝛽⩾ 0 и 𝐶 >𝑎> 0 — любые вещественные константы.

Замечание 2. Выполнение равенств (6) влечёт за собой [13, с. 102] сходимость несоб-
ственных интегралов

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (9)

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Лемма. При выполнении условий 1)–4) функция

𝐺(𝑥, 𝑡) :=

+∞ˆ

0

[︂
𝑓(𝜉) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

+
𝑓(𝜉) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉 (10)

удовлетворяет уравнению (1) в классическом смысле.
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Доказательство. Подынтегральная функция в (10) непрерывна на множестве [0,+∞)
как композиция непрерывных функций (в точке 𝜉=0 особенности нет в силу предельного
соотношения sin𝛼/𝛼→ 0 при 𝛼→ 0).

Исследуем на сходимость интеграл

+∞ˆ

0

𝐹 (𝑥, 𝑡; 𝜉) 𝑑𝜉 :=

+∞ˆ

0

𝑓(𝜉) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

𝑑𝜉. (11)

Так как с учётом условия 1)⃒⃒⃒⃒
⃒
+∞ˆ

0

𝐹 (𝑥, 𝑡; 𝜉) 𝑑𝜉

⃒⃒⃒⃒
⃒⩽

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

то в силу выполнения условия 2) и, как следствие, замечания 2 интеграл (11) сходится.
Проверим теперь, что функция (11) удовлетворяет уравнению (1). Для этого продиффе-

ренцируем (11) формально под знаком интеграла по переменным 𝑡 и 𝑥 до второго порядка:

+∞ˆ

0

𝐹𝑥(𝑥, 𝑡; 𝜉) 𝑑𝜉=

+∞ˆ

0

𝑓(𝜉) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (12)

+∞ˆ

0

𝐹𝑥𝑥(𝑥, 𝑡; 𝜉) 𝑑𝜉=−
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

тогда

+∞ˆ

0

𝐹𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉) 𝑑𝜉=−
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (13)

Далее,

+∞ˆ

0

𝐹𝑡(𝑥, 𝑡; 𝜉) 𝑑𝜉= 𝑎

+∞ˆ

0

𝑓(𝜉)
[︁
cos (ℎ𝜉/2) cos

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
+

+sin (ℎ𝜉/2) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀]︁
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉=

= 𝑎

+∞ˆ

0

𝑓(𝜉) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (14)

+∞ˆ

0

𝐹𝑡𝑡(𝑥, 𝑡; 𝜉) 𝑑𝜉=−𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉
[︁
cos (ℎ𝜉/2) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀
−

− sin (ℎ𝜉/2) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀]︁
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉=

=−𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (15)
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Подставляя найденные производные (13) и (15) в соотношение (1), убеждаемся в его
справедливости.

Исследуем на равномерную сходимость интеграл (12). Имеем

+∞ˆ

0

|𝐹𝑥(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽
+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉.

Так как интеграл в правой части неравенства сходится ввиду условия 3), а подынтегральное
выражение в нём не зависит от переменной 𝑥, то в силу признака Вейерштрасса интеграл (12)
сходится равномерно по переменной 𝑥 на любом конечном промежутке [𝑥1, 𝑥2]⊂R.

Аналогично из оценки

+∞ˆ

0

|𝐹𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉)| 𝑑𝜉⩽
+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

условия 4) и независимости подынтегральной функции от 𝑥 в правой части последнего
неравенства вытекает равномерная сходимость интеграла (13) по переменной 𝑥 на любом
отрезке [𝑥1, 𝑥2]⊂R. Это значит, что дифференцирование под знаком интеграла в (11) по
переменной 𝑥 до второго порядка включительно было законным.

Оценим теперь интеграл (14):

+∞ˆ

0

|𝐹𝑡(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽ 𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡2𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)⩾ 0,

𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡1𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)< 0.

Интегралы в правой части соотношений сходятся согласно условию 3), а подынтегральные
выражения в них не зависят от 𝑡, следовательно, интеграл (14) сходится равномерно на
любом промежутке [𝑡1, 𝑡2]⊂ [0, 𝑇 ].

Из оценки

+∞ˆ

0

|𝐹𝑡𝑡(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑎2

+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡2𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)⩾ 0,

𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡1𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)< 0

и условия 4) вытекает, что интеграл (15) сходится равномерно на любом отрезке [𝑡1, 𝑡2]⊂(0, 𝑇 ].
Таким образом, справедливо дифференцирование (15) под знаком интеграла по переменной 𝑡
до второго порядка включительно.

Аналогично можно показать, ввиду условий 1) и 2), что сходится несобственный интеграл

+∞ˆ

0

𝐻(𝑥, 𝑡; 𝜉) 𝑑𝜉 :=

+∞ˆ

0

𝑓(𝜉) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

𝑑𝜉 (16)

и что функция (16) удовлетворяет уравнению (1), дифференцируя непосредственно (16) под
знаком интеграла по переменным 𝑥 и 𝑡 до второго порядка включительно и подставляя
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найденные производные 𝐻𝑡𝑡(𝑥, 𝑡; 𝜉) и 𝐻𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉) в (1). При этом в силу условий 3) и 4)
интегралы 𝐻𝑥(𝑥, 𝑡; 𝜉) и 𝐻𝑥𝑥(𝑥, 𝑡; 𝜉) сходятся равномерно по переменной 𝑥 на любом отрезке
[𝑥1, 𝑥2]⊂R и интегралы 𝐻𝑡(𝑥, 𝑡; 𝜉) и 𝐻𝑡𝑡(𝑥, 𝑡; 𝜉) равномерно сходятся на любом отрезке [𝑡1, 𝑡2]
множества [0, 𝑇 ] и (0, 𝑇 ] соответственно.

Таким образом, показано, что функция (10) существует в каждой точке области 𝐷 и
удовлетворяет уравнению (1) в классическом смысле. Лемма доказана.

На основании леммы справедлива следующая
Теорема. При выполнении условий 1)–4) функция

𝑢(𝑥, 𝑡)=
1

2𝜋𝑎

+∞ˆ

−∞

𝐺(𝑥−𝜏, 𝑡)𝑢0(𝜏) 𝑑𝜏, (17)

где 𝐺(𝑥, 𝑡) определяется равенством (10), 𝑢0(𝑥) — любая интегрируемая на всей число-
вой прямой функция, удовлетворяет уравнению (1) в классическом смысле и предельному
соотношению

lim
𝑡→+0

𝑢(𝑥0, 𝑡)= 0

для любого значения 𝑥0 ∈R.
Доказательство. Функция (17) имеет вид

𝑢(𝑥, 𝑡)=
1

2𝜋𝑎

+∞ˆ

−∞

𝑢0(𝜏)

+∞ˆ

0

[︂
sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−𝜏+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

+

+
sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥+𝜏−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉 𝑑𝜏.

Так как 𝑢0(𝑥)∈𝐿1(R), то для существования в области 𝐷 функции (17) достаточно пока-
зать, что |𝐺(𝑥−𝜏, 𝑡)|⩽ const, что верно в силу условия 2) и замечания 2. Ввиду доказанной
леммы функция (17) является классическим решением уравнения (1). Отметим также, что
в силу этой же леммы функция (17) принадлежит классу 𝐶1(𝐷)∩𝐶2(𝐷) (подынтеграль-
ная функция в (17) непрерывна), интегралы 𝑢𝑥(𝑥, 𝑡) и 𝑢𝑥𝑥(𝑥, 𝑡) сходятся равномерно по
переменной 𝑥 на любом конечном отрезке [𝑥1, 𝑥2]⊂R, интегралы 𝑢𝑡(𝑥, 𝑡) и 𝑢𝑡𝑡(𝑥, 𝑡) сходятся
равномерно по 𝑡 на любом конечном отрезке [𝑡1, 𝑡2] из множеств [0, 𝑇 ] и (0, 𝑇 ] соответственно
(интеграл 𝑢𝑡(𝑥, 𝑡) сходится на границе 𝑡=0).

Пусть 𝑥0 ∈R. В (17) сделаем замену переменной по формуле (𝑥0−𝜏)/𝑡= 𝜂 и получим

𝑢(𝑥0, 𝑡)=
𝑡

2𝜋𝑎

+∞ˆ

−∞

𝐺(𝑡𝜂, 𝑡)𝑢0(𝑥0− 𝑡𝜂)𝑑𝜂,

откуда при 𝑡→+0 следует оценка |𝑢(𝑥0, 𝑡)|<𝜀 для любого сколь угодно малого числа 𝜀> 0.
Теорема доказана.
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MODEL PROBLEM IN A STRIP
FOR THE HYPERBOLIC DIFFERENTIAL-DIFFERENCE EQUATION

© 2025 / N. V. Zaitseva

Lomonosov Moscow State University, Russia
e-mail: zaitseva@cs.msu.ru

The paper investigates the question of the existence of a classical solution to the initial value problem
with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation.
The equation contains a superposition of a differential operator and a translation operator with respect
to a spatial variable that varies along the entire real axis. Using the Gelfand–Shilov operational scheme,
a solution to the problem was obtained in explicit form.

Keywords: hyperbolic equation, differential-difference equation, translation operator, initial problem,
operational scheme, Fourier transform
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Пусть 𝐷⊂R𝑛 — ограниченная область с границей 𝜕𝐷 класса 𝐶∞. В 𝐷×R рассмотрим
следующую модель течения вязкоупругой несжимаемой жидкости:

(𝜆−∇2)𝑢𝑡= 𝜈∇2𝑢−∇𝑝, ∇𝑢=0; (1)

𝑢(𝑥, 𝑡)= 0, (𝑥, 𝑡)∈ 𝜕𝐷×R; 𝑢(𝑥, 0)=𝑢0, 𝑥∈𝐷,

где 𝑢(𝑥, 𝑡)=(𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), . . . , 𝑢𝑛(𝑥, 𝑡)) и 𝑝 — векторы скоростей и давления соответственно.
Система (1) является линеаризацией системы

(𝜆−∇2)𝑢𝑡= 𝜈∇2𝑢−(𝑢∇)𝑢−∇𝑝, ∇𝑢=0,

полученной А.П. Осколковым [1] для описания течения вязких жидкостей, обладающих
свойством упругости. Переобозначив ∇𝑝 через 𝑝, запишем систему (1) в виде

(𝜆−∇2)𝑢𝑡= 𝜈∇2𝑢−𝑝, ∇(∇)𝑢=0. (2)

Здесь параметр 𝜆 характеризует упругие свойства, а 𝜈 — вязкие. В статье [2] было пока-
зано, что параметр 𝜆 может принимать отрицательные значения. В работе [3] построена
физическая модель течения жидкости с отрицательной вязкостью, поэтому в дальнейшем
будем считать, что 𝜈 ∈R.

Экспериментально показано, что течение растворов и расплавов полимеров обладает
свойством неустойчивости (см. обзор [4] и библиографию в нём). Данная неустойчивость
может оказывать существенное влияние на технологические процессы переработки мате-
риалов и качество конечной продукции. Одной из причин появления этой неустойчивости
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являются пульсации на входе (“входная неустойчивость”). Заметим, что раствор и расплавы
полимеров являются вязкоупругими жидкостями. Мы будем исследовать неустойчивость и
устойчивость течения несжимаемой вязкоупругой жидкости, описываемого системой (2) со
стохастическими начальными данными. В качестве начального условия выберем случайную
величину

𝜂(0)= 𝜂0, (3)

а систему (2) будем рассматривать в виде стохастического уравнения соболевского типа

𝐿𝜂̊=𝑀𝜂. (4)

Решением стохастического уравнения является стохастический процесс, который не диффе-
ренцируем ни в одной точке. Поэтому в качестве производной стохастического процесса 𝜂
будем рассматривать производную Нельсона–Гликлиха 𝜂̊ [5]. В настоящее время известно
большое число работ, посвящённых изучению стохастических уравнений соболевского типа.
Отметим некоторые из них. Разрешимость задачи Коши для уравнения (4) изучена в статьях
[6] (в случае относительно ограниченного оператора), [7] (в случае относительно сектори-
ального оператора) и [8] (в случае относительно радиального оператора). В [9] рассмотрены
стохастические линейные уравнения соболевского типа высокого порядка, в [10, 11] иссле-
дована “начально-конечная” задача для уравнения (4), в [12] — устойчивость уравнения (4).
В [13–15] проведены численные эксперименты по нахождению устойчивого и неустойчивого
решений стохастических неклассических уравнений, которые могут быть представлены в
виде (4).

Детерминированная система (2) изучалась в различных аспектах. Исследование её раз-
решимости начато в [1] при условии, что параметры 𝜆, 𝜈 ∈ R+. В работе [16] вопрос о
существовании решений решался с помощью метода фазового пространства при 𝜆∈R∖{0}
и 𝜈 ∈R+; было показано существование экспоненциальной дихотомии решений. В [17] ис-
следовалась начально-конечная задача для линейной системы уравнений Осколкова.

Цель данной статьи — изучить неустойчивость и устойчивость решений стохастической
системы (2) в случае, когда параметры 𝜆, 𝜈 ∈R∖{0}, а также решить задачу стабилизации
неустойчивых решений. В п. 2 приведены абстрактные результаты о существовании решений
уравнения (4) и их устойчивости. В п. 3 рассмотрена система (2) в пространствах случайных
𝐾-величин, показана разрешимость стохастической системы (2). В п. 4 доказано существо-
вание устойчивого и неустойчивого инвариантных пространств, решена задача стабилизации
неустойчивых решений по принципу обратной связи.

2. ИНВАРИАНТНЫЕ ПРОСТРАНСТВА СТОХАСТИЧЕСКОГО УРАВНЕНИЯ
СОБОЛЕВСКОГО ТИПА

Через L2 обозначим пространство случайных величин 𝜉 с нулевым математическим ожи-
данием и конечной дисперсией, а через CL2 — пространство непрерывных стохастических
процессов 𝜂. Зафиксируем 𝜂∈CL2 и 𝑡∈I, где I — некоторый промежуток, через 𝒩 𝜂

𝑡 обозна-
чим 𝜎-алгебру, порождённую 𝜂 и E𝜂

𝑡 =E(·|𝒩 𝜂
𝑡 ). Определим производную Нельсона–Гликлиха

стохастического процесса 𝜂 в точке 𝑡∈ I как предел

𝜂̊( · , 𝜔)= 1

2

[︂
lim

Δ𝑡→+0
E𝜂

𝑡

(︂
𝜂(𝑡+Δ𝑡, ·)−𝜂(𝑡, ·)

Δ𝑡

)︂
+ lim

Δ𝑡→+0
E𝜂

𝑡

(︂
𝜂(𝑡, ·)−𝜂(𝑡−Δ𝑡, ·)

Δ𝑡

)︂]︂
,

если он сходится в равномерной метрике на R. Через C𝑙L2 обозначим пространство стоха-
стических процессов, производные Нельсона–Гликлиха которых п.н. (почти наверно) непре-
рывны на I до порядка 𝑙 включительно.
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Пусть U и F — действительные сепарабельные гильбертовы пространства, через {𝜙𝑘} и
{𝜓𝑘} обозначим базис в U и F соответственно. Выберем последовательность случайных
величин {𝜉𝑘} ⊂ L2 ({𝜁𝑘} ⊂ L2), причём ‖𝜉𝑘‖L2 ⩽ const (‖𝜁𝑘‖L2 ⩽ const). Элементами про-
странства UKL2 (FKL2) (U-значных (F-значных)) случайных K-величин являются векто-
ры 𝜉 =

∑︀∞
𝑘=1 𝜆𝑘𝜉𝑘𝜙𝑘 (𝜁 =

∑︀∞
𝑘=1 𝜆𝑘𝜁𝑘𝜓𝑘), где последовательность K= {𝜆𝑘} ⊂R+ такова, что∑︀∞

𝑘=1 𝜆
2
𝑘<+∞. Справедлива следующая

Лемма 1 [18]. Оператор 𝐴∈ℒ(U;F) (линеен и непрерывен) тогда и только тогда, когда
оператор 𝐴∈ℒ(UKK2;FKL2).

Пусть операторы 𝐿∈ℒ(UKL2;FKL2), 𝑀 ∈𝐶𝑙(UKL2;FKL2). Через

𝜌𝐿(𝑀)= {𝜇∈C : (𝜇𝐿−𝑀)−1 ∈ℒ(F;U)}

обозначим 𝐿-резольвентное множество, а через 𝜎𝐿(𝑀)=C∖𝜌𝐿(𝑀) — 𝐿-спектр оператора 𝑀.
Если оператор 𝑀 (𝐿, 𝜎)-ограничен, т.е. его 𝐿-спектр ограничен, то существуют проекторы

𝑃 =
1

2𝜋𝑖

ˆ

𝛾

(𝜇𝐿−𝑀)−1𝐿𝑑𝜇∈ℒ(UKL2), 𝑄=
1

2𝜋𝑖

ˆ

𝛾

𝐿(𝜇𝐿−𝑀)−1 𝑑𝜇∈ℒ(FKL2). (5)

Здесь контур 𝛾⊂C ограничивает область, содержащую 𝜎𝐿(𝑀).
Проекторы (5) расщепляют пространства UKL2=U0

KL2⊕U1
KL2 и FKL2=F0

KL2⊕F1
KL2,

где U0
KL2 (U1

KL2) = ker𝑃 (im𝑃 ), F0
KL2 (F1

KL2) = ker𝑄 (im𝑄). Сужение оператора 𝐿 (𝑀)
на U𝑘

KL2, 𝑘 = 0, 1, обозначим как 𝐿𝑘 (𝑀𝑘). Операторы 𝐿𝑘(𝑀𝑘) ∈ ℒ(U𝑘
KL2,F

𝑘
KL2), 𝑘 = 0, 1;

существуют операторы 𝑀−1
0 ∈ℒ(F0

KL2,U
0
KL2), 𝐿−1

1 ∈ℒ(F1
KL2,U

1
KL2). Рассмотрим операторы

𝐻 =𝐿−1
0 𝑀0 и 𝑆 =𝐿−1

1 𝑀1. Пусть оператор 𝑀 (𝐿, 𝑝)-ограничен и 𝐻 ≡O, 𝑝= 0 или 𝐻𝑝 ̸=O,
𝐻𝑝+1≡O, тогда он называется (𝐿, 𝑝)-ограниченным оператором.

Стохастический K-процесс 𝜂∈C1(𝒥 ;UKL2) назовём решением уравнения (4), если п.н. все
его траектории удовлетворяют уравнению (4) при всех 𝑡∈𝒥 . Решение 𝜂=𝜂(𝑡) уравнения (4)
назовём решением задачи Коши (3), (4), если равенство (3) выполняется для некоторой
случайной L-величины 𝜂0 ∈ULL2. Множество P⊂ULL2 назовём стохастическим фазовым
пространством уравнения (4), если п.н. любая траектория решения 𝜂 = 𝜂(𝑡) лежит в P
поточечно, т.е. 𝜂(𝑡)∈P при всех 𝑡∈𝒥 , и для п.в. 𝜂0∈P существует решение задачи (3), (4).

Теорема 1 [7]. Пусть оператор 𝑀 (𝐿, 𝑝)-ограничен, 𝑝∈{0}∪N. Тогда группа

𝑈 𝑡=
1

2𝜋𝑖

ˆ

𝛾

𝑅𝐿
𝜇(𝑀)𝑒𝜇𝑡 𝑑𝜇

является голоморфной разрешающей группой уравнения (4); подпространство U1
KL2 явля-

ется фазовым пространством уравнения (4).
Определение. Инвариантное подпространство I𝑠(𝑢)⊂P называется устойчивым (не-

устойчивым) инвариантным пространством уравнения (4), если выполнено условие

‖𝜂𝑠(𝑢)(𝑡)‖UKL2 ⩽𝑁𝑒−𝜈(𝑠−𝑡)‖𝜂𝑠(𝑢)(𝑠)‖UKL2

при 𝑠 ⩾ 𝑡 (𝑡 ⩾ 𝑠), 𝜂𝑠(𝑢) = 𝜂𝑠(𝑢)(𝑡) ∈ I1 и некоторых 𝑁,𝛼 ∈ R+. Если фазовое пространство
расщепляется на прямую сумму P= I1⊕I2, то решения 𝜂= 𝜂(𝑡) уравнения (4) имеют экс-
поненциальную дихотомию.

Пусть оператор 𝑀 (𝐿, 𝑝)-ограничен, 𝑝∈{0}∪N и относительный спектр имеет вид

𝜎𝐿(𝑀)=𝜎𝐿𝑠 (𝑀)⊕𝜎𝐿𝑢 (𝑀), (6)
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где
𝜎𝐿𝑠 (𝑀)= {𝜇∈𝜎𝐿(𝑀) : Re𝜇< 0} ≠∅, 𝜎𝐿𝑢 (𝑀)= {𝜇∈𝜎𝐿(𝑀) : Re𝜇> 0} ≠∅.

Тогда существуют проекторы

𝑃𝑙(𝑟)=
1

2𝜋𝑖

ˆ

𝛾𝑙(𝑟)

𝑅𝐿
𝜇(𝑀) 𝑑𝜇∈ℒ(UKL2),

где контур 𝛾𝑙(𝑟) лежит в левой (правой) полуплоскости комплексной плоскости и ограничи-
вает часть 𝐿-спектра оператора 𝑀 𝜎𝐿𝑠(𝑢)(𝑀). Обозначим I𝑠(𝑢)= im𝑃𝑙(𝑟).

Пусть оператор 𝑀 (𝐿, 𝑝)-ограничен и выполнено условие (6), тогда U1
KL2= I𝑠⊕I𝑢. Урав-

нение (4) будем рассматривать в виде системы

𝐻𝜂̊0= 𝜂0, (7)

𝐿𝑠𝜂̊
𝑠=𝑀𝑠𝜂

𝑠, (8)

𝐿𝑢𝜂̊
𝑢=𝑀𝑢𝜂

𝑢. (9)

Замечание 1. Оператор 𝑀 (𝐿, 𝑝)-ограничен, поэтому оператор 𝐻 нильпотентен степе-
ни 𝑝. Тогда решение уравнения (7) 𝜂0 = 0 и стохастический процесс 𝜂 = 𝜂𝑠+𝜂𝑢 является
решением уравнения (4), где 𝜂𝑠 и 𝜂𝑢 — решения уравнений (8) и (9) соответственно. Та-
ким образом, вопрос об устойчивости и неустойчивости решений уравнения (4) сводится к
изучению устойчивости и неустойчивости решений 𝜂𝑠 и 𝜂𝑢.

Теорема 2. Пусть оператор 𝑀 (𝐿, 𝑝)-ограничен, 𝑝 ∈ {0}∪N и выполнено условие (6),
тогда решения 𝜂= 𝜂(𝑡) уравнения (4) имеют экспоненциальную дихотомию.

Доказательство. Разрешающие группы уравнений (8) и (9) имеют вид

𝑈 𝑡
𝑙 =

1

2𝜋𝑖

ˆ

𝛾𝑙

(𝜇𝐿𝑠−𝑀𝑠)
−1𝐿𝑠𝑒

𝜇𝑡 𝑑𝜇, 𝑈 𝑡
𝑟 =

1

2𝜋𝑖

ˆ

𝛾𝑟

(𝜇𝐿𝑢−𝑀𝑢)
−1𝐿𝑢𝑒

𝜇𝑡 𝑑𝜇.

Обозначим 𝛼=−max𝜇∈𝜎𝐿
𝑙 (𝑀)Re𝜇 и 𝛽=min𝜇∈𝜎𝐿

𝑟 (𝑀)Re𝜇. Тогда

‖𝑈 𝑡
𝑙 ‖ℒ(UKL2)⩽ 𝑒−𝛼𝑡

ˆ

𝛾𝑙

‖(𝜇𝐿𝑠−𝑀𝑠)
−1𝐿𝑠‖ℒ(UKL2) |𝑑𝜇|⩽𝑁𝑙𝑒

−𝛼𝑡, (10)

‖𝑈 𝑡
𝑟‖ℒ(UKL2)⩽ 𝑒𝛽𝑡

ˆ

𝛾𝑟

‖(𝜇𝐿𝑟−𝑀𝑟)
−1𝐿𝑟‖ℒ(UKL2) |𝑑𝜇|⩽𝑁𝑟𝑒

𝛽𝑡. (11)

Пусть 𝑠 ⩾ 𝑡. Тогда решение 𝜂𝑠 уравнения (8) можно записать как 𝜂𝑠(𝑡) = 𝑈 𝑠−𝑡
𝑙 𝜂𝑠(𝑠).

В силу (10) имеем соотношения

‖𝜂𝑠(𝑡)‖UKL2 = ‖𝑈 𝑠−𝑡
𝑙 𝜂𝑠(𝑠)‖UKL2 ⩽𝑁𝑙𝑒

−𝛼(𝑠−𝑡)‖𝜂𝑠(𝑠)‖UKL2 .

Далее, пусть 𝑡⩾ 𝑠. Тогда решение 𝜂𝑢 уравнения (9) будет следующим: 𝜂𝑢(𝑡)=𝑈 𝑡−𝑠
𝑟 𝜂𝑢(𝑠).

В силу (11) имеем

‖𝜂𝑢(𝑡)‖UKL2 = ‖𝑈 𝑡−𝑠
𝑟 𝜂𝑢(𝑠)‖UKL2 ⩽𝑁𝑟𝑒

𝛽(𝑡−𝑠)‖𝜂𝑢(𝑠)‖UKL2 =𝑁𝑟𝑒
−𝛽(𝑠−𝑡)‖𝜂𝑠(𝑠)‖UKL2 .

Теорема доказана.
Следствие 1. В условиях теоремы 2 п.н. любая траектория решения 𝜂𝑠(𝑢) = 𝜂𝑠(𝑢)(𝑡)

уравнения (8) (уравнения (9)) лежит в устойчивом (неустойчивом) инвариантном про-
странстве I𝑠(𝑢) поточечно, т.е. 𝜂𝑠(𝑢)(𝑡)∈ I𝑠(𝑢) при всех 𝑡∈R.

Замечание 2. Если 𝜎𝐿𝑠(𝑢)(𝑀)=∅, то I𝑠(𝑢)= {0}.
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3. СТОХАСТИЧЕСКАЯ СИСТЕМА

Систему (2) будем рассматривать в пространствах случайных 𝐾-величин. Для этого обо-
значим H2=(𝑊 2

2 (𝐷))𝑛, H̊1=(𝑊̊ 2
2 (𝐷))𝑛, L2=(𝐿2(𝐷))𝑛. Замыкание {𝑢∈𝐶∞ : ∇𝑢=0} линеала

L2 обозначим H𝜎, причём существует расщепление L2 =H𝜎⊕H𝜋, где H𝜋 — ортогональное
дополнение к H𝜎, а Π: L2→H𝜋 — отропроектор, соответствующий этому дополнению. Суже-
ние проектора Π на H2∩ H̊1 ⊂L2 является непрерывным оператором Π: H2∩ H̊1 →H2∩ H̊1.
Представим пространство H2∩H̊1=H2

𝜎⊕H2
𝜋, где kerΠ=H2

𝜎, imΠ=H2
𝜋. Обозначим Σ= I−Π.

Положим U=H2
𝜎×H2

𝜋×H𝜋 и F=H𝜎×H𝜋×H𝜋. Элемент 𝑢∈U имеет вид 𝑢=(𝑢𝜎, 𝑢𝜋, 𝑝).
Лемма 2 [2]. Формулой 𝐴=(−∇2)𝑛 : H2∩H̊1→L2 задаётся линейный непрерывный опе-

ратор с положительным дискретным спектром 𝜎(𝐴), сгущающимся к точке +∞, причём
отображение 𝐴 : H2

𝜎(𝜋)→H2
𝜎(𝜋) биективно.

Формулой 𝐵 : 𝑢→ −∇(∇𝑢) задаётся линейный непрерывный сюръективный оператор
𝐵 : H2∩H̊1→H2

𝜋, причём ker𝐵=H2
𝜎.

Пространства 𝑊 2
2 (𝐷), 𝐿2(𝐷) — сепарабельные гильбертовы пространства, поэтому про-

странства U, F являются сепарабельными гильбертовыми пространствами как их конечные
произведения. Построим пространства UKL2 и FKL2. Операторы 𝐿,𝑀 ∈ ℒ(UKK2;FKL2)
зададим как

𝐿=

⎛⎝Σ(𝜆I+𝐴) O O
O Π(𝜆I+𝐴) O
O O O

⎞⎠, 𝑀 =

⎛⎝−𝜈Σ𝐴 O O
O −𝜈Π𝐴 −Π
O Π𝐵 O

⎞⎠.
Тогда стохастическую систему уравнений (2) можно рассматривать как стохастическое ли-
нейное уравнение (4). Справедлива следующая

Лемма 3. Операторы 𝐿,𝑀 ∈ℒ(UKK2;FKL2).
Доказательство. Очевидно, что операторы 𝐿,𝑀 ∈ℒ(U;F), причём im𝐿=H2

𝜎×H2
𝜋×{0},

ker𝐿= {0}×{0}×H2
𝜋, поэтому в силу леммы 1 𝐿,𝑀 ∈ℒ(UKK2;FKL2).

Лемма 4. При любых 𝜆∈R∖𝜎(𝐴), 𝜈 ∈R оператор 𝑀 (𝐿, 1)-ограничен.
Доказательство. В работе [2] показано, что оператор 𝑀 (𝐿, 1)-ограничен, если опера-

торы 𝐿,𝑀 : U→F, поэтому в силу леммы 1 следует утверждение данной леммы.
Теорема 3. При любых 𝜆∈R∖𝜎(𝐴), 𝜈 ∈R и при любой случайной величине 𝜂0 ∈U1

KL2

существует решение задачи (3), (4), которое имеет вид 𝜂(𝑡)=𝑈 𝑡𝜂0, 𝑡∈𝒥 .
Доказательство. В силу лемм 3 и 4 стохастическая система уравнений (2) удовлетворяет

всем требованиям теоремы 1. Фазовое пространство имеет вид

U1
KL2=

{︃
UKL2, если 𝜆 ̸= 𝜈𝑘 при 𝑘∈N;
𝜂 ∈UKL2 : ⟨ · , 𝜙𝑘⟩𝜙𝑘 =0, если 𝜆= 𝜈𝑘,

где {𝜈𝑘} — спектр оператора 𝐴 : H2
𝜋 → H2

𝜋, являющегося сужением оператора 𝐴 на H2
𝜋.

Разрешающую группу можно представить в виде

𝑈 𝑡=

⎛⎜⎜⎜⎝
∑︁
𝜈𝑘 ̸=𝜆

exp

{︂
𝜈𝜈𝑘
𝜈𝑘−𝜆

}︂
⟨·, 𝜙𝑘⟩𝜙𝑘 O O

O O O
O O O

⎞⎟⎟⎟⎠.
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4. ЭКСПОНЕНЦИАЛЬНЫЕ ДИХОТОМИИ И СТАБИЛИЗАЦИЯ РЕШЕНИЙ
СТОХАСТИЧЕСКОЙ СИСТЕМЫ УРАВНЕНИЙ

Относительный спектр имеет вид 𝜎𝐿(𝑀)={𝜈𝜈𝑘/(𝜈𝑘−𝜆)}. Заметим, что спектр 𝜎(𝐴)={𝜈𝑘}
положителен дискретен конечнократен и сгущается к точке +∞ (теорема Солонникова–
Воровича–Юдовича). Справедлива следующая

Теорема 4. При любых 𝜆∈R∖𝜎(𝐴), 𝜆>𝜈1 и 𝜈 ∈R{0} решения 𝜂= 𝜂(𝑡) стохастической
системы уравнений (2) имеют экспоненциальную дихотомию.

Доказательство. Пусть 𝜆∈R∖𝜎(𝐴) и 𝜆>𝜈1, тогда 𝜎𝐿(𝑀)=𝜎𝐿1 (𝑀)
⋃︀
𝜎𝐿2 (𝑀), где 𝜎𝐿1 (𝑀)=

= {𝜇 ∈ 𝜎𝐿(𝑀) : 𝜈𝑘 < 𝜆}, 𝜎𝐿2 (𝑀) = {𝜇 ∈ 𝜎𝐿(𝑀) : 𝜈𝑘 > 𝜆}. Данному спектральному разложению
сопутствуют инвариантные пространства

I1= {𝜂 ∈U1
KL2 : ⟨ · , 𝜙𝑘⟩𝜙𝑘 =0, 𝜈𝑘<𝜆}, I2= {𝜂 ∈U1

KL2 : ⟨ · , 𝜙𝑘⟩𝜙𝑘 =0, 𝜈𝑘>𝜆}.

Пространство I1 является конечномерным, dim I1 = max{𝑘 : 𝜈𝑘 < 𝜆}, а пространство I2 —
бесконечномерным, codim I2=dim I1+dimker𝐿.

Если 𝜈 > 0 (𝜈 < 0), то 𝜎𝐿1(2)(𝑀) лежит в левой полуплоскости, а 𝜎𝐿2(1)(𝑀) — в правой
полуплоскости комплексной плоскости. В силу теоремы 2 I1(2) является устойчивым инва-
риантным пространством, I2(1) — неустойчивым инвариантным пространством, и решения
стохастической системы уравнений (2) имеют экспоненциальную дихотомию. Теорема дока-
зана.

Следствие 2. Если 𝜆<𝜈1 и 𝜈 < 0, то фазовое пространство стохастической системы
уравнений (2) совпадает с устойчивым инвариантным пространством.

Если 𝜆< 𝜈1 и 𝜈 > 0, то фазовое пространство стохастической системы уравнений (2)
совпадает с неустойчивым инвариантным пространством.

Перейдём к задаче стабилизации неустойчивых решений. Для этого уравнение (4) будем
рассматривать в виде системы (7)–(9). Для определённости положим 𝜈 > 0 и 𝜆 > 𝜈1. Из
теоремы 4 следует, что I𝑠=I1 и I𝑢=I2. Пространство I𝑠 является устойчивым инвариантным
пространством, поэтому для решений 𝜂𝑙 = 𝜂𝑙(𝑡) уравнения (8) справедливо равенство

lim
𝑡→+∞

‖𝜂𝑙(𝑡)‖UKL2 =0.

В силу замечания 1 рассмотрим следующую задачу стабилизации. Требуется найти такой
стохастический процесс 𝜒, чтобы для решений уравнения

𝐿𝑟𝜂̊𝑟 =𝑀𝑟𝜂𝑟+𝜒 (12)

было выполнено условие
lim

𝑡→+∞
‖𝜂𝑟(𝑡)‖UKL2 =0. (13)

Будем находить 𝜒 с помощью обратной связи 𝜒=𝐵𝜂𝑟, где 𝐵 — некоторый линейный
ограниченный оператор. Уравнение (12) примет вид

𝐿𝑟𝜂̊𝑟 =𝑀𝑟𝜂𝑟+𝐵𝜂𝑟 =(𝑀𝑟+𝐵)𝜂𝑟.

Найдём 𝑚=max𝜇𝑘∈𝜎𝐿
2 (𝑀){𝜇𝑘} и номер 𝑛 полученного максимального значения. Положим

𝐵=−𝜈(𝜀+𝜈𝑛)I,

где 𝜀 можно выбрать сколь угодно малым. Тогда относительный спектр

𝜎𝐿𝑢(𝑀𝑢+𝐵)=

{︂
𝜈𝜈𝑘−𝜈(𝜀+𝜈𝑛)

𝜆−𝜈𝑘

}︂
лежит в левой полуплоскости комплексной плоскости и в силу теоремы 2 для решения
𝜂𝑟 = 𝜂𝑟(𝑡) выполнено равенство (13).
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ЗАКЛЮЧЕНИЕ

Планируется продолжить исследования по изучению устойчивости и неустойчивости ре-
шений для стохастических полулинейных уравнений соболевского типа с относительно спек-
тральным оператором. Предполагается провести численные эксперименты по нахождению
устойчивого и неустойчивого решений стохастической системы (2) и стабилизации неустой-
чивых решений.

Автор выражает искреннюю благодарность проф. Г.А. Свиридюку за интерес к работе
и полезные обсуждения.
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INSTABILITY AND STABILIZATION OF SOLUTIONS OF A STOCHASTIC MODEL
OF VISCOELASTIC FLUID DYNAMICS
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The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic
liquid are investigated. It is shown that for certain values of the parameters included in the equations
of the system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization
problem is solved based on the feedback principle.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Дифференциальные уравнения с кусочно-постоянными аргументами встречаются при
изучении гибридных систем и могут моделировать определённые гармонические осцилляторы
с почти периодическим воздействием [1, 2]. Широкий обзор исследований, посвящённых
обыкновенным уравнениям и уравнениям с частными производными с кусочно-постоянными
аргументами, приведён в работах [3, 4].

В статьях [5, 6] изучены дифференциальные уравнения специального вида с кусочно-
постоянным аргументом. Периодические (разрешимые) задачи сведены к системе линейных
алгебраических уравнений, описаны все условия существования её 𝑛-периодических решений,
с помощью которых найдены явные формулы решений дифференциальных уравнений.

Уравнения с частными производными с кусочно-постоянным временны́м аргументом есте-
ственным образом возникают в процессе аппроксимации [7].

В статье [8] для уравнения с частными производными с кусочно-постоянным аргументом
изучены существование, осцилляционность и асимптотические границы решений начальных
задач с кусочно-постоянными запаздываниями.

Краевые и начальные задачи для уравнения диффузии с кусочно-постоянными аргумента-
ми исследовались в [9] и [10] соответственно. Уравнение с кусочно-постоянными смешанными
аргументами вида

𝑢𝑡(𝑥, 𝑡)= 𝑎2𝑢𝑥𝑥(𝑥, 𝑡)+𝑏𝑢𝑥𝑥(𝑥, [𝑡−1])+𝑐𝑢(𝑥, [𝑡])+𝑑𝑢(𝑥, [𝑡+1])

рассматривалось в [11], где были исследованы вопросы существования решений, сходимости
решений к нулю, неограниченность решений и их осцилляции.
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В статье [12] найдено асимптотическое поведение решения уравнения диффузии с кусочно-
постоянным аргументом обобщённого вида.

В настоящей работе рассматривается краевая задача для уравнения диффузии с кусочно-
постоянными аргументами вида [10, 13]

𝑢𝑡(𝑥, 𝑡)= 𝑎2𝑢𝑥𝑥(𝑥, 𝑡)−𝑏𝑢𝑥𝑥(𝑥, [𝑡])−𝑐𝑢𝑥𝑥(𝑥, [𝑡+1]), 0<𝑥< 1, 𝑡 > 0, (1)

𝑢(0, 𝑡)=𝑢(1, 𝑡)= 0, (2)

𝑢(𝑥, 0)= 𝑣(𝑥). (3)

Адаптировав метод [10, 14], получим сначала формальное решение задачи (1)–(3) в виде
ряда. Для этого после разделения переменных исследуем дифференциальное уравнение пер-
вого порядка с кусочно-постоянным аргументом времени, получим условие существования и
явную формулу его решения. Затем, применив метод [5, 6, 15, 16], найдём 𝑁 -периодические
решения и их явные формулы этого дифференциального уравнения. В частном случае дока-
жем существование бесконечного числа решений дифференциального уравнения с кусочно-
постоянным аргументом, что показывает некорректность результата о единственности, при-
ведённого в [13].

2. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С КУСОЧНО-ПОСТОЯННЫМ
АРГУМЕНТОМ

Пусть 𝑣𝑗 — коэффициенты синусоидального ряда Фурье для функции 𝑣(𝑥), т.е.

𝑣(𝑥)=
+∞∑︁
𝑗=1

𝑣𝑗 sin(𝑗𝜋𝑥), 𝑣𝑗 =2

1ˆ

0

𝑣(𝑥) sin(𝑗𝜋𝑥) 𝑑𝑥.

Решение задачи (1)–(3) ищем в виде

𝑢(𝑥, 𝑡)=
+∞∑︁
𝑗=1

𝑇𝑗(𝑡) sin(𝑗𝜋𝑥). (4)

Подставив функцию (4) в уравнение (1) и начальные условия (3), получим
∞∑︁
𝑗=1

(︁
𝑇 ′
𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑗(𝑡)+𝑏𝜋
2𝑗2𝑇𝑗([𝑡])+𝑐𝜋

2𝑗2𝑇𝑗([𝑡+1])
)︁
sin(𝑗𝜋𝑥)= 0,

𝑢(𝑥, 0)=
∞∑︁
𝑗=1

𝑇𝑗(0) sin(𝑗𝜋𝑥)= 𝑣(𝑥), 𝑇𝑗(0)= 𝑣𝑗 .

Отсюда, с учётом ортогональности функций sin(𝑛𝜋𝑥), имеем бесконечную последовательность
обыкновенных дифференциальных уравнений с кусочно-постоянным аргументом

𝑇 ′
𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑗(𝑡)+𝑏𝜋
2𝑗2𝑇𝑗([𝑡])+𝑐𝜋

2𝑗2𝑇𝑗([𝑡+1])= 0, 𝑡 > 0, 𝑗 ∈N, (5)

с начальным условием
𝑇𝑗(0)= 𝑣𝑗 . (6)

Определение 1. Функция 𝑇 (𝑡) называется решением задачи (5), (6), если она удовле-
творяет следующим условиям:

(i) 𝑇 (𝑡) непрерывна на R+;
(ii) производная 𝑇 ′(𝑡) существует и непрерывна в R+, за исключением точек [𝑡]∈R+, где

существуют односторонние производные;
(iii) 𝑇 (𝑡) удовлетворяет (5) и (6) в R+ с возможным исключением в точках [𝑡]∈R+.
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Обозначим

𝐸𝑗(𝑡)= 𝑒−𝑎2𝜋2𝑗2𝑡− 𝑏

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2𝑡

)︀
, 𝐷𝑗(𝑡)=

𝑐

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2𝑡

)︀
, 𝑗 ∈N.

Теорема 1. Пусть 𝑎, 𝑏, 𝑐 — действительные числа. Если 𝐷𝑗(1) ̸=−1, то уравнение (5)
имеет единственное решение, представимое на промежутках 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . , в
виде

𝑇𝑗(𝑡)=

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 . (7)

Теорема 2. 1. Если 𝐷𝑗(1) =−1 и 𝐸𝑗(1) = 0 для 𝑗 > 0, то задача (5), (6) имеет беско-
нечно много решений. В частности, эта задача имеет единственное однопериодическое и
бесконечное множество 𝑁-периодических решений, 𝑁 =2, 3, . . .

2. Пусть 𝐷𝑗(1)=−1 и 𝐸𝑗(1) ̸=0. Тогда если 𝑣𝑗 ̸=0, то задача (5), (6) не имеет решения.
Если 𝑣𝑗 =0, то эта задача имеет тривиальное решение.

Пример 1. Пусть 𝑗 =1, 𝑎∈R, 𝑐= 𝑎2/(𝑒−𝑎2𝜋2𝑗2 −1), 𝑏=−𝑎2𝑒−𝑎2𝜋2𝑗2/(𝑒−𝑎2𝜋2𝑗2 −1), 𝑣1 =1.
В этом случае 𝐷𝑗(1)=−1, 𝐸𝑗(1)= 0. Функции

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

1

1−𝑒𝑎2𝜋2 +
𝑒𝑎

2𝜋2

𝑒𝑎2𝜋2 −1
𝑒−𝑎2𝜋2𝑡

)︂
𝑣1−

1−𝑒−𝑎2𝜋2𝑡

𝑒−𝑎2𝜋2 −1
𝑇11(1), 𝑡∈ [0, 1),(︂

1

1−𝑒𝑎2𝜋2 +
𝑒𝑎

2𝜋2

𝑒𝑎2𝜋2 −1
𝑒−𝑎2𝜋2(𝑡−1)

)︂
𝑇11(1)−

1−𝑒−𝑎2𝜋2(𝑡−1)

𝑒−𝑎2𝜋2 −1
𝑣1, 𝑡∈ [1, 2],

и

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2𝑡)+𝑒−𝑎2𝜋2𝑡

)︂
𝑣1−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2𝑡)𝑇11(1), 𝑡∈ [0, 1),(︂

− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−1))+𝑒−𝑎2𝜋2(𝑡−1)

)︂
𝑇11(1)−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−1))𝑇21(2), 𝑡∈ [1, 2),(︂

− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−2))+𝑒−𝑎2𝜋2(𝑡−2)

)︂
𝑇21(2)−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−2))𝑣1, 𝑡∈ [2, 3),

являются двух- и трёхпериодическими решениями задачи (5), (6) при 𝑗=1 соответственно,
где 𝑇11(1), 𝑇21(2) — произвольные числа. Выбрав эти константы, приведём решения и их
графики.

Функция 𝐹2(𝑡) при 𝑇11(1)= 3 и 𝑎=1/𝜋 имеет вид (рис. 1, а)

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−𝑒
+
𝑒1−𝑡

𝑒−1
− 3(1−𝑒−𝑡)

𝑒−1−1
, 𝑡∈ [0, 1),

1−𝑒1−𝑡

1−𝑒−1
+3

(︂
1

1−𝑒
+
𝑒2−𝑡

𝑒−1

)︂
, 𝑡∈ [1, 2].

(8)

Рис. 1. Графики функции 𝐹2(𝑡)
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а при 𝑇11(1)=−2 и 𝑎=1/𝜋 (рис. 1, б )

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−𝑒
+
𝑒1−𝑡

𝑒−1
+
2(1−𝑒−𝑡)

𝑒−1−1
, 𝑡∈ [0, 1),

𝑒1−𝑡−1

𝑒−1−1
−2

(︂
1

1−𝑒
+
𝑒2−𝑡

𝑒−1

)︂
, 𝑡∈ [1, 2].

(9)

Функция 𝐹3(𝑡) при 𝑇11(1)= 2, 𝑇21(2)= 3/2 и 𝑎=1/𝜋 представима в виде (рис. 2, а)

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(2−𝑒−𝑡)

𝑒−1
, 𝑡∈ [0, 1),

2

1−𝑒
+
𝑒(3+𝑒1−𝑡)

2(𝑒−1)
, 𝑡∈ [1, 2),

3

2(1−𝑒)
+
𝑒(2+𝑒2−𝑡)

2(𝑒−1)
, 𝑡∈ [2, 3],

(10)

при 𝑇11(1)=−2, 𝑇21(2)=−3/2 и 𝑎=1/𝜋 (рис. 2, б )

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(3𝑒−𝑡−2)

𝑒−1
, 𝑡∈ [0, 1),

2

𝑒−1
− 𝑒(3+𝑒1−𝑡)

2(𝑒−1)
, 𝑡∈ [1, 2),

3

2(𝑒−1)
− 𝑒(5𝑒2−𝑡−2)

2(𝑒−1)
, 𝑡∈ [2, 3],

(11)

а при 𝑇11(1)= 3, 𝑇21(2)=−4 и 𝑎=1/𝜋 (рис. 2, в)

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(3−2𝑒−𝑡)

𝑒−1
, 𝑡∈ [0, 1),

3

1−𝑒
+
𝑒(7𝑒1−𝑡−4)

𝑒−1
, 𝑡∈ [1, 2),

4

𝑒−1
− 𝑒(5𝑒2−𝑡−1)

𝑒−1
, 𝑡∈ [2, 3].

Рис. 2. Графики функции 𝐹3(𝑡)

Замечание 1. В примере 1 параметры уравнения удовлетворяют условиям теоремы
единственности из статьи [13]. В нём показана некорректность результатов теоремы 2 из [11],
утверждающей единственность решения задачи (5), (6).
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3. РЕШЕНИЕ ЗАДАЧИ

Определение 2. Функция 𝑢(𝑥, 𝑡) называется решением задачи (1)–(3), если выполняются
следующие условия:

(i) 𝑢(𝑥, 𝑡) непрерывна на множестве Ω= [0, 1]×R+, R+= [0,∞);
(ii) частные производные 𝑢𝑡 и 𝑢𝑥𝑥 существуют и непрерывны на Ω с возможным ис-

ключением в точках (𝑥, [𝑡]) ∈ Ω, где односторонние производные существуют по второму
аргументу;

(iii) 𝑢(𝑥, 𝑡) удовлетворяет (1)–(3) в Ω с возможным исключением в точках (𝑥, [𝑡])∈Ω.
Предположение. Пусть функция 𝑣(·) имеет на отрезке [0, 1] непрерывные производные

до третьего порядка включительно и удовлетворяет условиям 𝑣(0)=𝑣(1)=𝑣′′(0)=𝑣′′(1)=0.
Теорема 3. Пусть выполняется предположение, 𝑐 ̸=−𝑎2 и 𝐷𝑗(1) ̸=−1 при 𝑗 ∈N. Тогда

задача (1)–(3) имеет единственное решение, представимое в виде ряда

𝑢(𝑥,𝑡)=
+∞∑︁
𝑗=1

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 sin(𝑗𝜋𝑥), 𝑡∈ [𝑛,𝑛+1), 𝑛=0,1,2, . . .

Теорема 4. 1. Пусть выполняется предположение, 𝐷𝑗0(1)=−1 и 𝐸𝑗0(1)= 0. Тогда за-
дача (1)–(3) имеет бесконечное число решений, представимых на 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . ,
как

𝑢(𝑥, 𝑡)=

+∞∑︁
𝑗=1,𝑗 ̸=𝑗0

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 sin(𝑗𝜋𝑥)+𝑇𝑗0(𝑡) sin(𝑗𝜋𝑥), (12)

где 𝑇𝑗0(𝑡) — произвольное решение задачи (5), (6) (см. п. 2 в теореме 2).
2. Если 𝐷𝑗0(1)=−1, 𝐸𝑗0(1) ̸=0 и 𝑣𝑗0 ̸=0 при 𝑗= 𝑗0, то задача (1)–(3) не имеет решения.
Пример 2. Пусть 𝑎 = 1/𝜋, 𝑐 = 2, 𝑏 = 3 в уравнении (1) и 𝑢(𝑥, 0) =

∑︀5
𝑗=1 sin(𝑗𝜋𝑥)/𝑗 в

условии (3). Тогда решение задачи (1)–(3) имеет вид (рис. 3)

𝑢(𝑥,𝑡)=
5∑︁

𝑗=1

[︂(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗

]︂
sin(𝑗𝜋𝑥), 𝑡∈ [𝑛,𝑛+1), 𝑛=0,1,2, . . .

Рис. 3. График функции 𝑢(𝑥, 𝑡)
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Пример 3. Пусть 𝑎∈R, 𝑐=𝑎2/(𝑒−𝑎2𝜋2𝑗2−1), 𝑏=−𝑎2𝑒−𝑎2𝜋2𝑗2/(𝑒−𝑎2𝜋2𝑗2−1), 𝑣(𝑥)=sin(𝜋𝑥)+
+2 sin(2𝜋𝑥). Тогда решение задачи (1)–(3) определяется по формуле

𝑢(𝑥, 𝑡)=𝑇1(𝑡) sin(𝜋𝑥)+2𝑇2(𝑡) sin(2𝜋𝑥).

Отметим, что 𝐷1(1)=−1, 𝐸1(1)=0 и 𝐷2(1) ̸=−1, т.е. числа 𝑎, 𝑏 и 𝑐 удовлетворяют условиям
п. 1 теоремы 2 и теореме 1. Поэтому согласно теореме 1 функция 𝑇2(𝑡) имеет вид

𝑇2(𝑡)= 2(𝐸2(𝑡−𝑛)−𝐷2(𝑡−𝑛)), 𝑡∈ [𝑛, 𝑛+1),

а функцию 𝑇1(𝑡) можно определить многими способами.
Приведём графики 𝑢(𝑥, 𝑡) для примера 1. В случае когда 𝑇1(𝑡)=𝐹2(𝑡) и 𝐹2(𝑡) определяется

равенством (8), график функции 𝑢(𝑥, 𝑡) изображён на рис. 4, а, если 𝐹2(𝑡) определяется
выражением (9), то на рис. 4, б. При 𝑇1(𝑡)=𝐹3(𝑡), где 𝐹3(𝑡) определяется равенством (10),
график функции 𝑢(𝑥, 𝑡) представлен на рис. 5, а, а если 𝐹3(𝑡) определяется равенством (11),
то на рис. 5, б.

Рис. 4. Графики функции 𝑢(𝑥, 𝑡)
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Рис. 5. Графики функции 𝑢(𝑥, 𝑡)

Замечание 2. В примере 3 параметры уравнения не удовлетворяют условиям след-
ствия 1 в [13], т.е. 𝑎2+ 𝑏+ 𝑐= 0. Решение 𝑢 периодично по 𝑡. Это означает, что нулевое
решение задачи (1)–(3) не является асимптотически устойчивым. Поэтому условия след-
ствия 1 являются достаточными для того, чтобы нулевое решение было асимптотически
устойчиво.

4. ДОКАЗАТЕЛЬСТВА ОСНОВНЫХ РЕЗУЛЬТАТОВ

Доказательство теоремы 1. Обозначим через 𝑇𝑛𝑗(𝑡) решение уравнения (5) на проме-
жутке [𝑛, 𝑛+1), т.е.

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . .

Тогда

𝑇 ′
𝑛𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑛𝑗(𝑡)=−𝑏𝜋2𝑗2𝑇𝑛𝑗(𝑛)−𝑐𝜋2𝑗2𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1). (13)
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Решение уравнения (13) определяется по формуле

𝑇𝑛𝑗(𝑡)=−𝑏𝑇𝑛𝑗(𝑛)
𝑎2

(︀
1−𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

)︀
+𝑇𝑛𝑗(𝑛)𝑒

−𝑎2𝜋2𝑗2(𝑡−𝑛)− 𝑐𝑇𝑛𝑗(𝑛+1)

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

)︀
или

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1). (14)

Положив 𝑡=𝑛+1 в (14) для всех 𝑛=0, 1, 2, . . . , получим

𝑇𝑛𝑗(𝑛+1)=𝐸𝑗(1)𝑇𝑛𝑗(𝑛)−𝐷𝑗(1)𝑇𝑛𝑗(𝑛+1).

Отсюда с учётом 𝐷𝑗(1) ̸=−1 имеем

𝑇𝑛𝑗(𝑛+1)=
𝐸𝑗(1)𝑇𝑛𝑗(𝑛)

1+𝐷𝑗(1)
. (15)

Тогда (14) запишем как

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−
𝐷𝑗(𝑡−𝑛)
1+𝐷𝑗(1)

𝐸𝑗(1)𝑇𝑛𝑗(𝑛). (16)

Из непрерывности функции 𝑇𝑗(𝑡) по 𝑡> 0 вытекают равенства

𝑇𝑛+1,𝑗(𝑛+1)=𝑇𝑗(𝑛+1)= lim
𝑡→𝑛+1−0

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑛+1).

Следовательно, формулу (15) можно переписать в виде

𝑇𝑛+1,𝑗(𝑛+1)=
𝐸𝑗(1)𝑇𝑛𝑗(𝑛)

1+𝐷𝑗(1)
,

откуда

𝑇𝑛𝑗(𝑛)=
𝐸𝑗(1)

1+𝐷𝑗(1)
𝑇𝑛−1,𝑗(𝑛−1)=

𝐸2
𝑗 (1)

(1+𝐷𝑗(1))2
𝑇𝑛−2,𝑗(𝑛−2)= . . .=

𝐸𝑛
𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0),

или

𝑇𝑛𝑗(𝑛)=
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0).

Таким образом, решение 𝑇𝑛𝑗(𝑡), определённое формулой (16), представляется только через
𝑇0𝑗(0):

𝑇𝑛𝑗(𝑡)=

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0).

Равенство 𝑇0𝑗(0)= 𝑣𝑗 завершает доказательство теоремы.
Доказательство теоремы 2. 1. Пусть 𝐷𝑗(1)=−1, 𝐸𝑗(1)=0. Построим функцию 𝑇𝑗(𝑡)=

=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . , следующим образом. Функция

𝑇0𝑗(𝑡)=𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝐶0𝑗 , 𝑡∈ [0, 1),

удовлетворяет уравнению (5), где 𝑇0𝑗(0)=𝑣𝑗 и 𝐶0𝑗 — произвольное число. Так как 𝐷𝑗(1)=−1
и 𝐸𝑗(1)=0, имеет место равенство 𝑇0𝑗(1)= lim𝑡→1 𝑇0𝑗(𝑡)=𝐶0𝑗 . Легко проверить, что функция

𝑇1𝑗(𝑡)=𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝐶1𝑗 , 𝑡∈ [1, 2),

удовлетворяет уравнению (5), где 𝐶1𝑗 — произвольное число.
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В силу непрерывности функции 𝑇𝑗(𝑡) имеем

𝑇𝑗(1)=𝑇1𝑗(1)= lim
𝑡→1−0

𝑇0𝑗(𝑡)=𝑇0𝑗(1).

Равенства 𝐷𝑗(1)=−1 и 𝐸𝑗(1)= 0 дают 𝑇1𝑗(2)= lim𝑡→2 𝑇1𝑗(𝑡)=𝐶1𝑗 .
Функция

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝐶𝑛𝑗

на [𝑛, 𝑛+1), 𝑛∈N, удовлетворяет уравнению (5), где 𝐶𝑛𝑗 — произвольное число. Ясно, что
𝑇𝑗(𝑛)=𝑇𝑛𝑗(𝑛)= lim𝑡→𝑛−0 𝑇𝑛−1,𝑗(𝑡)=𝑇𝑛−1,𝑗(𝑛).

Аналогично из равенств 𝐷𝑗(1) =−1 и 𝐸𝑗(1) = 0 получим 𝑇𝑛𝑗(𝑛) = lim𝑡→𝑛+1 𝑇𝑛𝑗(𝑡) =𝐶𝑛𝑗 .
По построению функция

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . ,

является решением задачи (5), (6). Так как константы 𝐶0𝑗 , 𝐶1𝑗 , . . . , 𝐶𝑛𝑗 , . . . произвольные,
то задача имеет бесконечное число решений.

Пусть 𝑇𝑗(𝑡) — однопериодическое решение задачи (5), (6), тогда его можно представить
в виде

𝑇𝑗(𝑡)=𝑇0𝑗(𝑡)=𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝐶0𝑗 , 𝑡∈ [0, 1].

Поскольку функция 𝑇𝑗(𝑡) однопериодическая и 𝑇0𝑗(1) = 𝐶0𝑗 , то 𝑇0𝑗(0) = 𝑇0𝑗(1), 𝐶0𝑗(1) =
=𝑇0𝑗(0)= 𝑣𝑗 . Это показывает единственность однопериодического решения (5), (6).

Пусть 𝑇𝑗(𝑡) является двухпериодическим решением задачи (5), (6). Тогда функция 𝑇𝑗(𝑡)
на [0, 2] имеет вид

𝑇𝑗(𝑡)=

{︃
𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝑇1𝑗(1), 𝑡∈ [0, 1),

𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝐶1𝑗 , 𝑡∈ [1, 2),

где 𝑇0𝑗(0) = 𝑣𝑗 , 𝑇1𝑗(1) — произвольное число. Из периодичности 𝑇𝑗(𝑡) следует, что 𝑇𝑗(0) =
= 𝑇0𝑗(0) = 𝑇𝑗(2) =𝐶1𝑗 . Это показывает, что задача (5), (6) имеет бесконечно много двухпе-
риодических решений.

Пусть 𝑇𝑗(𝑡) — 𝑁 -периодическое решение задачи (5), (6). Функция 𝑇𝑗(𝑡) на промежутке
[0, 𝑁 ] имеет вид

𝑇𝑗(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸𝑗(𝑡)𝑣𝑗−𝐷𝑗(𝑡)𝑇1𝑗(1), 𝑡∈ [0, 1),

𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝑇2𝑗(2), 𝑡∈ [1, 2),
...
𝐸𝑗(𝑡−𝑁+2)𝑇𝑁−1,𝑗(𝑁−2)−𝐷𝑗(𝑡−𝑁+2)𝑇𝑁−1,𝑗(𝑁−1), 𝑡∈ [𝑁−2, 𝑁−1),

𝐸𝑗(𝑡−𝑁+1)𝑇𝑁−1,𝑗(𝑁−1)−𝐷𝑗(𝑡−𝑁+1)𝑣𝑗 , 𝑡∈ [𝑁−1, 𝑁),

где 𝑇1𝑗(1), 𝑇2𝑗(2), . . . , 𝑇𝑁−1,𝑗(𝑁−1) — произвольные числа.
2. Предположим, что функция 𝑇𝑗(𝑡) является решением задачи (5), (6). Тогда соглас-

но (14) имеет место равенство

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1).

Отсюда при 𝑡 = 𝑛+1 с учётом 𝐷𝑗(1) = −1 имеем 𝐸𝑗(1)𝑇𝑛𝑗(𝑛) = 0 для всех 𝑛 = 0, 1, 2, . . .
Поэтому 𝑇𝑛𝑗(𝑛) = 0 для всех 𝑛= 0, 1, 2, . . . , так как 𝐸𝑗(1) ̸= 0, т.е. уравнение имеет только
тривиальное решение. Следовательно, если 𝑇𝑗(0)= 𝑣𝑗 =𝑇0𝑗(0) ̸=0, то задача (5), (6) не имеет
решения.
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Доказательство теоремы 3. Сначала докажем равномерную сходимость в любом замк-
нутом множестве Λ⊂ [0, 1]×R+ следующих рядов:

+∞∑︁
𝑗=1

𝑇𝑗(𝑡) sin(𝑗𝜋𝑥), (17)

+∞∑︁
𝑗=1

𝑇 ′
𝑗(𝑡) sin(𝑗𝜋𝑥), (18)

+∞∑︁
𝑗=1

𝜋2𝑗2𝑇𝑗(𝑡) sin(𝑗𝜋𝑥), (19)

где 𝑇𝑗(𝑡) — решение задачи (5), (6), и на [𝑛, 𝑛+1), 𝑛 = 0, 1, 2, . . . , функции 𝑇𝑗(𝑡), 𝑇 ′
𝑗(𝑡)

представляются, соответственно, в виде (7) и

𝑇 ′
𝑗(𝑡)=−

(︂
𝑎2+𝑏+𝑐

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝜋2𝑗2𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

𝐸𝑛
𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 .

Согласно предположению имеет место равенство

𝑣𝑗 =−
2𝑣′′′𝑗
𝜋3𝑗3

, 𝑣′′′𝑗 =

1ˆ

0

𝑣′′′(𝑥) cos(𝑗𝜋𝑥) 𝑑𝑥, 𝑗=1, 2, . . .

Из непрерывности функции 𝑣′′′(𝑥) вытекает сходимость ряда
∑︀+∞

𝑗=1(𝑣
′′′
𝑗 )

2. Отсюда с учётом
неравенства Коши–Буняковского имеем⃒⃒⃒⃒

⃒
+∞∑︁
𝑗=1

𝑗2𝑣𝑗

⃒⃒⃒⃒
⃒= 2

𝜋3

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑣′′′𝑗
𝑗

⃒⃒⃒⃒
⃒<+∞. (20)

Поскольку 0⩽ 1−𝑒−𝑎2𝜋2𝑗2𝑡⩽ 1, то для всех 𝑡∈ [0,∞) и 𝑗 ∈N справедливы неравенства

|𝐸𝑗(𝑡)|⩽ 1+
|𝑏|
𝑎2
, |𝐷𝑗(𝑡)|<

|𝑐|
𝑎2
. (21)

Заметим, что lim𝑗→∞𝐷𝑗(1)= 𝑐/𝑎
2, поэтому при 𝐷𝑗(1) ̸=−1 и 𝑐 ̸=−𝑎2 существует число 𝜌> 0

такое, что
|1+𝐷𝑗(1)|⩾ 𝜌, 𝑗 ∈N. (22)

Пользуясь неравенствами (21) и (22), получим равномерные оценки для 𝑇𝑗(𝑡) и 𝑇 ′
𝑗(𝑡):

|𝑇𝑗(𝑡)|⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑛
|𝑣𝑗 |, 𝑡∈ [𝑛, 𝑛+1), (23)

|𝑇 ′
𝑗(𝑡)|⩽𝐶2

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑛
𝜋2𝑗2|𝑣𝑗 |, 𝑡∈ [𝑛, 𝑛+1), (24)

где

𝐶1=1+
|𝑏|
𝑎2

+
|𝑐|
𝑎2

1+ |𝑏|/𝑎2

𝜌
, 𝐶2= 𝑎2+ |𝑏|+ |𝑐|1+ |𝑏|/𝑎2

𝜌
.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



32 M. Э. МУМИНОВ, Т. А. РАДЖАБОВ

Пусть 𝑚=1+sup(𝑥,𝑡)∈Λ 𝑡. Тогда из (23) и (24) для всех (𝑥, 𝑡)∈Λ ряды (17)–(19) оцени-
ваются следующим образом:⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑇𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚+∞∑︁
𝑗=1

|𝑣𝑗 |,

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑇 ′
𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶2

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚
𝜋2

+∞∑︁
𝑗=1

𝑗2|𝑣𝑗 |,

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝜋2𝑗2𝑇𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚
𝜋2

+∞∑︁
𝑗=1

𝑗2|𝑣𝑗 |.

Отсюда и из (20) получаем равномерную сходимость рядов (17)–(19) в любом замкнутом
множестве Λ⊂ [0, 1]×R+.

Таким образом, функция 𝑢(𝑥, 𝑡)=
∑︀+∞

𝑗=1 𝑇𝑗(𝑡) sin(𝑗𝜋𝑥) является непрерывной на множестве
Ω= [0, 1]×R+ и частные производные 𝑢𝑡 =

∑︀+∞
𝑗=1 𝑇

′
𝑗(𝑡) sin(𝑗𝜋𝑥), 𝑢𝑥𝑥 =

∑︀+∞
𝑗=1 𝜋

2𝑗2𝑇𝑗(𝑡) sin(𝑗𝜋𝑥)
существуют и являются непрерывными на Ω с возможным исключением в точках (𝑥, [𝑡])∈Ω,
где односторонние производные существуют по второму аргументу.

Так как 𝐷𝑗(1) ̸= −1 для каждого 𝑗 ∈ N, то по теореме 1 задача (5), (6) имеет един-
ственное решение 𝑇𝑗(𝑡) для каждого 𝑗 ∈N. Следовательно, функция 𝑢(𝑥, 𝑡), определяемая
формулой (4), удовлетворяет равенствам (1)–(3) в Ω с возможным исключением в точках
(𝑥, [𝑡])∈Ω и является единственным решением задачи (1)–(3).

Доказательство теоремы 4. 1. Пусть 𝐷𝑗0(1) =−1 и 𝐸𝑗0(1) = 0 для некоторого 𝑗 = 𝑗0.
Тогда 𝐷𝑗(1)>−1 при 𝑗 < 𝑗0 и 𝐷𝑗(1)<−1 при 𝑗 > 𝑗0. Отсюда имеем

|1+𝐷𝑗(1)|⩾ 𝜌1

для некоторого числа 𝜌1> 0 и для всех 𝑗 ∈N∖{𝑗0}.
По теореме 1 задача (5), (6) разрешима для 𝑗 ̸= 𝑗0 и решение 𝑇𝑗(𝑡) при 𝑗 ̸= 𝑗0 имеет

вид (7). Поскольку 𝐷𝑗0(1) =−1 и 𝐸𝑗0(1) = 0, то по п. 1 теоремы 2 задача (5), (6) имеет
бесконечно много решений. Обозначим через 𝑇𝑗0(·) решение задачи (5), (6) для 𝑗= 𝑗0. Тогда
из (4) решение краевой задачи (1)–(3) имеет вид (12). Равномерная сходимость этого ряда к
непрерывной функции 𝑢(𝑥, 𝑡) в любом замкнутом множестве Λ⊂ [0, 1]×R+ и существование
непрерывных частных производных 𝑢𝑡 и 𝑢𝑥𝑥 на Ω с возможным исключением в точках
(𝑥, [𝑡])∈Ω, где односторонние производные существуют по второму аргументу, доказываются
аналогично как в доказательстве теоремы 3.

2. Если 𝐷𝑗0(1)=−1, 𝐸𝑗0(1) ̸=0 и 𝑣𝑗0 ̸=0, то по теореме 2 задача (5), (6) не имеет решения
при 𝑗= 𝑗0. Следовательно, согласно (4), краевая задача (1)–(3) не имеет решения.
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In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variables method, the considered BVP is reduced to the
investigation of the existence conditions of solutions of initial value problems for differential equation
with piecewise constant arguments. Existence conditions of infinitely many solutions or emptiness for
considered differential equation are established and explicit formula for these solutions are obtained.
Several examples are given to illustrate the obtained results.
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Получено асимптотическое приближение решения, имеющего вид движущегося внут-
реннего слоя (фронта), начально-краевой задачи для сингулярно возмущённого па-
раболического уравнения реакция–диффузия–адвекция с KPZ-нелинейностью. Найдено
асимптотическое приближение для скорости движения фронта. Доказательство теоре-
мы существования и единственности решения проведено с помощью асимптотического
метода дифференциальных неравенств.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

В работе рассматривается начально-краевая задача для сингулярно возмущённого па-
раболического уравнения, которое отличается от классического сингулярно возмущённо-
го уравнения реакция–диффузия–адвекция (см. [1, 2]) наличием дополнительного нели-
нейного слагаемого, содержащего квадрат градиента искомой функции (KPZ-нелинейности
[3, 4]):

𝜀2
𝜕2𝑢

𝜕𝑥2
−𝜀𝜕𝑢

𝜕𝑡
−𝜀2𝐴(𝑢, 𝑥)

(︂
𝜕𝑢

𝜕𝑥

)︂2
−𝑓(𝑢, 𝑥, 𝜀)= 0, 𝑥∈ (−1, 1), 𝑡∈ (0, 𝑇 ],

𝜕𝑢

𝜕𝑥
(−1, 𝑡, 𝜀)= 0,

𝜕𝑢

𝜕𝑥
(1, 𝑡, 𝜀)= 0, 𝑡∈ [0, 𝑇 ],

𝑢(𝑥, 0, 𝜀)=𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀), 𝑥∈ [−1, 1], (1)

где 𝜀∈ (0, 𝜀0] — малый параметр, 𝜀> 0 — заданная постоянная.
Решения типа бегущих волн для квазилинейных параболических уравнений реакция–

диффузия–адвекция являются предметом интенсивного изучения (см. обширные моногра-
фии [5, 6]). Внимание к нелинейностям вида 𝐴(𝑢, 𝑥)(𝜕𝑢/𝜕𝑥)2 обусловлено как теоретическим
интересом — квадрат является предельным показателем степени, при котором выполнены
условия Бернштейна на рост нелинейности (см., например, [7–9]), так и важными прило-
жениями, где такие нелинейности используются в математических моделях, в частности,
моделях популяционной динамики [10], при моделировании роста свободной поверхности в
теории полимеров [3, 4, 11], и многими другими. Отметим работу [12], в которой построены

35



36 А. О. ОРЛОВ

точные решения уравнения KPZ для нескольких физически оправданных нелинейностей.
Однако там предполагается, что 𝐴(𝑢, 𝑥) = const, 𝑓 = 𝑓(𝑥, 𝑡). Кардинальное отличие зада-
чи (1) состоит в том, что рассматривается уравнение, в котором нелинейные слагаемые
явно зависят от координаты и искомой функции. В настоящей работе предлагается алго-
ритм построения асимптотического приближения решения вида фронта, при этом скорость
движения является функцией координаты.

Стационарные решения задачи (1) c пограничными и внутренними слоями изучены в
статьях [13, 14]. Погранслойные решения у системы тихоновского типа с KPZ-нелинейностями
изучены в работе [15].

Статья структурирована следующим образом. В п. 2 строится асимптотическое прибли-
жение решения вида движущегося фронта, используя метод А.Б. Васильевой [16]. Отметим,
что поскольку задача (1) является сингулярно возмущённой, то при 𝜀=0 уравнение зада-
чи (1) меняет свой тип, превращаясь из параболического в алгебраическое с тремя корнями
(см. условие 2), два из которых описывают устойчивые положения равновесия системы
и представляют собой регулярную часть асимптотического приближения нулевого порядка
точности. Однако регулярное приближение не позволяет описать узкую область c большим
градиентом, в которой решение переходит с одного устойчивого уровня на другой. Для описа-
ния решения в этой области и согласования устойчивых положений равновесия между собой
строятся так называемые функции переходного слоя. Таким образом строится формальное
асимптотическое приближение решения во всей рассматриваемой области. В п. 3 указан
алгоритм нахождения асимптотического приближения положения фронта. В п. 4 приведено
обоснование формальной асимптотики и доказана теорема существования и единственности,
используя асимптотический метод дифференциальных неравенств Н.Н. Нефедова, который
показал свою эффективность во многих сингулярно возмущённых задачах [16]. Полученные
результаты проиллюстрированы в п. 5 на примере, который может быть использован для
разработки и верификации новых численных методов для рассматриваемого класса задач
(см. [17]).

Результаты, полученные в данной статье, развивают исследования [1, 2], в которых рас-
смотрено движение фронта в уравнении реакция–диффузия–адвекция со слабой адвекцией
и гладкими или модульными (разрывными при некотором значении искомой функции нели-
нейностями) источниками, и переносят их на новый класс сингулярно возмущённых задач
с KPZ-нелинейностями. При этом, как и в работах [1, 2], доказана теорема существова-
ния и единственности решения, имеющего в обоих случаях одинаковую форму контрастной
структуры типа ступеньки [16].

В обсуждаемой ниже задаче предполагается, что в начальный момент времени фронт
уже сформирован. Это означает, что функция 𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀) имеет внутренний переходный слой
в окрестности некоторой точки 𝑥00 ∈ (−1, 1), т.е. она близка к некоторому корню 𝜙(−)(𝑥)
вырожденного уравнения 𝑓(𝑢, 𝑥, 0)=0 левее точки 𝑥00 и к корню 𝜙(+)(𝑥) правее этой точки.
В окрестности 𝑥00 происходит резкий переход от 𝜙(−)(𝑥) к 𝜙(+)(𝑥).

Будем предполагать выполненными следующие условия.
Условие 1. Функции 𝐴(𝑢, 𝑥), 𝑓(𝑢, 𝑥, 𝜀) являются достаточно гладкими в своих областях

определения.
Условие 2. Вырожденное уравнение 𝑓(𝑢, 𝑥, 0)=0 имеет ровно три решения 𝑢=𝜙(±,0)(𝑥),

причём 𝜙(−)(𝑥)<𝜙(0)(𝑥)<𝜙(+)(𝑥), 𝑥∈ [−1, 1], а также справедливы неравенства

𝑓𝑢(𝜙
(±)(𝑥), 𝑥, 0)> 0, 𝑓𝑢(𝜙

(0)(𝑥), 𝑥, 0)< 0, 𝑥∈ [−1, 1].
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2. ПОСТРОЕНИЕ ФОРМАЛЬНОЙ АСИМПТОТИКИ РЕШЕНИЯ

Асимптотика решения задачи (1) строится методом пограничных функций отдельно в
каждой из областей [−1, 𝑥̂]× [0, 𝑇 ] и [𝑥̂, 1]× [0, 𝑇 ] с подвижной границей (см. [16]) с ис-
пользованием развиваемого в научной школе профессоров А.Б. Васильевой, В.Ф. Бутузова,
Н.Н. Нефедова эффективного метода построения асимптотики локализации внутреннего слоя
в виде

𝑈(𝑥, 𝜀)=

{︃
𝑈 (−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡, 𝜀)∈ [−1, 𝑥̂]× [0, 𝑇 ]×(0, 𝜀0],

𝑈 (+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡, 𝜀)∈ [𝑥̂, 1]× [0, 𝑇 ]×(0, 𝜀0].

Каждую из функций 𝑈 (±)(𝑥, 𝜀) будем представлять в виде суммы трёх слагаемых:

𝑈 (±)(𝑥, 𝑡, 𝜀)= 𝑢̄(±)(𝑥, 𝜀)+𝑄(±)(𝜉, 𝑡, 𝜀)+𝑅(±)
(︀
𝜂(±), 𝜀

)︀
,

где 𝑢̄(±)(𝑥, 𝜀)= 𝑢̄
(±)
0 (𝑥)+𝜀𝑢̄

(±)
1 (𝑥)+. . . — регулярная часть разложения, функции 𝑄(±)(𝜉, 𝑡, 𝜀)=

=𝑄
(±)
0 (𝜉, 𝑡, 𝜀)+𝜀𝑄

(±)
1 (𝜉, 𝑡, 𝜀)+. . . описывают поведение решения в окрестности точки перехода

𝑥̂(𝑡, 𝜀), 𝜉=(𝑥−𝑥̂(𝑡, 𝜀))/𝜀 — переменная переходного слоя: 𝜉⩽0 для функций с индексом (−) и
𝜉⩾ 0 для функций с индексом (+); функции 𝑅(±)(𝜂(±), 𝜀)=𝑅

(±)
0 (𝜂(±))+𝜀𝑅

(±)
1 (𝜂(±))+ . . . опи-

сывают поведение решения в окрестностях граничных точек отрезка [−1, 1], 𝜂(±)=(𝑥∓1)/𝜀 —
растянутые переменные вблизи точек 𝑥=±1 соответственно. Поскольку функции 𝑅

(±)
𝑖 (𝜂(±))

определяются стандартным образом (см., например, [16]), то процедуру их построения опус-
каем. Отметим, что данные функции не зависят от переменной 𝑡 и тем самым не участвуют
в описании движущегося переходного слоя, а функции 𝑅(±)

0 (𝜂(±))=0 в силу краевых условий
Неймана.

Положение внутреннего переходного слоя определяется из условия 𝐶1-сшивания асимп-
тотических представлений 𝑈 (−)(𝑥, 𝑡, 𝜀) и 𝑈 (+)(𝑥, 𝑡, 𝜀) в точке перехода 𝑥̂(𝑡, 𝜀):

𝑈 (−)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)=𝑈 (+)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥̂(𝑡, 𝜀)), (2)

𝜀
𝜕

𝜕𝑥
𝑈 (−)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)= 𝜀

𝜕

𝜕𝑥
𝑈 (+)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀). (3)

Точку перехода 𝑥= 𝑥̂(𝑡, 𝜀) будем искать в виде разложения по степеням малого параметра 𝜀:

𝑥̂(𝑡, 𝜀)=𝑥0(𝑡)+𝜀𝑥1(𝑡)+ . . . (4)

Коэффициенты данного разложения будут определены в процессе построения асимптотики.
Регулярная часть асимптотики определяется после подстановки представления для функ-

ций 𝑢̄(±)(𝑥, 𝜀) в уравнение

𝜀2
𝜕2𝑢̄(±)

𝜕𝑥2
−𝜀2𝐴(𝑢̄(±), 𝑥)

(︂
𝜕𝑢̄(±)

𝜕𝑥

)︂2
−𝑓(𝑢̄(±), 𝑥, 𝜀)= 0.

Стандартным образом [16] получим алгебраические уравнения для определения функций
регулярной части 𝑢̄

(±)
𝑘 (𝑥), 𝑘=0, 1, . . .

C учётом условия 2 регулярные функции нулевого порядка определяются как

𝑢̄
(±)
0 (𝑥)=𝜙(±)(𝑥).

Для сокращения записи введём обозначения

𝑓 (±)
𝑢 (𝑥) := 𝑓𝑢(𝜙

(±)(𝑥), 𝑥, 0).
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Функции 𝑢̄
(±)
𝑘 (𝑥) при 𝑘=1, 2, . . . определяются из уравнений

𝑓 (±)
𝑢 (𝑥)𝑢̄

(±)
𝑘 (𝑥)= ℎ̄

(±)
𝑘 (𝑥),

где функции ℎ̄
(±)
𝑘 (𝑥) известны на каждом 𝑘-м шаге и выражаются рекуррентно через функ-

ции 𝑢̄
(±)
𝑘 (𝑥) с индексами 0, 1, . . . , 𝑘−1. Разрешимость этих уравнений следует из условия 2.

Для того чтобы получить уравнения, которым удовлетворяют функции переходного слоя
𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀), перепишем дифференциальный оператор задачи в переменных (𝜉, 𝑡). Тогда урав-

нения для функций 𝑄
(±)
𝑘 (𝜉, 𝑡, 𝜀), 𝑘=0, 1, . . . , определяются стандартным способом [16] путём

приравнивания коэффициентов при одинаковых степенях 𝜀 в обеих частях равенств:

𝜕2𝑄(±)

𝜕𝜉2
+
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡

𝜕𝑄(±)

𝜕𝜉
+𝐴

(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
, 𝜀𝜉+ 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑢̄(±)

𝜕𝜉

)︂2
−

−𝐴
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
+𝑄(±)(𝜉, 𝑡, 𝜀), 𝜀𝜉+ 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑄(±)

𝜕𝜉
+
𝜕𝑢̄(±)

𝜕𝜉

)︂2
−𝜀𝜕𝑄

(±)

𝜕𝑡
=

= 𝑓
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
+𝑄(±)(𝜉, 𝑡, 𝜀), 𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
−𝑓
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
, 𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
. (5)

В отличие от подхода, изложенного в работе [2], мы не будем раскладывать по степеням 𝜀
точку перехода 𝑥̂(𝑡, 𝜀). Это упростит алгоритм построения асимптотики. Отметим, что урав-
нения, из которых находятся функции 𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀), содержат функции, зависящие от 𝑥̂(𝑡, 𝜀),

𝜕𝑥̂(𝑡, 𝜀)/𝜕𝑡, что и объясняет наличие у 𝑄
(±)
𝑘 (𝜉, 𝑡, 𝜀) аргумента 𝜀.

Потребуем, чтобы функции переходного слоя 𝑄(±)
𝑘 (𝜉, 𝑡, 𝜀), 𝑘=0, 1, . . . , удовлетворяли усло-

виям равенства нулю на бесконечности: 𝑄(−)
𝑘 (𝜉, 𝑡, 𝜀)→ 0 при 𝜉→−∞, 𝑄(+)

𝑘 (𝜉, 𝑡, 𝜀)→ 0 при
𝜉→+∞, 𝑘=0, 1, . . . , 𝑡∈ [0, 𝑇 ].

Приравнивая коэффициенты при 𝜀0 в правой и левой частях равенств (5), получаем
уравнения для функции 𝑄

(−)
0 (𝜉, 𝑡, 𝜀) при 𝜉⩽ 0 и функции 𝑄

(+)
0 (𝜉, 𝑡, 𝜀) при 𝜉⩾ 0:

𝜕2𝑄
(±)
0

𝜕𝜉2
+
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡

𝜕𝑄
(±)
0

𝜕𝜉
−𝐴

(︀
𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄

(±)
0 (𝜉, 𝑡, 𝜀), 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑄(±)
0

𝜕𝜉

)︂2
=

= 𝑓
(︀
𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄

(±)
0 (𝜉, 𝑡, 𝜀), 𝑥̂(𝑡, 𝜀), 0

)︀
. (6)

Дополнительные условия при 𝜉=0 получим из условия непрерывного сшивания (2), запи-
санного в нулевом порядке по 𝜀:

𝑄
(−)
0 (0, 𝑡, 𝜀)+𝜙(−)(𝑥̂(𝑡, 𝜀))=𝑄

(+)
0 (0, 𝑡, 𝜀)+𝜙(+)(𝑥̂(𝑡, 𝜀))=𝜙(0)(𝑥̂(𝑡, 𝜀)).

Добавим также условия на бесконечности: 𝑄(−)
0 (𝜉, 𝑡, 𝜀)→ 0 при 𝜉→−∞, 𝑄(+)

0 (𝜉, 𝑡, 𝜀)→ 0 при
𝜉→+∞, 𝑡∈ [0, 𝑇 ].

Введём оператор 𝐷, действующий по правилу

𝐷𝑥̂ :=
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡
, (7)
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и функции

𝑢̃(±)(𝜉, 𝑡, 𝜀)=𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄
(±)
0 (𝜉, 𝑡, 𝜀), (8)

𝑢̃(𝜉, 𝑡, 𝜀)=

{︃
𝜙(−)(𝑥̂(𝑡, 𝜀))+𝑄

(−)
0 (𝜉, 𝑡, 𝜀), если 𝜉⩽ 0,

𝜙(+)(𝑥̂(𝑡, 𝜀))+𝑄
(+)
0 (𝜉, 𝑡, 𝜀), если 𝜉⩾ 0,

𝑣(−)(𝜉, 𝑡, 𝜀)=
𝜕𝑢̃

𝜕𝜉
(𝜉, 𝑡, 𝜀), 𝜉⩽ 0, 𝑣(+)(𝜉, 𝑡, 𝜀)=

𝜕𝑢̃

𝜕𝜉
(𝜉, 𝑡, 𝜀), 𝜉⩾ 0.

Замечание. Из вида уравнений (6) следует, что в функциях 𝑄
(±)
0 (𝜉, 𝑡, 𝜀), 𝑢̃(𝜉, 𝑡, 𝜀),

𝑢̃(±)(𝜉, 𝑡, 𝜀), 𝑣(±)(𝜉, 𝑡, 𝜀) можно перейти к другому набору аргументов — (𝜉, 𝑥̂). В дальнейшем
будем пользоваться обоими наборами, выбирая для каждого конкретного случая наиболее
удобный.

Перепишем уравнения (6), а также дополнительные условия, с использованием (8):

𝜕2𝑢̃(±)

𝜕𝜉2
+𝐷𝑥̂

𝜕𝑢̃(±)

𝜕𝜉
−𝐴(𝑢̃(±), 𝑥̂)

(︂
𝜕𝑢̃(±)

𝜕𝜉

)︂2
= 𝑓(𝑢̃(±), 𝑥̂, 0),

𝑢̃(±)(0, 𝑥̂)=𝜙(0)(𝑥̂), 𝑢̃(±)(±∞, 𝑥̂)=𝜙(±)(𝑥̂). (9)

Наряду с задачами (9), рассмотрим задачу

𝜕2𝑢̂

𝜕𝜉2
+𝑊

𝜕𝑢̂

𝜕𝜉
−𝐴(𝑢̂, 𝑥̂)

(︂
𝜕𝑢̂

𝜕𝜉

)︂2
= 𝑓(𝑢̂, 𝑥̂, 0), 𝑢̂(0, 𝑥̂)=𝜙(0)(𝑥̂), 𝑢̂(±∞, 𝑥̂)=𝜙(±)(𝑥̂). (10)

Сформулируем и докажем результат существования решения задачи (10) в виде леммы.
Лемма. Для каждого 𝑥̂ ∈ (−1, 1) существует единственная величина 𝑊 такая, что

задача (10) имеет единственное гладкое монотонное решение 𝑢̂(𝜉, 𝑥̂), удовлетворяющее
оценке

|𝑢̂(𝜉, 𝑥̂)−𝜙(±)(𝑥̂)|<𝐶 exp{−𝜅|𝜉|},

где 𝐶 и 𝜅 — некоторые положительные постоянные. При этом зависимость 𝑊 (𝑥̂) опре-
деляется как

𝑊 (𝑥̂)=

𝜙(+)(𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝑓(𝑢, 𝑥̂,0)exp

{︃
−2

𝑢ˆ

𝜙(−)(𝑥̂)

𝐴(𝑦, 𝑥̂) 𝑑𝑦

}︃
𝑑𝑢

[︃ +∞ˆ

−∞

(︂
𝜕𝑢̂

𝜕𝜉
(𝜉, 𝑥̂)

)︂2
exp

{︃
−2

𝑢̃(𝜉,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑦, 𝑥̂)𝑑𝑦

}︃
𝑑𝜉

]︃−1

.

Гладкость функции 𝑊 (𝑥̂) совпадает с гладкостью функций 𝑓(𝑢, 𝑥̂, 0) и 𝐴(𝑢, 𝑥̂).
Доказательство. Для того чтобы использовать известный результат из [18], сделаем

монотонное преобразование, предложенное А.В. Бицадзе в работе [19]:

𝑧(𝜉, 𝑥̂) := 𝑧(𝑢̂(𝜉, 𝑥̂), 𝑥̂)=

𝑢̂(𝜉,𝑥̂)ˆ

𝜙(−)(𝑥̂)

exp

{︃
−

𝑦ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑦, (𝑢̂, 𝑥̂)∈ [𝜙(−)(𝑥̂), 𝜙(+)(𝑥̂)]× [−1, 1].

Введём обозначения

𝑧(±,0)(𝑥̂)=

𝜙(±,0)(𝑥̂)ˆ

𝜙(−)(𝑥̂)

exp

{︃
−

𝑦ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑦.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



40 А. О. ОРЛОВ

В силу монотонности преобразования 𝑧(𝑢̂, 𝑥̂) по 𝑢̂ можно определить обратную функцию

𝑢̂(𝜉, 𝑥̂)=ℎ(𝑧(𝜉, 𝑥̂), 𝑥̂), (𝑧, 𝑥̂)∈ [0, 𝑧(+)(𝑥̂)]× [−1, 1].

Таким образом, задача (10) переходит в задачу

𝜕2𝑧

𝜕𝜉2
+𝑊

𝜕𝑧

𝜕𝜉
−𝑓(ℎ(𝑧, 𝑥̂), 𝑥̂, 0) exp

{︃
−

ℎ(𝑧,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
=0,

𝑧(−∞, 𝑥̂)= 0, 𝑧(0, 𝑥̂)= 𝑧(0)(𝑥̂), 𝑧(+∞, 𝑥̂)= 𝑧(+)(𝑥̂), (11)

для которой в силу условий 1 и 2 верны [18] следующие утверждения.
1. Для каждого 𝑥̂∈ (−1, 1) существует единственная величина 𝑊 такая, что задача (11)

имеет единственное гладкое монотонное решение 𝑧(𝜉, 𝑥̂), удовлетворяющее оценке

|𝑧(𝜉, 𝑥̂)−𝑧(±)(𝑥̂)|<𝐶 exp{−𝜅|𝜉|},

где 𝐶 и 𝜅 — некоторые положительные постоянные.
2. Зависимость 𝑊 (𝑥̂) определяется как

𝑊 (𝑥̂)=

𝑧(+)(𝑥̂)ˆ

0

𝑓(ℎ(𝑧, 𝑥̂), 𝑥̂, 0) exp

{︃
−

ℎ(𝑧,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑧

[︃ +∞ˆ

−∞

(︂
𝜕𝑧

𝜕𝜉
(𝜉, 𝑥̂)

)︂2
𝑑𝜉

]︃−1

. (12)

Гладкость функции 𝑊 (𝑥̂) совпадает с гладкостью функций 𝑓(𝑢, 𝑥̂, 0) и 𝐴(𝑢, 𝑥̂).
Наконец, возвращаясь к функции 𝑢̂(𝜉, 𝑥̂) c помощью преобразования 𝑢̂(𝜉, 𝑥̂)=ℎ(𝑧(𝜉, 𝑥̂), 𝑥̂)

и пересчитывая интегралы в выражении (12), имеем утверждение леммы. Лемма доказана.
Потребуем выполнения ещё одного условия.
Условие 3. Задача

𝑑𝑥

𝑑𝑡
=𝑊 (𝑥), 𝑥(0)=𝑥00 (13)

имеет решение 𝑥=𝑥0(𝑡) такое, что 𝑥0(𝑡)∈ (−1, 1) при 𝑡∈ [0, 𝑇 ]; 𝑊 (𝑥)> 0 для всех 𝑥∈ [−1, 1].
Неравенство 𝑊 (𝑥) > 0 в условии 3 гарантирует отсутствие стационарных решений у

задачи (13). Обозначим через (9а) задачи (9), в которых заменим 𝑥̂ на 𝑥0(𝑡), или, иначе, в
которых положим 𝜀=0.

Из леммы и условия 3 следует единственная разрешимость задач (9а), так как выполнено
условие 𝐷𝑥̂0=𝑊 (𝑥0). При этом

𝜕𝑢̃(+)

𝜕𝜉
(0, 𝑥0(𝑡))−

𝜕𝑢̃(−)

𝜕𝜉
(0, 𝑥0(𝑡))= 0.

В силу предполагаемой гладкости функций 𝑓(𝑢, 𝑥̂, 0), 𝐴(𝑢, 𝑥̂) (см. условие 1) задачи (9)
являются регулярными возмущениями задач (9а), потому они также единственно разрешимы.
Отметим, что в силу представления (4)

𝜕𝑢̃(+)

𝜕𝜉
(0, 𝑥̂(𝑡, 𝜀))− 𝜕𝑢̃(−)

𝜕𝜉
(0, 𝑥̂(𝑡, 𝜀))=𝑂(𝜀).

Таким образом, построение функций переходного слоя в нулевом порядке завершено.
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Функции переходного слоя первого порядка находятся из следующих задач:

𝜕2𝑄
(±)
1

𝜕𝜉2
+𝐷𝑥̂

𝜕𝑄
(±)
1

𝜕𝜉
−2𝐴(𝜉, 𝑡)𝑣(±)(𝜉, 𝑥̂)

𝜕𝑄
(±)
1

𝜕𝜉
−
(︀
𝐴𝑢(𝜉, 𝑡)

(︀
𝑣(±)(𝜉, 𝑥̂)

)︀2
+𝑓𝑢(𝜉, 𝑡)

)︀
𝑄

(±)
1 = 𝑟

(±)
1 (𝜉, 𝑡, 𝜀),

𝑄
(±)
1 (0, 𝑡, 𝜀)+ 𝑢̄

(±)
1 (𝑥̂)= 0, 𝑄

(±)
1 (±∞, 𝑡, 𝜀)= 0, (14)

где введены обозначения

𝑓𝑢(𝜉, 𝑡)= 𝑓𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂, 0), 𝐴(𝜉, 𝑡)=𝐴𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂), 𝐴𝑢(𝜉, 𝑡)=𝐴𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂) (15)
и

𝑟
(±)
1 (𝜉, 𝑡, 𝜀)=

𝜕𝑄
(±)
0

𝜕𝑡
(𝜉, 𝑡, 𝜀)+2𝐴(𝜉, 𝑡)𝑣(±)(𝜉, 𝑥̂)

𝑑𝜙(±)

𝑑𝑥
(𝑥̂)+

+

(︂
𝑢
(±)
1 (𝑥̂)+𝜉

𝑑𝜙(±)

𝑑𝑥
(𝑥̂)

)︂(︀
𝑓𝑢(𝜉,𝑡)+𝐴𝑢(𝜉,𝑡)

(︀
𝑣(±)(𝜉,𝑥̂)

)︀2)︀
+𝜉
(︀
𝑓𝑥(𝜉,𝑡)+𝐴𝑥(𝜉,𝑡)

(︀
𝑣(±)(𝜉,𝑥̂)

)︀2)︀
+𝑓𝜀(𝜉,𝑡).

Здесь производные 𝑓𝑥(𝜉, 𝑡), 𝑓𝜀(𝜉, 𝑡) вычисляются в той же точке, что и производная 𝑓𝑢(𝜉, 𝑡)
в (15). Аналогично 𝐴𝑥(𝜉, 𝑡) вычисляется в той же точке, что и 𝐴𝑢(𝜉, 𝑡). Во всех введённых
здесь обозначениях аргумент 𝜀 подразумеваем, но для краткости опускаем. Задачу для
функции 𝑄

(−)
1 (𝜉, 𝑡, 𝜀) будем решать на полупрямой 𝜉 ⩽ 0, а для функции 𝑄

(+)
1 (𝜉, 𝑡, 𝜀) — на

полупрямой 𝜉⩾ 0. Решения задач (14) записываются в явном виде:

𝑄
(±)
1 (𝜉, 𝑡, 𝜀)=−𝑢̄(±)

1 (𝑥̂)
𝑣(±)(𝜉, 𝑥̂)

𝑣(±)(0, 𝑥̂)
+

+𝑣(±)(𝜉, 𝑥̂)

𝜉ˆ

0

𝑒−(𝐷𝑥̂)𝜂

(𝑣(±)(𝜂, 𝑥̂))2𝑝(±)(𝜂, 𝑥̂)

𝜂ˆ

±∞

𝑣(±)(𝜎, 𝑥̂)𝑝(±)(𝜎, 𝑥̂)𝑒(𝐷𝑥̂)𝜎𝑟
(±)
1 (𝜎, 𝑡, 𝜀) 𝑑𝜎 𝑑𝜂, (16)

где

𝑝(±)(𝜉, 𝑥̂)= exp

{︃
−2

𝜉ˆ

0

𝐴(𝑢̃(±)(𝑦, 𝑥̂), 𝑥̂)𝑣(±)(𝑦, 𝑥̂) 𝑑𝑦

}︃
.

Из выражения для функций 𝑟(±)
1 (𝜉, 𝑡, 𝜀) следует, что они имеют экспоненциальные оценки

[16], а из (16) стандартным образом выводим, что аналогичные оценки справедливы и для
функций 𝑄

(±)
1 (𝜉, 𝑡, 𝜀).

Аналогично первому приближению можно найти для любого 𝑘=2, 3, . . . функции переход-
ного слоя 𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀): они определяются из краевых задач с таким же дифференциальным

оператором, что и в задачах (14).

3. АСИМПТОТИЧЕСКОЕ ПРИБЛИЖЕНИЕ ПОЛОЖЕНИЯ ФРОНТА

Опишем алгоритм нахождения асимптотического приближения положения фронта. Неиз-
вестные коэффициенты 𝑥𝑖(𝑡), 𝑖 ∈ N, разложения определяются из условий сшивания (3)
производных асимптотических приближений. Введём функцию

𝐻(𝜀, 𝑡) := 𝜀

(︂
𝑑𝑈 (+)

𝑑𝑥
(𝑥̂, 𝑡, 𝜀)− 𝑑𝑈 (−)

𝑑𝑥
(𝑥̂, 𝑡, 𝜀)

)︂
=𝐻0(𝜀, 𝑡)+𝜀𝐻1(𝜀, 𝑡)+𝜀

2𝐻2(𝜀, 𝑡)+ . . . , (17)
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где

𝐻0(𝜀, 𝑡)=
𝜕𝑄

(+)
0

𝜕𝜉
(0, 𝑥̂)− 𝜕𝑄

(−)
0

𝜕𝜉
(0, 𝑥̂),

𝐻1(𝜀, 𝑡)=
𝑑𝜙(+)

𝑑𝑥
(𝑥̂)− 𝑑𝜙(−)

𝑑𝑥
(𝑥̂)+

(︂
𝜕𝑄

(+)
1

𝜕𝜉
(0, 𝑡, 𝜀)− 𝜕𝑄

(−)
1

𝜕𝜉
(0, 𝑡, 𝜀)

)︂
и т.д.

Условие 𝐶1-сшивания (3) выражается равенством 𝐻(𝜀, 𝑡)=0. В силу леммы и условия 3
с учётом разложения точки перехода (4) это равенство выполнено в порядке 𝜀0.

Анализ задач (9), (10) показывает, что функция 𝐻0(𝜀, 𝑡) может быть представлена в виде

𝐻0(𝜀, 𝑡)= (𝐷𝑥̂−𝑊 (𝑥̂))

[︃
1

𝑣(±)(0, 𝑥̂)

±∞ˆ

0

(𝑣(±)(𝜉, 𝑥̂))2𝑒(𝐷𝑥̂)𝜉𝑝(±)(𝜉, 𝑥̂) 𝑑𝜉

]︃+
−

+𝑂(𝜀2). (18)

Здесь и далее [ ]+− означает разность между выражениями, помеченными символами + и −.
Как следует из разложения (17) и представления (18), члены 𝑥𝑖(𝑡), 𝑖⩾1, высших порядков

в (4) могут быть найдены из следующих задач Коши:

𝑑𝑥𝑖
𝑑𝑡

−𝑊 ′(𝑥0(𝑡))𝑥𝑖(𝑡)=𝐺𝑖(𝑡), 𝑥𝑖(0)= 0,

где 𝐺𝑖(𝑡) — известные функции.

4. ОБОСНОВАНИЕ ФОРМАЛЬНОЙ АСИМПТОТИКИ

Положим

𝑋𝑛(𝑡, 𝜀)=
𝑛+1∑︁
𝑖=0

𝜀𝑖𝑥𝑖(𝑡), 𝜉=
𝑥−𝑋𝑛(𝑡, 𝜀)

𝜀
.

Кривая 𝑋𝑛(𝑡, 𝜀) разделяет область 𝐷̄ : (𝑥, 𝑡)∈ [−1, 1]× [0, 𝑇 ] на две подобласти:

𝐷̄(−)
𝑛 : (𝑥, 𝑡)∈ [−1, 𝑋𝑛(𝑡, 𝜀)]× [0, 𝑇 ] и 𝐷̄(+)

𝑛 : (𝑥, 𝑡)∈ [𝑋𝑛(𝑡, 𝜀), 1]× [0, 𝑇 ].

Определим функции

𝑈 (−)
𝑛 (𝑥, 𝑡, 𝜀)=

𝑛∑︁
𝑖=0

𝜀𝑖
(︁
𝑢̄
(−)
𝑖 (𝑥)+𝑄

(−)
𝑖 (𝜉, 𝑡, 𝜀)+𝑅

(−)
𝑖 (𝜂(−))

)︁
, (𝑥, 𝑡)∈ 𝐷̄(−)

𝑛 ,

𝑈 (+)
𝑛 (𝑥, 𝑡, 𝜀)=

𝑛∑︁
𝑖=0

𝜀𝑖
(︁
𝑢̄
(+)
𝑖 (𝑥)+𝑄

(+)
𝑖 (𝜉, 𝑡, 𝜀)+𝑅

(+)
𝑖 (𝜂(+))

)︁
, (𝑥, 𝑡)∈ 𝐷̄(+)

𝑛 ,

где 𝑥̂(𝑡, 𝜀), входящие в выражения для функций переходного слоя, заменены на 𝑋𝑛(𝑡, 𝜀), и
обозначим

𝑈𝑛(𝑥, 𝑡, 𝜀)=

{︃
𝑈

(−)
𝑛 (𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)

𝑛 ,

𝑈
(+)
𝑛 (𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)

𝑛 .
(19)

Для доказательства существования и единственности решения вида движущегося фрон-
та используем асимптотический метод дифференциальных неравенств [16]. Построим непре-
рывные функции 𝛼(𝑥, 𝑡, 𝜀), 𝛽(𝑥, 𝑡, 𝜀) таким образом, чтобы они удовлетворяли следующим
условиям.
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1. Условие упорядоченности:

𝛼(𝑥, 𝑡, 𝜀)⩽𝛽(𝑥, 𝑡, 𝜀), 𝑥∈ [−1, 1], 𝑡∈ [0, 𝑇 ], 𝜀∈ (0, 𝜀0]. (20)

2. Действие дифференциального оператора на верхнее и нижнее решения:

𝐿[𝛽] := 𝜀2
𝜕2𝛽

𝜕𝑥2
−𝜀𝜕𝛽

𝜕𝑡
−𝜀2𝐴(𝛽, 𝑥)

(︂
𝜕𝛽

𝜕𝑥

)︂2
−𝑓(𝛽, 𝑥, 𝜀)⩽ 0⩽

⩽𝐿[𝛼] := 𝜀2
𝜕2𝛼

𝜕𝑥2
−𝜀𝜕𝛼

𝜕𝑡
−𝜀2𝐴(𝛼, 𝑥)

(︂
𝜕𝛼

𝜕𝑥

)︂2
−𝑓(𝛼, 𝑥, 𝜀) (21)

для всех 𝑥 ∈ (−1, 1) и 𝑡 ∈ [0, 𝑇 ], за исключением тех 𝑥(𝑡), в которых функции 𝛼(𝑥, 𝑡, 𝜀) и
𝛽(𝑥, 𝑡, 𝜀) являются негладкими.

3. Условия на границе:

𝑑𝛼

𝑑𝑥
(−1, 𝑡, 𝜀)⩾ 0⩾

𝜕𝛽

𝜕𝑥
(−1, 𝑡, 𝜀),

𝜕𝛼

𝜕𝑥
(+1, 𝑡, 𝜀)⩽ 0⩽

𝜕𝛽

𝜕𝑥
(+1, 𝑡, 𝜀), 𝑡∈ [0, 𝑇 ], 𝜀∈ (0, 𝜀0]. (22)

4. Условия на начальную функцию:

𝛼(𝑥, 0, 𝜀)⩽𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀)⩽𝛽(𝑥, 0, 𝜀), 𝑥∈ [−1, 1], 𝜀∈ (0, 𝜀0]. (23)

5. Условия на скачок производных:

𝜕𝛽

𝑑𝑥
(𝑥(𝑡)−0, 𝑡, 𝜀)⩾

𝜕𝛽

𝑑𝑥
(𝑥(𝑡)+0, 𝑡, 𝜀), (24)

где 𝑥(𝑡) — точка, в которой верхнее решение является негладким;

𝜕𝛼

𝑑𝑥
(𝑥(𝑡)−0, 𝑡, 𝜀)⩽

𝜕𝛼

𝑑𝑥
(𝑥(𝑡)+0, 𝑡, 𝜀), (25)

где 𝑥(𝑡) — точка, в которой нижнее решение является негладким.
Известно (см. [20]), что при выполнении условий (20)–(25) существует единственное ре-

шение задачи (1), для которого выполняются неравенства

𝛼(𝑥, 𝑡, 𝜀)⩽𝑢(𝑥, 𝑡, 𝜀)⩽𝛽(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ [−1, 1]× [0, 𝑇 ].

Докажем следующую теорему существования и единственности.
Теорема. При выполнении условий 1–3 для любой достаточно гладкой начальной функ-

ции 𝑢𝑖𝑛𝑖𝑡(𝑥), лежащей между верхним и нижним решениями

𝛼(𝑥, 0, 𝜀)⩽𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀)⩽𝛽(𝑥, 0, 𝜀),

существует единственное решение 𝑢(𝑥, 𝑡, 𝜀) задачи (1), которое при любом 𝑡 ∈ [0, 𝑇 ] за-
ключено между этими верхним и нижним решениями и для которого функция 𝑈𝑛(𝑥, 𝑡, 𝜀)
является равномерным в области [−1, 1]× [0, 𝑇 ] асимптотическим приближением с точ-
ностью 𝑂(𝜀𝑛+1).

Доказательство. Верхнее и нижнее решения задачи будем строить как модификацию
асимптотических рядов (19). Зададим функцию

𝑥𝛽(𝑡, 𝜀)=𝑋𝑛+1(𝑡)−𝜀𝑛+1𝛿(𝑡),
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а положительную функцию 𝛿(𝑡)> 0 определим ниже. Построим верхнее решение задачи в
каждой из областей 𝐷̄

(−)
𝛽 : (𝑥, 𝑡)∈ [−1, 𝑥𝛽(𝑡, 𝜀)]× [0, 𝑇 ] и 𝐷̄

(+)
𝛽 : (𝑥, 𝑡)∈ [𝑥𝛽(𝑡, 𝜀), 1]× [0, 𝑇 ]:

𝛽(𝑥, 𝑡, 𝜀)=

⎧⎨⎩𝛽(−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)
𝛽 ,

𝛽(+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)
𝛽 .

Сшивать функции 𝛽(−)(𝑥, 𝑡, 𝜀) и 𝛽(+)(𝑥, 𝑡, 𝜀) в точке 𝑥𝛽(𝑡, 𝜀) будем таким образом, чтобы
было выполнено равенство

𝛽(−)(𝑥𝛽(𝑡, 𝜀), 𝑡, 𝜀)=𝛽(+)(𝑥𝛽(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥𝛽(𝑡, 𝜀)).

Отметим, что функция 𝛽(𝑥, 𝑡, 𝜀) не является гладкой. Введём растянутую переменную

𝜉𝛽 =
𝑥−𝑥𝛽(𝑡, 𝜀)

𝜀
.

Построим функции 𝛽(±)(𝑥, 𝑡, 𝜀) как модификации формальной асимптотики (19):

𝛽(−)(𝑥, 𝑡, 𝜀)=𝑈
(−)
𝑛+1|𝜉𝛽 +𝜀

𝑛+1
(︀
𝜇+𝑞

(−)
𝛽 (𝜉𝛽, 𝑡, 𝜀)

)︀
+𝜀𝑛+1𝑅

(−)
𝛽 (𝜂(−)), (𝑥, 𝑡)∈𝐷(−)

𝛽 , 𝜉𝛽 ⩽ 0, 𝜂(−)⩾ 0;

𝛽(+)(𝑥, 𝑡, 𝜀)=𝑈
(+)
𝑛+1|𝜉𝛽 +𝜀

𝑛+1
(︀
𝜇+𝑞

(+)
𝛽 (𝜉𝛽, 𝑡, 𝜀)

)︀
+𝜀𝑛+1𝑅

(+)
𝛽 (𝜂(+)), (𝑥, 𝑡)∈𝐷(+)

𝛽 , 𝜉𝛽 ⩾ 0, 𝜂(+)⩽ 0.

Здесь под обозначениями 𝑈
(±)
𝑛+1|𝜉𝛽 понимаем функции из (19), в которых аргумент 𝜉 у

функций переходного слоя заменён на 𝜉𝛽 , а 𝑋𝑛+1 — на 𝑥𝛽 .
Положительная величина 𝜇 выбирается так, чтобы были выполнены условия (20) и (21).

Функции 𝑅
(±)
𝛽 (𝜂(±)) подбираются так, чтобы было выполнено условие (22) (их построение в

данной работе не рассматривается). Функции 𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀) нужны для устранения невязок,

которые возникают при действии оператора на верхнее решение. Определим их из следующих
задач:

𝜕2𝑞
(±)
𝛽

𝜕𝜉2𝛽
+𝐷𝑥𝛽

𝜕𝑞
(±)
𝛽

𝜕𝜉𝛽
−2𝐴(𝜉𝛽, 𝑡)𝑣

(±)(𝜉𝛽, 𝑥𝛽)
𝜕𝑞

(±)
𝛽

𝜕𝜉𝛽
−

−
(︀
𝐴𝑢(𝜉𝛽, 𝑡)

(︀
𝑣(±)(𝜉𝛽, 𝑥𝛽)

)︀2
+𝑓𝑢(𝜉𝛽, 𝑡)

)︀
𝑞
(±)
𝛽 −𝑞𝑓 (±)(𝜉𝛽, 𝑡, 𝜀)= 0,

𝑞
(±)
𝛽 (0, 𝑡, 𝜀)+𝜇=0, 𝑞

(±)
𝛽 (±∞, 𝑡, 𝜀)= 0, (26)

где 𝑞𝑓 (±)(𝜉𝛽, 𝑡, 𝜀)=𝜇
(︀
𝐴𝑢(𝜉𝛽, 𝑡)

(︀
𝑣(±)(𝜉𝛽, 𝑥𝛽)

)︀2
+𝑓𝑢(𝜉𝛽, 𝑡)−𝑓

(±)
𝑢 (𝑥𝛽)

)︀
.

Для данных функций можно получить явные выражения

𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀)=−𝜇

𝑣(±)(𝜉, 𝑥𝛽)

𝑣(±)(0, 𝑥𝛽)
+

+𝑣(±)(𝜉𝛽,𝑥𝛽)

𝜉𝛽ˆ

0

𝑒−(𝐷𝑥𝛽)𝜂

(𝑣(±)(𝜂,𝑥𝛽))2𝑝(±)(𝜂,𝑥𝛽)

𝜂ˆ

±∞

𝑣(±)(𝜎,𝑥𝛽)𝑒
(𝐷𝑥𝛽)𝜎𝑝(±)(𝜎,𝑥𝛽)𝑞𝑓

(±)(𝜎,𝑡,𝜀) 𝑑𝜎 𝑑𝜂. (27)

Функции 𝑞(±)(𝜉𝛽, 𝑡, 𝜀) имеют экспоненциальные оценки [16].
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Можно упростить выражения (27) следующим образом:

𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀)=

=−𝜇−𝜇𝑓 (±)
𝑢 (𝑥𝛽)𝑣

(±)(𝜉𝛽, 𝑥𝛽)

𝜉𝛽ˆ

0

𝑒−(𝐷𝑥𝛽)𝜂

(𝑣(±)(𝜂, 𝑥𝛽))2𝑝(±)(𝜂, 𝑥𝛽)

𝜂ˆ

±∞

𝑣(±)(𝜎, 𝑥𝛽)𝑒
(𝐷𝑥𝛽)𝜎𝑝(±)(𝜎, 𝑥𝛽) 𝑑𝜎 𝑑𝜂.

По аналогичному алгоритму построим нижнее решение. Зададим функцию

𝑥𝛼(𝑡, 𝜀)=𝑋𝑛+1(𝑡)+𝜀
𝑛+1𝛿(𝑡),

где 𝛿(𝑡) — та же самая функция, что и при построении верхнего решения.
Построим нижнее решение задачи в каждой из областей 𝐷̄

(−)
𝛼 : (𝑥, 𝑡)∈ [−1, 𝑥𝛼(𝑡, 𝜀)]× [0, 𝑇 ]

и 𝐷̄
(+)
𝛼 : (𝑥, 𝑡)∈ [𝑥𝛼(𝑡, 𝜀), 1]× [0, 𝑇 ]:

𝛼(𝑥, 𝑡, 𝜀)=

{︃
𝛼(−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)

𝛼 ,

𝛼(+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)
𝛼 .

Будем сшивать функции 𝛼(−)(𝑥, 𝑡, 𝜀) и 𝛼(+)(𝑥, 𝑡, 𝜀) в точке 𝑥𝛼(𝑡, 𝜀) таким образом, чтобы
было выполнено равенство

𝛼(−)(𝑥𝛼(𝑡, 𝜀), 𝑡, 𝜀)=𝛼(+)(𝑥𝛼(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥𝛼(𝑡, 𝜀)).

Отметим, что функция 𝛼(𝑥, 𝑡, 𝜀) не является гладкой. Введём растянутую переменную

𝜉𝛼=
𝑥−𝑥𝛼(𝑡, 𝜀)

𝜀
.

Построим функции 𝛼(±)(𝑥, 𝑡, 𝜀) как модификации формальной асимптотики (19):

𝛼(−)(𝑥,𝑡,𝜀)=𝑈
(−)
𝑛+1

⃒⃒
𝜉𝛼
−𝜀𝑛+1(𝜇+𝑞(−)

𝛼 (𝜉𝛼,𝑡,𝜀))+𝜀
𝑛+1𝑅(−)

𝛼 (𝜂(−)), (𝑥,𝑡)∈𝐷(−)
𝛼 , 𝜉𝛼⩽0, 𝜂(−)⩾0;

𝛼(+)(𝑥,𝑡,𝜀)=𝑈
(+)
𝑛+1

⃒⃒
𝜉𝛼
−𝜀𝑛+1(𝜇+𝑞(+)

𝛼 (𝜉𝛼,𝑡,𝜀))+𝜀
𝑛+1𝑅(+)

𝛼 (𝜂(+)), (𝑥,𝑡)∈𝐷(+)
𝛼 , 𝜉𝛼⩾0, 𝜂(+)⩽0.

Здесь 𝜇> 0 — величина, что и в выражении для верхнего решения, а 𝑞
(±)
𝛼 (𝜉𝛼, 𝑡, 𝜀) опреде-

ляются из задач (26), в которых растянутая переменная 𝜉𝛽 заменена на 𝜉𝛼, а 𝑥𝛽 — на 𝑥𝛼.
Убедимся, что построенные функции 𝛼(𝑥, 𝑡, 𝜀) и 𝛽(𝑥, 𝑡, 𝜀) удовлетворяют дифференци-

альным неравенствам (20)–(25). Условие упорядоченности (20) можно проверить аналогично
тому, как это было сделано в работе [2].

Покажем, что неравенство (21) выполняется. Из способа построения верхнего и нижнего
решений следуют равенства

𝐿
[︀
𝛼(±)

]︀
= 𝜀𝑛+1𝑓 (±)

𝑢 (𝑥𝛼)𝜇+𝑂(𝜀𝑛+2), 𝐿
[︀
𝛽(±)

]︀
=−𝜀𝑛+1𝑓 (±)

𝑢 (𝑥𝛽)𝜇+𝑂(𝜀𝑛+2).

Неравенства вблизи границы (22) выполняются за счёт стандартной модификации по-
гранслойных функций [16] (их проверка в данной работе не предусматривается).

Проверим условие скачка производной (24)

𝜀

(︂
𝜕𝛽(+)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

− 𝜕𝛽(−)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

)︂
=−𝜀𝑛+1 1

𝑣(0, 𝑥0)

(︂
𝐿(𝑥0)

𝑑𝛿

𝑑𝑡
−𝐿(𝑥0)𝑊 ′(𝑥0(𝑡))𝛿(𝑡)+𝐹 (𝑥0)

)︂
+𝑂(𝜀𝑛+2),
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где

𝐹 (𝑥0)=𝜇

[︃
𝑓 (±)
𝑢 (𝑥0)

0ˆ

±∞

𝑝(𝜎, 𝑥0)𝑣(𝜎, 𝑥0)𝑒
(𝐷𝑥0)𝜎 𝑑𝜎

]︃+
−

,

𝐿(𝑥0)=

+∞ˆ

−∞

𝑣2(𝜉, 𝑥0)𝑒
(𝐷𝑥0)𝜉𝑝(𝜉, 𝑥0) 𝑑𝜉 > 0.

Здесь индекс у функций 𝑣(𝜉, 𝑥0), 𝑝(𝜉, 𝑥0) опущен в силу их гладкости при 𝜉=0.
Определим функцию 𝛿(𝑡) как решение задачи

𝐿(𝑥0)
𝑑𝛿

𝑑𝑡
−𝐿(𝑥0)𝑊 ′(𝑥0(𝑡))𝛿(𝑡)+𝐹 (𝑥0)=𝜎, 𝛿(0)= 𝛿0,

где 𝜎 — достаточно большая положительная величина и 𝛿0 > 0. В этом случае решение
задачи 𝛿(𝑡) — положительная функция. Таким образом,

𝜀

(︂
𝜕𝛽(+)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

− 𝜕𝛽(−)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

)︂
=−𝜀𝑛+1 𝜎

𝑣(0, 𝑥0)
+𝑂(𝜀𝑛+2).

Выражение в правой части отрицательно ввиду 𝜎 > 0. При том же выборе функции 𝛿(𝑡)
будет выполнено неравенство скачка производной для нижнего решения 𝛼(𝑥, 𝑡, 𝜀). Теорема
доказана.

5. ПРИМЕР

Рассмотрим начально-краевую задачу

𝜀2
𝜕2𝑢

𝜕𝑥2
−𝜀𝜕𝑢

𝜕𝑡
−𝜀2

(︂
𝜕𝑢

𝜕𝑥

)︂2
= 𝑒𝑢(1−𝑒−𝑢)

(︂
1

2
−𝑒−𝑢

)︂
(1−𝜙(0)(𝑥)−𝑒−𝑢), 𝑥∈ (−1, 1), 𝑡∈ (0, 𝑇 ],

𝜕𝑢

𝜕𝑥
(−1, 𝑡, 𝜀)= 0,

𝜕𝑢

𝜕𝑥
(1, 𝑡, 𝜀)= 0, 𝑡∈ [0, 𝑇 ],

𝑢(𝑥, 0, 𝜀)=𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀), 𝑥∈ [−1, 1].

Будем считать, что при всех 𝑥∈ [−1, 1] выполнено неравенство 1/4<𝜙(0)(𝑥)<1/2. Члены
регулярной части нулевого порядка легко определяются:

𝑢̄
(−)
0 (𝑥)= 0, 𝑢̄

(+)
0 (𝑥)= ln 2.

Задача для функции 𝑢̃(𝜉, 𝑥0) имеет следующий вид:

𝜕2𝑢̃

𝜕𝜉2
+𝑊

𝜕𝑢̃

𝜕𝜉
−
(︂
𝜕𝑢̃

𝜕𝜉

)︂2
= 𝑒𝑢̃(1−𝑒−𝑢̃)

(︂
1

2
−𝑒−𝑢̃

)︂
(1−𝜙(0)(𝑥0)−𝑒−𝑢̃),

𝑢̃(0, 𝑥0)=− ln(1−𝜙(0)(𝑥0)), 𝑢̃(−∞, 𝑥0)= 0, 𝑢̃(∞, 𝑥0)= ln 2. (28)

Заменой 𝑧(𝜉, 𝑥0) := 𝑧(𝑢̃(𝜉, 𝑥0))= 1−𝑒−𝑢̃(𝜉,𝑥0) задача (28) преобразуется к виду

𝜕2𝑧

𝜕𝜉2
+𝑊

𝜕𝑧

𝜕𝜉
= 𝑧

(︂
𝑧− 1

2

)︂
(𝑧−𝜙0(𝑥0)), 𝑧(−∞, 𝑥0)= 0, 𝑧(∞, 𝑥0)= 1/2. (29)
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Решение задачи (29) определяется по формуле

𝑧=

(︂
2+

(︂
1

𝜙(𝑥0)
−2

)︂
exp

{︂
− 𝜉

2
√
2

}︂)︂−1

.

Сделав обратную замену, получим выражение для решения исходной задачи (28):

𝑢̃(𝜉, 𝑥0)=− ln

(︂
1−
(︂
2+

(︂
1

𝜙(𝑥0)
−2

)︂
exp

{︂
− 𝜉

2
√
2

}︂)︂−1)︂
.

Начальная задача для определения положения фронта в нулевом приближении имеет вид

𝑑𝑥0
𝑑𝑡

=
√
2

(︂
𝜙(0)(𝑥0)−

1

4

)︂
, 𝑥0(0)=𝑥00. (30)
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Для двумерного волнового уравнения в цилиндрической области изучена первая гра-
ничная задача, установлен критерий единственности её решения, которое построено в
виде суммы ортогонального ряда. При обосновании сходимости ряда решена проблема
малых знаменателей от двух натуральных аргументов. Установлена оценка об отдели-
мости от нуля с соответствующей асимптотикой, что позволило доказать сходимость
ряда в классе регулярных решений и устойчивость решения задачи.
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ствование, устойчивость, ряд, малые знаменатели
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим волновое уравнение

𝐿𝑢≡𝑢𝑡𝑡−𝑎2(𝑢𝑥𝑥+𝑢𝑦𝑦)−𝑏𝑢=0 (1)

в цилиндре 𝑄= {(𝑥, 𝑦, 𝑡) : (𝑥, 𝑦)∈𝐷, 0<𝑡<𝑇}, где 𝐷= {(𝑥, 𝑦) : 𝑥2+𝑦2< 𝑙2}; 𝑎> 0, 𝑏, 𝑇 > 0 и
𝑙 > 0 — заданные действительные постоянные, и поставим первую граничную задачу.

Требуется найти функцию 𝑢(𝑥, 𝑦, 𝑡), удовлетворяющую следующим условиям:

𝑢(𝑥, 𝑦, 𝑡)∈𝐶1(𝑄)∩𝐶2(𝑄); (2)

𝐿𝑢(𝑥, 𝑦, 𝑡)≡ 0, (𝑥, 𝑦, 𝑡)∈𝑄; (3)

𝑢(𝑥, 𝑦, 𝑡)
⃒⃒
𝑥2+𝑦2=𝑙2

=0, 0⩽ 𝑡⩽𝑇 ; (4)

𝑢(𝑥, 𝑦, 0)= 𝜏(𝑥, 𝑦), 𝑢(𝑥, 𝑦, 𝑇 )=𝜓(𝑥, 𝑦), (𝑥, 𝑦)∈𝐷, (5)

где 𝜏(𝑥, 𝑦) и 𝜓(𝑥, 𝑦) — заданные достаточно гладкие функции, удовлетворяющие условиям
согласования с граничным условием (4).

Известно, что задача Дирихле для уравнений гиперболического типа поставлена некор-
ректно. С.Л. Соболев показал [1], что исследование вопросов неустойчивых колебаний (ре-
зонансов колебаний в жидкости внутри тонкостенных баков ракет с собственными коле-
баниями) тесно связано с задачей Дирихле для волнового уравнения. В более известной
форме эта связь показана в книге В.И. Арнольда [2, с. 132]. Достаточно полный обзор
работ, посвящённых изучению задачи Дирихле для гиперболических уравнений, приведён в
монографии Б.И. Пташника [3, с. 89–95] и в работах [4; 5, с. 112–118] автора.
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Работы Р. Денчева [6–8] посвящены исследованию задачи Дирихле для уравнения (1) при
𝑏=0, 𝑎=1 с ненулевой правой частью и однородными условиями на границе области Ω, когда
Ω — эллипсоид, цилиндр с образующими, параллельными оси 𝑡, и параллелепипед. В них
также установлен критерий единственности и существования решения задачи в пространстве
Соболева 𝑊 1

2 (Ω) при определённых условиях на правую часть, связанных со сходимостью
числовых рядов, при этом возникающие малые знаменатели не изучены.

В работе [9] для многомерного уравнения с волновым оператором в цилиндрической об-
ласти 𝐷×(0, 𝑇 ) найдены условия

√
𝜆𝑘𝑇 ̸=𝑚𝜋, где 𝑘,𝑚∈N, при которых имеет место теорема

единственности решения задачи Дирихле. Здесь 𝜆𝑘 — собственные значения соответствующей
спектральной задачи в области 𝐷.

В монографии Б.И. Пташника [3, с. 95–101] также изучена задача Дирихле в (𝑝+1)-мер-
ном параллелепипеде 𝑄 = [0, 𝑇 ]×Π, где Π = {𝑥 ∈ 𝑅𝑝 : 0 ⩽ 𝑥𝑟 ⩽ 𝜋, 𝑟 = 1, 𝑝}, для строго ги-
перболического уравнения чётного порядка 2𝑛 с постоянными коэффициентами. Решение
задачи определяется 𝑝-мерным рядом Фурье. Установлен критерий единственности решения
в 𝐶2𝑛(𝑄). Для серии неравенств, выражающих оценку малых знаменателей с соответствую-
щей асимптотикой, приведено обоснование сходимости ряда в указанном классе. При этом
не показано для каких чисел вида 𝜋/𝑇 эти оценки имеют место, только отмечено, что
множество чисел 𝜋/𝑇 , для которых они не выполняются, есть множество нулевой меры
Лебега.

В статье В.П. Бурского [10] получено необходимое и достаточное условие тривиальной
разрешимости однородной задачи Дирихле в единичном шаре 𝐵 с центром в начале коор-
динат в пространстве 𝐶2(𝐵) для уравнения с комплексной постоянной 𝑎:

𝑢𝑥𝑥+𝑢𝑦𝑦−𝑎2𝑢𝑧𝑧 =0.

В работах С.А. Алдашева [11–14] изучены задача Дирихле и задача со смешанными
граничными условиями в цилиндрической области 𝑄 (где 𝑙 = 1, 𝑇 = 𝛼) для многомерных
гиперболических уравнений с волновым оператором; решения задач построены в виде суммы
ряда Фурье в сферической системе координат. Но из-за возникающих малых знаменателей
нельзя считать, что эти ряды сходятся в пространстве 𝐶1(𝑄)∩𝐶2(𝑄). При доказательстве
теорем единственности также появляются вопросы о равномерной сходимости используемых
рядов, так как они содержат малые знаменатели.

В данной статье в классе регулярных решений уравнения (1), т.е. удовлетворяющих
условиям (2) и (3), установлен критерий единственности решения задачи (2)–(5) и само
решение построено в явном виде — суммы ряда Фурье. При обосновании сходимости ряда
возникла проблема малых знаменателей, как в известных работах В.И. Арнольда [15, 16] и
В.В. Козлова [17], но от двух натуральных аргументов. В связи с этим установлены оценки
об отделимости от нуля малых знаменателей, на основании которых доказана сходимость
ряда в классе функций 𝐶2(𝑄) при некоторых условиях относительно функций 𝜏(𝑥, 𝑦) и
𝜓(𝑥, 𝑦), а также получены оценки об устойчивости решения.

2. КРИТЕРИЙ ЕДИНСТВЕННОСТИ РЕШЕНИЯ ЗАДАЧИ ДИРИХЛЕ

В цилиндрической системе координат 𝑥= 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙, 𝑡= 𝑡, 0⩽ 𝑟 < 𝑙, 0⩽ 𝜙⩽ 2𝜋,
уравнение (1) примет вид

𝑢𝑟𝑟+
1

𝑟
𝑢𝑟+

1

𝑟2
𝑢𝜙𝜙+

𝑏

𝑎2
𝑢=

1

𝑎2
𝑢𝑡𝑡. (6)
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Разделив переменные 𝑢(𝑟, 𝜙, 𝑡)= 𝑣(𝑟, 𝜙)𝑇 (𝑡) в уравнении (6), получим относительно функции
𝑣(𝑟, 𝜙) следующую спектральную задачу:

𝑣𝑟𝑟+
1

𝑟
𝑣𝑟+

1

𝑟2
𝑣𝜙𝜙+𝜆

2𝑣=0, (7)

𝑣(𝑙, 𝜙)= 0, (8)

|𝑣(0, 𝜙)|<+∞, 𝑣(𝑟, 𝜙)= 𝑣(𝑟, 𝜙+2𝜋), (9)

где 𝜆2= 𝑏/𝑎2+𝜇2, 𝜇 — постоянная разделения переменных.
Решение задачи (7)–(9) аналогично [18, с. 215] будем искать в виде 𝑣(𝑟, 𝜙)=𝑅(𝑟)Φ(𝜙) и

получим две одномерные спектральные задачи:

Φ′′(𝜙)+𝑝2Φ(𝜙)= 0, 0⩽𝜙⩽ 2𝜋, (10)

Φ(𝜙)=Φ(𝜙+2𝜋), Φ′(𝜙)=Φ′(𝜙+2𝜋); (11)

𝑅′′(𝑟)+
1

𝑟
𝑅′(𝑟)+

(︂
𝜆2− 𝑝2

𝑟2

)︂
𝑅(𝑟)= 0, 0<𝑟< 𝑙, (12)

|𝑅(0)|<+∞, 𝑅(𝑙)= 0. (13)

Ненулевые периодические решения задачи (10) и (11) существуют лишь при целом 𝑝=𝑛
и определяются по формуле

Φ𝑛(𝜙)= 𝑎𝑛 cos(𝑛𝜙)+𝑏𝑛 sin(𝑛𝜙),

где 𝑎𝑛, 𝑏𝑛 — произвольные постоянные, 𝑛=0, 1, 2, . . . При 𝑝=𝑛 общее решение уравнения (12)
имеет вид

𝑅𝑛(𝑟)= 𝑐𝑛𝐽𝑛(𝜆𝑟)+𝑑𝑛𝑌𝑛(𝜆𝑟),

здесь 𝑐𝑛 и 𝑑𝑛 — произвольные постоянные, 𝐽𝑛(𝜆𝑟) и 𝑌𝑛(𝜆𝑟) — цилиндрические функции
первого и второго рода соответственно. Из первого условия в (13) следует, что 𝑑𝑛 = 0, а
второе условие даёт уравнение

𝐽𝑛(𝑞)= 0, 𝑞=𝜆𝑙,

которое, как известно, имеет счётное множество положительных корней 𝑞𝑛𝑚, 𝑛=0, 1, 2, . . . ,
𝑚=1, 2, . . . , и им соответствуют собственные значения

𝜆𝑛𝑚= 𝑞𝑛𝑚/𝑙, 𝑚=1, 2, . . . , 𝑛=0, 1, 2, . . . ,

и собственные функции ̃︀𝑅𝑛𝑚(𝑟)=𝐽𝑛(𝜆𝑛𝑚𝑟)=𝐽𝑛

(︁𝑞𝑛𝑚
𝑙
𝑟
)︁

спектральной задачи (12), (13).
Таким образом, спектральная задача (10), (11) имеет систему собственных функций

Φ𝑛(𝜙)=

{︂
1√
2𝜋
,

1√
𝜋
cos(𝑛𝜙),

1√
𝜋
sin(𝑛𝜙)

}︂
, (14)

ортонормированную, полную и образующую базис в пространстве 𝐿2(0, 2𝜋), а спектральная
задача (12), (13) — систему собственных функций

𝑅𝑛𝑚(𝑟)=
𝐽𝑛(𝜆𝑛𝑚𝑟)

‖𝐽𝑛(𝜆𝑛𝑚𝑟)‖𝐿2(0,𝑙)
=

√
2

𝑙

𝐽𝑛(𝜆𝑛𝑚𝑟)

|𝐽𝑛+1(𝑞𝑛𝑚)|
, (15)

полную и образующую ортонормированный базис в 𝐿2(0, 𝑙) с весом 𝑟.
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Тогда спектральная задача (7)–(9) имеет собственные значения 𝜆2𝑛𝑚=𝑏/𝑎2+𝜇2𝑛𝑚=(𝑞𝑛𝑚/𝑙)
2

и им соответствует с учётом (14) и (15) система собственных функций

𝑣𝑛𝑚(𝑟, 𝜙)=

{︂
1√
2𝜋
𝑅0𝑚(𝑟),

1√
𝜋
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙),

1√
𝜋
𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)

}︂
, (16)

которая полна и образует ортонормированный базис в пространстве 𝐿2(𝐷) с весом 𝑟.
В дальнейшем будем считать, что 𝑏⩾ 0, так как если 𝑏 < 0, то, начиная с некоторых

номеров 𝑛>𝑛0 или 𝑚>𝑚0, правая часть 𝜆2𝑛𝑚= 𝑏/𝑎2+𝜇2𝑛𝑚 принимает только положительные
значения, т.е. знак коэффициента 𝑏, по существу, не влияет на полученные результаты.

Пусть 𝑢(𝑟, 𝜙, 𝑡) — решение задачи (2)–(5). На основании системы (16) введём функции

𝐴0𝑚(𝑡)=
1√
2𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (17)

𝐴𝑛𝑚(𝑡)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙, (18)

𝐵𝑛𝑚(𝑡)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙. (19)

Дифференцируя равенство (18) по 𝑡 два раза и учитывая уравнение (6), получаем

𝐴′′
𝑛𝑚(𝑡)=

1√
𝜋

¨

𝐷

𝑢𝑡𝑡(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
𝑎2√
𝜋

¨

𝐷

(︂
𝑢𝑟𝑟+

1

𝑟
𝑢𝑟+

1

𝑟2
𝑢𝜙𝜙

)︂
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙+𝑏𝐴𝑛𝑚(𝑡)=𝐽1+𝐽2+𝑏𝐴𝑛𝑚(𝑡), (20)

где

𝐽1=
𝑎2√
𝜋

¨

𝐷

(︂
𝑢𝑟𝑟+

1

𝑟
𝑢𝑟

)︂
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

𝑎2√
𝜋

2𝜋ˆ

0

cos(𝑛𝜙)

𝑙ˆ

0

(𝑟𝑢𝑟)
′
𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟 𝑑𝜙, (21)

𝐽2=
𝑎2√
𝜋

¨

𝐷

1

𝑟
𝑢𝜙𝜙𝑅𝑛𝑚(𝑟) cos(𝑛𝜙) 𝑑𝑟 𝑑𝜙=

𝑎2√
𝜋

𝑙ˆ

0

1

𝑟
𝑅𝑛𝑚(𝑟)

2𝜋ˆ

0

𝑢𝜙𝜙 cos(𝑛𝜙) 𝑑𝜙 𝑑𝑟. (22)

Вычислим внутренние интегралы в правых частях равенств (21) и (22):

𝑙ˆ

0

(𝑟𝑢𝑟)
′
𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟= 𝑟𝑢𝑟𝑅𝑛𝑚(𝑟)

⃒⃒𝑙
0
−

𝑙ˆ

0

𝑢𝑟𝑟𝑅
′
𝑛𝑚(𝑟) 𝑑𝑟=−

𝑙ˆ

0

𝑢𝑟𝑟𝑅
′
𝑛𝑚(𝑟) 𝑑𝑟=

= 𝑟𝑢𝑅′
𝑛𝑚(𝑟)

⃒⃒𝑙
0
+

𝑙ˆ

0

𝑢(𝑟𝑅′
𝑛𝑚(𝑟))′ 𝑑𝑟=−𝜆2𝑛𝑚

𝑙ˆ

0

𝑢𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟+𝑛2
𝑙ˆ

0

𝑢
𝑅𝑛𝑚(𝑟)

𝑟
𝑑𝑟,

2𝜋ˆ

0

𝑢𝜙𝜙 cos(𝑛𝜙) 𝑑𝜙=−𝑛2
2𝜋ˆ

0

𝑢 cos(𝑛𝜙) 𝑑𝜙.
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Подставив эти значения в (21) и (22), а затем (21) и (22) в равенство (20), получим

𝐴′′
𝑛𝑚(𝑡)+𝑎2𝜇2𝑛𝑚𝐴𝑛𝑚(𝑡)= 0. (23)

Общее решение уравнения (23) определяется по формуле

𝐴𝑛𝑚(𝑡)= 𝑎𝑛𝑚 cos(𝑎𝜇𝑛𝑚𝑡)+𝑏𝑛𝑚 sin(𝑎𝜇𝑛𝑚𝑡), (24)

где 𝑎𝑛𝑚 и 𝑏𝑛𝑚 — произвольные постоянные. Для их определения воспользуемся граничными
условиями (5):

𝐴𝑛𝑚(0)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 0)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
1√
𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=: 𝜏𝑛𝑚, (25)

𝐴𝑛𝑚(𝑇 )=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑇 )𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
1√
𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=:𝜓𝑛𝑚. (26)

Подчинив общее решение (24) граничным условиям (25) и (26), найдём

𝑎𝑛𝑚= 𝜏𝑛𝑚, 𝑏𝑛𝑚=
1

sin(𝑎𝜇𝑛𝑚𝑇 )

(︀
𝜓𝑛𝑚−𝜏𝑛𝑚 cos(𝑎𝜇𝑛𝑚𝑇 )

)︀
при условии, что

Δ𝑛𝑚(𝑇 )= sin(𝑎𝜇𝑛𝑚𝑇 ) ̸=0 при всех 𝑛,𝑚∈N. (27)

Тогда

𝐴𝑛𝑚(𝑡)= 𝜏𝑛𝑚
sin(𝑎𝜇𝑛𝑚(𝑇 − 𝑡))

sin(𝑎𝜇𝑛𝑚𝑇 )
+𝜓𝑛𝑚

sin(𝑎𝜇𝑛𝑚𝑡)

sin(𝑎𝜇𝑛𝑚𝑇 )
. (28)

Продифференцировав равенство (19) два раза по 𝑡 с учётом уравнения (6), получим

𝐵′′
𝑛𝑚(𝑡)+𝑎2𝜇2𝑛𝑚𝐵𝑛𝑚(𝑡)= 0.

Отсюда (по аналогии с функцией 𝐴𝑛𝑚(𝑡)) найдём при выполнении условия (27)

𝐵𝑛𝑚(𝑡)= ̃︀𝜏𝑛𝑚 sin(𝑎𝜇𝑛𝑚(𝑇 − 𝑡))
sin(𝑎𝜇𝑛𝑚𝑇 )

+ ̃︀𝜓𝑛𝑚
sin(𝑎𝜇𝑛𝑚𝑡)

sin(𝑎𝜇𝑛𝑚𝑇 )
, (29)

где

̃︀𝜏𝑛𝑚=
1√
𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙, (30)

̃︀𝜓𝑛𝑚=
1√
𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙. (31)

Теперь продифференцируем равенство (17) два раза по 𝑡 и аналогично на основании
уравнения (6) получим, что функция 𝐴0𝑚(𝑡) является решением дифференциального урав-
нения

𝐴′′
0𝑚(𝑡)+𝑎2𝜇20𝑚𝐴0𝑚(𝑡)= 0.
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Отсюда (по аналогии с функцией 𝐴𝑛𝑚(𝑡)) найдём

𝐴0𝑚(𝑡)= 𝜏0𝑚
sin(𝑎𝜇0𝑚(𝑇 − 𝑡))

sin(𝑎𝜇0𝑚𝑇 )
+𝜓0𝑚

sin(𝑎𝜇0𝑚𝑡)

sin(𝑎𝜇0𝑚𝑇 )
(32)

при условии sin(𝜇0𝑚𝑇 ) ̸=0 для всех 𝑚∈N, где

𝜏0𝑚=
1√
2𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (33)

𝜓𝑛𝑚=
1√
2𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙. (34)

Теперь докажем единственность решения задачи (2)–(5). Пусть 𝜏(𝑥, 𝑦) = 𝜓(𝑥, 𝑦) ≡ 0 и
выполнены условия (27) при всех 𝑚∈N и 𝑛∈N0=N∪{0}. Тогда в силу равенств (25), (26),
(30), (31), (33) и (34) все 𝜏𝑛𝑚 =0, ̃︀𝜏𝑛𝑚 =0, 𝜓𝑛𝑚 =0, ̃︀𝜓𝑛𝑚 =0 при 𝑛=0, 1, 2, . . . , 𝑚=1, 2, . . .
Отсюда и на основании формул (32), (29), (28) и (17)–(19) имеем равенства

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=0,
¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=0

при всех 𝑛=0, 1, 2, . . . , 𝑚=1, 2, . . . , 𝑡∈ [0, 𝑇 ]. Из этих равенств на оcновании полноты системы
функций (16) в пространстве 𝐿2(𝐷) с весом 𝑟 следует, что 𝑢(𝑟, 𝜙, 𝑡) = 0 почти всюду в 𝐷
при любом 𝑡∈ [0, 𝑇 ]. Поскольку в силу (2) функция 𝑢(𝑟, 𝜙, 𝑡) непрерывна в 𝑄, то 𝑢(𝑟, 𝜙, 𝑡)≡0
в 𝑄.

Пусть при некоторых 𝑛 = 𝑛0 или 𝑚 = 𝑚0 выражение Δ𝑛0𝑚(𝑇 ) = 0 или Δ𝑛𝑚0(𝑇 ) = 0.
Для определённости допустим, что Δ𝑛0𝑚(𝑇 )=0. Тогда однородная задача (2)–(5) (𝜏(𝑥, 𝑦)=
=𝜓(𝑥, 𝑦)≡ 0) имеет ненулевое решение

𝑢𝑛0𝑚(𝑟, 𝜙, 𝑡)= sin(𝑎𝜇𝑛0𝑚𝑡)
(︀
𝑎0𝑚𝑅0𝑚(𝑟)+𝑎𝑛0𝑚𝑅𝑛0𝑚(𝑟) cos(𝑛0𝜙)+𝑏𝑛0𝑚𝑅𝑛0𝑚(𝑟) sin(𝑛0𝜙)

)︀
, (35)

где 𝑎0𝑚, 𝑎𝑛0𝑚 и 𝑏𝑛0𝑚 — произвольные постоянные.
Рассмотрим вопрос о нулях выражения Δ𝑛𝑚(𝑇 ). Равенство

Δ𝑛𝑚(𝑇 )= sin(𝑎𝜇𝑛𝑚𝑇 )= 0

имеет место только тогда, когда

𝑇 =
𝜋𝑘

𝑎𝜇𝑛𝑚
, 𝑘∈N. (36)

Значит, Δ𝑛𝑚(𝑇 ) обращается в нуль, когда 𝑇 определяется по формуле (36).
Таким образом, установлен критерий единственности решения задачи (2)–(5).
Теорема 1. Если существует решение задачи (2)–(5), то оно единственно тогда и

только тогда, когда при всех 𝑛 и 𝑚 выполнены условия (27).

3. СУЩЕСТВОВАНИЕ РЕШЕНИЯ ЗАДАЧИ

При выполнении условий (27) решение задачи (2)–(5) определяется суммой ряда

𝑢(𝑟, 𝜙, 𝑡)=
1√
2𝜋

∞∑︁
𝑚=1

𝐴0𝑚(𝑡)𝑅0𝑚(𝑟)+
1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟), (37)
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где коэффициенты 𝐴0𝑚(𝑡), 𝐴𝑛𝑚(𝑡) и 𝐵𝑛𝑚(𝑡) находятся по формулам (32), (28) и (29) со-
ответственно. Поскольку Δ𝑛𝑚(𝑇 ) является знаменателем коэффициентов ряда (37) и, как
показано выше, уравнение sin(𝑎𝜇𝑛𝑚𝑇 )=0 имеет счётное множество нулей (36), то возникает
проблема малых знаменателей. В связи с этим следует установить оценки об отделимости
от нуля. Для упрощения в дальнейшем положим, что 𝑏=0. Выражение Δ𝑛𝑚(𝑇 ) при 𝑏=0
представим в следующем виде:

Δ𝑛𝑚(𝜈)= sin(𝜈𝑞𝑛𝑚), 𝜈= 𝑎𝑇/𝑙. (38)

Лемма 1. Если выполнено одно из следующих условий:
1) число 𝜈/2= 𝑝 натуральное и нечётное;
2) число 𝜈/2= 𝑝/𝑞 — дробно-рациональное и отношение (2𝑟−𝑝)/(2𝑞) — не целое число,

где 𝑟∈N0 и 0⩽ 𝑟 < 𝑞,
то существуют положительные постоянные 𝐶0 и 𝑚0 (𝑚0∈N) такие, что при всех 𝑚>𝑚0

справедлива оценка
|Δ𝑛𝑚(𝜈)|⩾𝐶0> 0. (39)

Доказательство. Для нулей 𝑞𝑛𝑚 функции Бесселя 𝐽𝑛(𝑞) при больши́х значениях 𝑚>𝑚0,
где 𝑚0 — достаточно большое натуральное число, справедлива асимптотическая формула
[19, с. 241]

𝑞𝑛𝑚=
𝜋

2

(︂
2𝑚+𝑛− 1

2

)︂
+𝑂((4𝑚+2𝑛−1)−1). (40)

Подстановка (40) в (38) даёт

Δ𝑛𝑚(𝜈)= sin
𝜈𝜋

2

(︂
2𝑚+𝑛− 1

2

)︂
+𝑂((4𝑚+2𝑛−1)−1), (41)

так как

sin𝑂((4𝑚+2𝑛−1)−1)≈𝑂((4𝑚+2𝑛−1)−1), cos𝑂((4𝑚+2𝑛−1)−1)≈ 1+𝑂((4𝑚+2𝑛−1)−1)

при больши́х 𝑚>𝑚0.
Пусть число 𝜈/2= 𝑝∈N и нечётное. Тогда из равенства (41) при всех 𝑚>𝑚0 и 𝑛∈N0

получим

|Δ𝑛𝑚(𝜈)|⩾
⃒⃒⃒⃒
sin

(︂
𝜋𝑝(2𝑚+𝑛)− 𝑝𝜋

2

)︂⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
=

=

⃒⃒⃒⃒
sin

𝑝𝜋

2

⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
=1−

⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
>

1

2
(42)

в силу ⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
<𝐶1<

1

2

при больши́х 𝑚.
Пусть 𝜈/2 = 𝑝/𝑞, 𝑝, 𝑞 ∈N, (𝑝, 𝑞) = 1, 𝑝/𝑞 ̸∈N. В этом случае разделим 𝑝(2𝑚+𝑛) на 𝑞 с

остатком: 𝑝(2𝑚+𝑛)= 𝑞𝑠+𝑟, 𝑠, 𝑟∈N0, 0⩽ 𝑟 < 𝑞. Тогда соотношение (41) примет вид

Δ𝑛𝑚(𝜈)= sin

(︂
𝑠𝜋+

𝑟𝜋

𝑞
− 𝑝𝜋

2𝑞

)︂
+𝑂((4𝑚+2𝑛−1)−1)= (−1)𝑠 sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂
+𝑂((4𝑚+2𝑛−1)−1).
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Если 𝑟= 0, то имеем случай 1) леммы. Тогда 1⩽ 𝑟⩽ 𝑞−1. Отсюда (поскольку отношение
(2𝑟−𝑝)/(2𝑞) — не целое число) следует, что

|Δ𝑛𝑚(𝜈)|⩾
⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
⩾

⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
−𝐶1⩾𝐶2−𝐶1> 0, (43)

где

𝐶2= min
1⩽𝑟⩽𝑞−1

⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
.

Тогда из (42) и (43) при условии 𝐶1<𝐶2 вытекает справедливость оценки (39).
Лемма 2. Пусть выполнено одно из условий леммы 1, тогда при всех 𝑚>𝑚0, 𝑛∈N0

и любом 𝑡∈ [0, 𝑇 ] справедливы оценки

|𝐴𝑛𝑚(𝑡)|⩽𝑀1

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, (44)

|𝐵𝑛𝑚(𝑡)|⩽𝑀1

(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
, (45)

|𝐴′
𝑛𝑚(𝑡)|⩽𝑀2𝜇𝑛𝑚

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, |𝐵′

𝑛𝑚(𝑡)|⩽𝑀2𝜇𝑛𝑚
(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
,

|𝐴′′
𝑛𝑚(𝑡)|⩽𝑀3𝜇

2
𝑛𝑚

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, |𝐵′′

𝑛𝑚(𝑡)|⩽𝑀3𝜇
2
𝑛𝑚

(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
,

здесь и далее 𝑀𝑖 — положительные постоянные, зависящие от 𝑇, 𝑎 и 𝑙.
Справедливость этих оценок непосредственно следует из формул (28) и (29) на основании

неравенств (39).
Теперь формально из ряда (37) при 𝑏=0 почленным дифференцированием получим ряды

𝑢𝑡𝑡=
1√
2𝜋

∞∑︁
𝑚=1

𝐴′′
0𝑚(𝑡)𝑅0𝑚(𝑟)+

1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴′′

𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵′′
𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟),

𝑢𝜙𝜙=− 1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛2
(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟),

𝑢𝑟𝑟 =
1√
2𝜋

∞∑︁
𝑚=1

𝐴0𝑚(𝑡)𝑅′′
0𝑚(𝑟)+

1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅′′

𝑛𝑚(𝑟),

которые при любых (𝑟, 𝜙, 𝑡)∈𝑄 мажорируются соответственно числовыми рядами

4𝑀3√
2𝜋

∞∑︁
𝑚>𝑚0

𝜇20𝑚
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
|𝑅0𝑚(𝑟)|+

+
𝑀3√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝜇2𝑛𝑚
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅𝑛𝑚(𝑟)|, (46)

𝑀1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛2
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅𝑛𝑚(𝑟)|, (47)

𝑀1√
2𝜋

∞∑︁
𝑚>𝑚0

(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
|𝑅′′

0𝑚(𝑟)|+

+
𝑀1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅′′

𝑛𝑚(𝑟)|. (48)
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Лемма 3. Пусть 0<𝑟0 ⩽ 𝑟⩽ 𝑙, где 𝑟0 — малая положительная фиксированная посто-
янная. Тогда при 𝑚>𝑚0 и любом фиксированном 𝑛∈N0 имеют место оценки

|𝑅𝑛𝑚(𝑟)|⩽𝑀4, (49)

|𝑅′
𝑛𝑚(𝑟)|⩽𝑀5𝜇𝑛𝑚, (50)

|𝑅′′
𝑛𝑚(𝑟)|⩽𝑀6𝜇

2
𝑛𝑚. (51)

Доказательство. На основании асимптотической формулы для функции Бесселя пер-
вого рода 𝐽𝜈(𝑧) при больши́х значениях аргумента 𝑧 [20, с. 98]

𝐽𝜈(𝑧)=

√︂
2

𝜋𝑧

[︂
cos

(︂
𝑧− 𝜈𝜋

2
− 𝜋

4

)︂
− 1

2𝑧
sin

(︂
𝑧− 𝜈𝜋

2
− 𝜋

4

)︂]︂
+𝑂(𝑧−5/2) (52)

имеем

|𝐽𝑛(𝜇𝑛𝑚𝑟)|⩽
√︂

2

𝜋𝑟0𝜇𝑛𝑚

(︂
1+

1

2𝑟0𝜇𝑛𝑚

)︂
⩽ 2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
, (53)

так как 1/(2𝑟0𝜇𝑛𝑚)< 1 при больши́х 𝑚.
Аналогично получим оценки

|𝐽𝑛+1(𝑞𝑛𝑚)|= |𝐽𝑛+1(𝑙𝜇𝑛𝑚)|⩽ 2

√︂
2

𝜋𝑙𝜇𝑛𝑚
, (54)

из которых следует оценка (49).
Теперь найдём производную

𝑅′
𝑛𝑚(𝑟)=

√
2

𝑙|𝐽𝑛+1(𝑞𝑛𝑚)|
𝜇𝑛𝑚𝐽

′
𝑛(𝑧), 𝑧=𝜇𝑛𝑚𝑟. (55)

Используя равенство

𝐽 ′
𝜈(𝑧)=

1

2
[𝐽𝜈−1(𝑧)−𝐽𝜈+1(𝑧)] (56)

и формулу (52), получаем для 𝐽 ′
𝑛(𝑧) при больши́х 𝑧 асимптотическую формулу

𝐽 ′
𝑛(𝑧)=

1

2

√︂
2

𝜋𝑧

[︂
cos

(︂
𝑧− 𝑛−1

2
𝜋− 𝜋

4

)︂
−cos

(︂
𝑧− 𝑛+1

2
𝜋− 𝜋

4

)︂]︂
+𝑂(𝑧−3/2)=

=

√︂
2

𝜋𝑧
cos

(︂
𝑧− 𝑛𝜋

2
+
𝜋

4

)︂
+𝑂(𝑧−3/2),

на основании которой, аналогично оценкам (53) и (54), находим

|𝐽 ′
𝑛(𝜇𝑛𝑚𝑟)|⩽ 2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
. (57)

Тогда из равенства (55) в силу оценок (57) и (54) следует оценка (50).
Из (12) вычислим вторую производную

𝐽 ′′
𝑛(𝜇𝑛𝑚𝑟)=−1

𝑟
𝐽 ′
𝑛(𝜇𝑛𝑚𝑟)+

(︂
𝑛2

𝑟2
−𝜇2𝑛𝑚

)︂
𝐽𝑛(𝜇𝑛𝑚𝑟). (58)

Отсюда с учётом оценок (53) и (57) имеем

|𝐽 ′′
𝑛(𝜇𝑛𝑚𝑟)|⩽

1

𝑟0
2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
+
𝑛2

𝑟20
2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
+𝜇2𝑛𝑚2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
.

Из данного неравенства в силу (54) убеждаемся в справедливости оценки (51).
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Лемма 4. Пусть 0< 𝑟0 ⩽ 𝑟 ⩽ 𝑙. Тогда при больши́х 𝑛 и любом фиксированном 𝑚 ∈ N
справедливы оценки

|𝑅𝑛𝑚(𝑟)|⩽𝑀7, (59)

|𝑅′
𝑛𝑚(𝑟)|⩽𝑀8𝑛, (60)

|𝑅′′
𝑛𝑚(𝑟)|⩽𝑀9𝑛

2. (61)

Доказательство. Для получения этих оценок воспользуемся асимптотической формулой
Лангера при больши́х значениях порядка 𝑝 функции Бесселя [20, с. 103]

𝐽𝑝(𝑡)=
1

𝜋

√︂
1− arctg𝜔

𝜔
𝐾1/3(𝑧)+𝑂(𝑝−4/3), (62)

где
𝜔=

√︀
1−(𝑡/𝑝)2, 𝑡 < 𝑝, 𝑧= 𝑝(Arth𝜔−𝜔),

𝐾1/3(𝑧) — функция Макдональда.
Используя разложение в степенной ряд функции

arctg𝜔=𝜔− 𝜔3

3
+
𝜔5

5
− 𝜔7

7
+ . . . ,

оценим выражение
𝜔2

3

(︂
1− 3

5
𝜔2

)︂
< 1− arctg𝜔

𝜔
<
𝜔2

3
.

Отсюда при 0<𝜔< 1 будем иметь√︂
2

15
𝜔<

(︂
1− arctg𝜔

𝜔

)︂1/2

<
𝜔√
3
. (63)

Тогда из формулы (62) с учётом оценки (63) получим

|𝐽𝑝(𝑡)|⩽
𝜔

𝜋
√
3
𝐾1/3(𝑧), (64)

|𝐽𝑝(𝑡)|>
√︂

2

15

𝜔

𝜋
𝐾1/3(𝑧). (65)

Теперь на основании оценок (64) и (65) имеем

|𝐽𝑛(𝜇𝑛𝑚𝑟)|⩽
𝜔1

𝜋
√
3
𝐾1/3(𝑧1), (66)

|𝐽𝑛(𝑞𝑛𝑚)|⩾
√︂

2

15

𝜔2

𝜋
𝐾1/3(𝑧2), (67)

где

𝜔1=

√︂
1−
(︁𝑞𝑛𝑚𝑟
𝑛 𝑙

)︁2
, 𝑧1=𝑛(Arth𝜔1−𝜔1),

𝜔2=

√︂
1−
(︁ 𝑞𝑛𝑚
𝑛+1

)︁2
, 𝑧2=(𝑛+1)(Arth𝜔2−𝜔2).

Из неравенств (66) и (67) следует оценка (59), так как 𝜔1≈𝜔2 при больши́х 𝑛.
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На основании формул (55) и (56) оценим производную 𝑅′
𝑛𝑚(𝑟):

|𝑅′
𝑛𝑚(𝑟)|⩽ 𝑞𝑛𝑚√

2𝑙2|𝐽𝑛+1(𝑞𝑛𝑚)|
(︀
|𝐽𝑛−1(𝜇𝑛𝑚𝑟)|+ |𝐽𝑛+1(𝜇𝑛𝑚𝑟)|

)︀
.

Отсюда с учётом оценок (66) и (67) получим (60).
В силу равенства (58) на основании (59) и (60) убеждаемся в справедливости оценки (61).
Замечание. Отметим, что функция 𝑅𝑛𝑚(𝑟) и её производные 𝑅′

𝑛𝑚(𝑟), 𝑅′′
𝑛𝑚(𝑟), начиная с

некоторого номера 𝑛, при 𝑟→0 стремятся к нулю. Поэтому в леммах 3 и 4 оценки (49)–(51)
и (59)–(61) получены при 𝑟⩾ 𝑟0> 0.

В силу лемм 3 и 4 ряды (46)–(48) мажорируются комбинацией рядов

𝑀10

∞∑︁
𝑚>𝑚0

𝑚2
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
, 𝑀11

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛2
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
,

𝑀12

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝜇2𝑛𝑚
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
. (68)

Обозначим через 𝐶4,4(𝐷) множество функций 𝑓(𝑟, 𝜙), имеющих непрерывные смешанные
производные по 𝑟 и 𝜙 до четвёртого порядка включительно в замкнутой области 𝐷.

Лемма 5. Пусть 𝜏(𝑟, 𝜙), 𝜓(𝑟, 𝜙)∈𝐶4,4(𝐷) и 𝜏 (0,𝑖)(𝑟, 0)= 𝜏 (0,𝑖)(𝑟, 2𝜋), 𝑖=0, 3, 𝜏 (𝑘,4)(0, 𝜙)=0,
𝑘 = 0, 3, 𝜓(0,𝑖)(𝑟, 0) = 𝜓(0,𝑖)(𝑟, 2𝜋), 𝑖= 0, 3, 𝜓(𝑘,4)(0, 𝜙) = 0, 𝑘 = 0, 3. Тогда коэффициенты 𝜏𝑛𝑚,̃︀𝜏𝑛𝑚, 𝜓𝑛𝑚, ̃︀𝜓𝑛𝑚 при 𝜇𝑛𝑚→+∞ имеют оценки

𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, ̃︀𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, 𝜓𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, ̃︀𝜓𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
.

Доказательство. Рассмотрим коэффициенты 𝜏𝑛𝑚, 𝜓𝑛𝑚, ̃︀𝜏𝑛𝑚 и ̃︀𝜓𝑛𝑚, определённые по
формулам (25), (26), (30) и (31) соответственно. Представим 𝜏𝑛𝑚 в следующем виде:

𝜏𝑛𝑚=
1√
𝜋

𝑙ˆ

0

𝑅𝑛𝑚(𝜇𝑛𝑚𝑟)𝐼(𝑟)𝑟 𝑑𝑟, (69)

где

𝐼(𝑟)=

2𝜋ˆ

0

𝜏(𝑟, 𝜙) cos(𝑛𝜙) 𝑑𝜙.

По условию 𝜏 ′𝜙(𝑟, 0) = 𝜏 ′𝜙(𝑟, 2𝜋) и 𝜏 ′′′𝜙 (𝑟, 0) = 𝜏 ′′′𝜙 (𝑟, 2𝜋), тогда интеграл 𝐼(𝑟) с помощью четы-
рёхкратного интегрирования по частям можно преобразовать к виду

𝐼(𝑟)=
1

𝑛4

2𝜋ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙) cos(𝑛𝜙) 𝑑𝜙. (70)

Теперь интеграл (69) с учётом представления (70) запишем как

𝜏𝑛𝑚=

√
2

𝑙
√
𝜋|𝐽𝑛+1(𝑞𝑛𝑚)|𝑛4

2𝜋ˆ

0

𝐽(𝜙) cos(𝑛𝜙) 𝑑𝜙, (71)

где

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟. (72)
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Заметим, что функция 𝑋𝑛(𝑟)=𝑟
−𝑛𝐽𝑛(𝜉), 𝜉=𝜇𝑛𝑚𝑟, является решением дифференциального

уравнения

𝑋 ′′
𝑛(𝑟)+

2𝑛+1

𝑟
𝑋 ′

𝑛(𝑟)+𝜇
2
𝑛𝑚𝑋𝑛(𝑟)= 0. (73)

Тогда интеграл (72) с учётом уравнения (73) преобразуем следующим образом:

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)𝑋𝑛(𝑟)𝑟
𝑛+1 𝑑𝑟=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)

[︂
𝑋 ′′

𝑛(𝑟)+
2𝑛+1

𝑟
𝑋 ′

𝑛(𝑟)

]︂
𝑟𝑛+1 𝑑𝑟=

=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)
[︀
(𝑟𝑛+1𝑋 ′

𝑛(𝑟))
′+𝑛𝑟𝑛𝑋 ′

𝑛(𝑟)
]︀
𝑑𝑟=

=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟−
1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (1,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛𝑋𝑛(𝑟) 𝑑𝑟+
𝑛2

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

=− 1

𝜇2𝑛𝑚
𝐽1−

1

𝜇2𝑛𝑚
𝐽2+

𝑛2

𝜇2𝑛𝑚
𝐽3, (74)

где

𝐽1=

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟, 𝐽2=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟, 𝐽3=

𝑙ˆ

0

𝜏2(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟,

𝜏1(𝑟, 𝜙)=
𝜏
(1,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
, 𝜏2(𝑟, 𝜙)=

𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟2
.

Аналогично интегралу 𝐽(𝜙) по формуле (74) преобразуем интегралы 𝐽𝑖, 𝑖=1, 2:

𝐽𝑖=− 1

𝜇2𝑛𝑚
𝐽𝑖1−

1

𝜇2𝑛𝑚
𝐽𝑖2+

𝑛2

𝜇2𝑛𝑚
𝐽𝑖3, (75)

где

𝐽11=

𝑙ˆ

0

𝜏 (4,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 (4,4)𝑟,𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽12=

𝑙ˆ

0

𝜏 (3,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏
(3,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽13=

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏
(2,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽21=

𝑙ˆ

0

𝜏 ′′1𝑟(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 ′′1𝑟(𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽22=

𝑙ˆ

0

𝜏 ′1𝑟(𝑟, 𝜙)𝑟
𝑛𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 ′1𝑟(𝑟, 𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽23=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)𝑟
𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟.
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Интеграл 𝐽3 преобразуем следующим образом:

𝐽3=

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−1𝐽𝑛(𝜇𝑛𝑚𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−𝑛−2𝑟𝑛+1𝐽𝑛(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=
𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
𝐽𝑛+1(𝜇𝑛𝑚𝑟)

⃒⃒⃒𝑙
0
− 1

𝜇𝑛𝑚

𝑙ˆ

0

𝑑
[︁
𝑟−𝑛−2𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)

]︁
𝑟𝑛+1𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=− 1

𝜇𝑛𝑚

𝑙ˆ

0

𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−1𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟+
𝑛+2

𝜇𝑛𝑚

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−2𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=− 1

𝜇𝑛𝑚
𝐽31+

𝑛+2

𝜇𝑛𝑚
𝐽32. (76)

После подстановки (75) и (76) в равенство (74) получим

𝐽(𝜙)=
1

𝜇4𝑛𝑚

(︀
𝐽11+𝐽12+𝐽21+𝐽22

)︀
− 𝑛2

𝜇4𝑛𝑚

(︀
𝐽13+𝐽23

)︀
− 𝑛2

𝜇3𝑛𝑚
𝐽31+

𝑛2(𝑛+2)

𝜇3𝑛𝑚
𝐽32. (77)

Если 𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)∈𝐶4[0, 𝑙] и 𝜏

(𝑘,4)
𝑟,𝜙 (0, 𝜙)= 0, 𝑘=0, 3, то справедливы представления

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)=
𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟4

4!
, 0<𝜃<𝑟,

𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)=
𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟3

3!
, 𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)=

𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟2

2!
, 𝜏 (3,4)𝑟,𝜙 (𝑟, 𝜙)= 𝜏 (4,4)𝑟,𝜙 (𝜃, 𝜙)𝑟.

В силу этого в интегралах 𝐽31 и 𝐽32 функции 𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−5/2, 𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−3/2 непрерывно

дифференцируемы на [0, 𝑙], поэтому на данном промежутке имеют полную ограниченную
вариацию, т.е. конечное изменение. С учётом теоремы из [21, с. 653] интегралы 𝐽31 и 𝐽32
при 𝜇𝑛𝑚→∞ имеют оценку

𝐽31=𝑂(𝜇−3/2
𝑛𝑚 ), 𝐽32=𝑂(𝜇−3/2

𝑛𝑚 ). (78)

В интегралах 𝐽1𝑖, 𝑖 = 1, 2, 3, подынтегральные функции 𝜏
(4,4)
𝑟,𝜙 (𝑟, 𝜙), 𝜏

(3,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−1 и

𝜏
(2,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−2 непрерывны на отрезке [0, 𝑙]. Тогда в силу теоремы Юнга [21, с. 654] эти

интегралы при 𝜇𝑛𝑚→∞ имеют оценку

𝐽1𝑖=𝑂(𝜇−1/2
𝑛𝑚 ). (79)

Теперь рассмотрим интегралы 𝐽2𝑖, 𝑖 = 1, 2, 3. В них функции 𝜏 ′′1𝑟(𝑟, 𝜙), 𝜏 ′1𝑟(𝑟, 𝜙)𝑟
−1 и

𝜏1𝑟(𝑟, 𝜙)𝑟
−2 также непрерывны на отрезке [0, 𝑙], поэтому справедливы оценки

𝐽2𝑖=𝑂(𝜇−1/2
𝑛𝑚 ), 𝜇𝑛𝑚→∞. (80)

Тогда из представления (71) с учётом равенства (77) и оценок (78)–(80) получим

𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
.

Аналогично из формул (26), (30) и (31) следуют остальные оценки. Лемма доказана.
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Числовые ряды (68) в силу формулы (40) мажорируются соответственно сходящимися
рядами

𝑀13

∞∑︁
𝑚>𝑚0

1

𝑚2
, 𝑀14

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛

(4𝑚+2𝑛−1)4
, 𝑀15

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

1

𝑛(4𝑚+2𝑛−1)2
.

Если для чисел 𝜈 из леммы 1 при некоторых 𝑚=𝑚1,𝑚2, . . . ,𝑚𝑠⩽𝑚0, где 1⩽𝑚1<𝑚2<. . .
. . . <𝑚𝑠, Δ𝑛𝑚𝑖(𝜈)=0, то для разрешимости задачи (2)–(5) необходимо и достаточно, чтобы
выполнялись условия

𝜏𝑛𝑚𝑖 =𝜓𝑛𝑚𝑖 =0, ̃︀𝜏𝑛𝑚𝑖 =
̃︀𝜓𝑛𝑚𝑖 =0, 𝑖=1, 𝑠. (81)

В этом случае решение задачи (2)–(5) определяется в виде суммы ряда:

𝑢(𝑟, 𝜙, 𝑡)=
1√
2𝜋

(︃
𝑚1−1∑︁
𝑚=1

+

𝑚2−1∑︁
𝑚=𝑚1+1

+ . . .+

𝑚𝑠−1∑︁
𝑚=𝑚𝑠−1+1

+

∞∑︁
𝑚=𝑚𝑠+1

)︃
𝐴0𝑚(𝑡)𝑅0𝑚(𝑟)+

+
1√
𝜋

∞∑︁
𝑛=1

(︃
𝑚1−1∑︁
𝑚=1

+

𝑚2−1∑︁
𝑚=𝑚1+1

+ . . .+

𝑚𝑠−1∑︁
𝑚=𝑚𝑠−1+1

+
∞∑︁

𝑚=𝑚𝑠+1

)︃
×

×
(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟)+

𝑠∑︁
𝑖=1

𝐶𝑛𝑚𝑖𝑢𝑛𝑚𝑖(𝑟, 𝜙, 𝑡), (82)

здесь 𝑢𝑛𝑚𝑖(𝑟, 𝜙, 𝑡) определяются по формуле (35), где 𝑚0 нужно заменить на 𝑚𝑖, 𝐶𝑛𝑚𝑖 —
произвольные постоянные; если в конечных суммах в правой части (82) верхний предел
меньше нижнего, то их следует считать нулями.

Таким образом, доказана следующая
Теорема 2. Пусть выполнены условия лемм 1 и 5. Тогда если Δ𝑛𝑚(𝜈) ̸= 0 при всех

𝑚=1,𝑚0, то задача (2)–(5) однозначно разрешима и это решение определяется рядом (37);
если Δ𝑛𝑚(𝜈)=0 при некоторых 𝑚=𝑚1,𝑚2, . . . ,𝑚𝑠⩽𝑚0, то задача (2)–(5) разрешима только
тогда, когда выполнены условия (81) и решение определяется рядом (82).

Отметим, что выполнения условия Δ𝑛𝑚(𝜈) ̸= 0 при 𝑚 = 1,𝑚0 можно добиться, если
𝜈 ̸=𝜋𝑘/𝑞𝑛𝑚 (в силу формулы (36) при 𝑏=0).

4. УСТОЙЧИВОСТЬ РЕШЕНИЯ ЗАДАЧИ

Рассмотрим следующие нормы:

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐿2(𝐷)=
¨

𝐷

𝑢2(𝑟, 𝜙, 𝑡)𝑟 𝑑𝑟 𝑑𝜙, ‖𝑢(𝑟, 𝜙, 𝑡)‖𝐶(𝑄)= max
𝑟,𝜙,𝑡∈𝑄

|𝑢(𝑟, 𝜙, 𝑡)|,

‖𝑓 (2,2)𝑟,𝜙 (𝑟, 𝜙)‖𝐿2(𝐷)=
¨

𝐷

(︀
𝑓 (2,2)𝑟,𝜙 (𝑟, 𝜙)

)︀2
𝑟 𝑑𝑟 𝑑𝜙, ‖𝑔(2,2)𝑟,𝜙 (𝑟, 𝜙)‖2

𝐶(𝐷)
= max

𝑟,𝜙∈𝐷
|𝑔(2,2)𝑟,𝜙 (𝑟, 𝜙)|.

Теорема 3. Пусть выполнены условия теоремы 2 и Δ𝑛𝑚(𝜈) ̸= 0 при 𝑚= 1,𝑚0. Тогда
для решения (37) задачи (2)–(5) справедливы оценки

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐿2(𝐷)⩽𝑀16

(︀
‖𝜏(𝑟, 𝜙)‖𝐿2(𝐷)+‖𝜓(𝑟, 𝜙)‖𝐿2(𝐷)

)︀
, (83)

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐶(𝑄)⩽𝑀17

(︀⃦⃦
𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙)

⃦⃦
𝐶(𝐷)

+
⃦⃦
𝜓(2,2)
𝑟,𝜙 (𝑟, 𝜙)

⃦⃦
𝐶(𝐷)

)︀
. (84)
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Доказательство. Построенная система собственных функций (16) ортонормирована в
пространстве 𝐿2(𝐷) с весом 𝑟. Тогда из формулы (37) на основании оценок (44), (45) и (49)
будем иметь

‖𝑢(𝑟, 𝜙, 𝑡)‖2𝐿2(𝐷)=
∞∑︁

𝑚=1

𝐴2
0𝑚(𝑡)+

∞∑︁
𝑛,𝑚=1

𝐴2
𝑛𝑚(𝑡)+𝐵2

𝑛𝑚(𝑡)⩽

⩽ 2𝑀2
1𝑀

2
4

[︃ ∞∑︁
𝑚=1

(︀
|𝜏0𝑚|2+ |𝜓0𝑚|2

)︀
+

∞∑︁
𝑛,𝑚=1

(︀
|𝜏𝑛𝑚|2+ |̃︀𝜏𝑛𝑚|2+ |𝜓𝑛𝑚|2+ | ̃︀𝜓𝑛𝑚|2

)︀]︃
=

=2𝑀2
1𝑀

2
4

(︀
‖𝜏(𝑟, 𝜙)‖2𝐿2(𝐷)+‖𝜓(𝑟, 𝜙)‖2𝐿2(𝐷)

)︀
.

Отсюда получим оценку (83).
Пусть (𝑟, 𝜙, 𝑡) — произвольная точка 𝑄. Тогда из формулы (37) с учётом оценок (44), (45)

и (49) имеем

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀1𝑀4

[︃ ∞∑︁
𝑚=1

(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
+

∞∑︁
𝑛,𝑚=1

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀]︃
. (85)

Далее на основании рассуждений, приведённых при доказательстве леммы 5, коэффи-
циент 𝜏𝑛𝑚 представим в виде

𝜏𝑛𝑚=−
√
2

𝑙
√
𝜋|𝐽𝑛+1(𝑞𝑛𝑚)|𝑛2

2𝜋ˆ

0

𝐽(𝜙) cos(𝑛𝜙) 𝑑𝜙,

где

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (0,2)𝑟,𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟=− 1

𝜇2𝑛𝑚

(︀
𝐽 ′
1+𝐽

′
2−𝑛2𝐽 ′

3

)︀
,

𝐽 ′
1=

𝑙ˆ

0

𝜏 (2,2)𝑟,𝜙 (𝑟,𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟, 𝐽 ′
2=

𝑙ˆ

0

𝜏
(1,2)
𝑟,𝜙 (𝑟,𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟, 𝐽 ′

3=

𝑙ˆ

0

𝜏
(0,2)
𝑟,𝜙 (𝑟,𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟.

Если 𝜏
(0,2)
𝑟,𝜙 (𝑟, 𝜙)∈𝐶2[0, 𝑙] и 𝜏

(0,2)
𝑟,𝜙 (0, 𝜙)= 𝜏 (1,2)(0, 𝜙)=0, то функции 𝜏

(1,2)
𝑟,𝜙 (𝑟, 𝜙)𝑟−1= 𝜏

(2,2)
𝑟,𝜙 (𝜃, 𝜙),

𝜏
(0,2)
𝑟,𝜙 (𝑟, 𝜙)= 𝜏

(2,2)
𝑟,𝜙 (𝜃, 𝜙)/2, 0<𝜃<𝑟, непрерывны на отрезке [0, 𝑙], тогда

|𝜏𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|𝜏 (2,2)𝑛𝑚 |,

где
𝜏 (2,2)𝑛𝑚 =

1√
𝜋

¨

𝐷

𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙) cos(𝑛𝜙)𝑅𝑛𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙. (86)

Аналогично получим оценки

|̃︀𝜏𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|̃︀𝜏 (2,2)𝑛𝑚 |,

̃︀𝜏 (2,2)𝑛𝑚 =
1√
𝜋

¨

𝐷

𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙) sin(𝑛𝜙)𝑅𝑛𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (87)

|𝜓𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|𝜓(2,2)

𝑛𝑚 |, | ̃︀𝜓𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
| ̃︀𝜓(2,2)

𝑛𝑚 |,

где 𝜓
(2,2)
𝑛𝑚 и ̃︀𝜓(2,2)

𝑛𝑚 определяются по формулам (86) и (87), но с заменой 𝜏(𝑟, 𝜙) на 𝜓(𝑟, 𝜙).
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Теперь, продолжая оценку (85), будем иметь

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀19

[︃ ∞∑︁
𝑚=1

1

𝜇20𝑚

(︀
|𝜏 (2,2)0𝑚 |+ |𝜓(2,2)

0𝑚 |
)︀
+

∞∑︁
𝑛,𝑚=1

1

𝜇2𝑛𝑚

(︀
|𝜏 (2,2)𝑛𝑚 |+ |̃︀𝜏 (2,2)𝑛𝑚 |+ |𝜓(2,2)

𝑛𝑚 |+ | ̃︀𝜓(2,2)
𝑛𝑚 |

)︀]︃
.

Отсюда, используя неравенство Буняковского, получаем

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀20

{︃(︃ ∞∑︁
𝑚=1

1

𝜇40𝑚

)︃1/2[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2
)︃1/2

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2

)︃1/2]︃
+

+

(︃ ∞∑︁
𝑛,𝑚=1

1

𝜇4𝑛𝑚

)︃1/2[︃(︃
2

∞∑︁
𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

(︃
2

∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃}︃
⩽

⩽𝑀21

[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2
)︃1/2

+

(︃ ∞∑︁
𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2

)︃1/2
+

(︃ ∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃
⩽

⩽𝑀21

√
2

[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2+
∞∑︁

𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2+

∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃
=

=
√
2𝑀21

(︀
‖𝜏 (2,2)(𝑟, 𝜙)‖𝐿2(𝐷)+‖𝜓(2,2)(𝑟, 𝜙)‖𝐿2(𝐷)

)︀
⩽𝑀22

(︀
‖𝜏 (2,2)(𝑟, 𝜙)‖𝐶(𝐷)+‖𝜓(2,2)(𝑟, 𝜙)‖𝐶(𝐷)

)︀
.

Из последнего неравенства непосредственно следует оценка (84).
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In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Колебания полого гибкого стержня [1, гл. 8, формула (8.230)] моделируются нелинейным
дифференциальным уравнением соболевского типа [2]

𝛿𝑢𝑡𝑡−𝑢𝑡𝑡𝑥𝑥−𝛼2𝑢𝑡𝑥𝑥−𝛼1𝑢𝑡𝑥+𝛽2𝑢𝑥𝑥𝑥𝑥+𝛽1𝑢𝑥𝑥+𝛾𝑢=𝑢𝑥𝑥𝑓
′(𝑢𝑥), (1)

где (𝑡, 𝑥) ∈ R+×R, R+ = (0,+∞), R = (−∞,+∞); штрих в уравнении обозначает диффе-
ренцирование по 𝑢𝑥 = 𝜕𝑥𝑢= 𝜕𝑢/𝜕𝑥; коэффициенты 𝛼𝑖, 𝛽𝑖, 𝑖= 1, 2, 𝛾, 𝛿 — неотрицательные
постоянные; нелинейность 𝑓 — дважды непрерывно дифференцируемая функция 𝑓(𝑟), 𝑟∈R,
для которой модуль |𝑓(𝑟)| при 𝑟⩾0 является неубывающей функцией и справедливы оценки

sup
𝑥∈R

|𝑓 (𝑖)(𝑔(𝑥))|⩽
⃒⃒⃒
𝑓 (𝑖)
(︁
sup
𝑥∈R

|𝑔(𝑥)|
)︁⃒⃒⃒
, 𝑖=0, 1, 𝑔(𝑥)∈𝐶[R],

|𝑓(𝜉𝑟)|⩽𝜒(𝜉)|𝑓(𝑟)|, 𝜉 > 0, 𝑟⩾ 0, (2)

𝜒 — непрерывная неубывающая функция (простейший её пример — степенная функция,
другие нетривиальные примеры см. в [3]).

Полагаем, что стержень является бесконечным. Такая идеализация допустима [4], если
на границах стержня находятся оптимальные демпфирующие устройства, т.е. параметры
граничного закрепления таковы, что падающие на него возмущения не отражаются.

Задача Коши для уравнения (1) исследуется в пространстве 𝐶[R] [5, гл. 8, § 1] непре-
рывных функций 𝑔=𝑔(𝑥), для которых существуют оба предела при 𝑥→±∞ и норма равна
‖𝑔‖𝐶 =sup𝑥∈R |𝑔(𝑥)|, с начальными условиями

𝑢|𝑡=0=𝜙(𝑥), 𝑢𝑡|𝑡=0=𝜓(𝑥), 𝑥∈R. (3)
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Искомое классическое решение 𝑢=𝑢(𝑡, 𝑥), (𝑡, 𝑥)∈R+×R, R+=[0,+∞), и его частные произ-
водные, входящие в уравнение (1), для всех значений временно́й переменной 𝑡 по перемен-
ной 𝑥 принадлежат пространству 𝐶[R]. (Под классическим решением уравнения понимается
достаточно гладкая функция, имеющая все непрерывные производные нужного порядка и
удовлетворяющая уравнению в каждой точке области его задания.)

Через 𝐶(𝑘)[R] = {𝑔(𝑥)∈𝐶[R] : 𝑔′(𝑥), . . . , 𝑔(𝑘)(𝑥)∈𝐶[R]}, 𝑘=1, 2, . . . , обозначаются подмно-
жества дифференцируемых функций в 𝐶[R].

Напомним [5, гл. 8, § 1; 6, § 2], что в пространстве 𝐶[R] дифференциальный опера-
тор 𝜕𝑥 с областью определения 𝐷(𝜕𝑥)=𝐶

(1)[R] порождает сжимающую сильно непрерывную
группу 𝑈(𝜏 ; 𝜕𝑥)𝑔(𝑥) = 𝑔(𝑥+ 𝜏), 𝜏 ∈ R, левых сдвигов, а оператор 𝜕2𝑥 с областью определе-
ния 𝐷(𝜕2𝑥) = 𝐶(2)[R] является производящим оператором сильно непрерывной полугруппы
𝑈(𝑡; 𝜕2𝑥)𝑔(𝑥) = (2

√
𝜋𝑡)−1

´ +∞
0 𝑒−𝜉2/(4𝑡)𝑔(𝑥+ 𝜉) 𝑑𝜉, 𝑡 ∈ R+; причём для резольвент (𝜆𝐼−𝜕𝑥)−1,

(𝜆𝐼−𝜕2𝑥)−1 справедливы оценки ‖(𝜆𝐼−𝜕𝑥)−1‖⩽ 1/𝜆 и ‖(𝜆𝐼−𝜕2𝑥)−1‖⩽ 1/𝜆 при 𝜆> 0.
Исследование задачи Коши (1), (3) проведём по следующему плану.
1. Убедимся, что постановка задачи Коши (1), (3) корректна и локальное по времени

её классическое решение существует. С этой целью для соответствующего (1) линейного
однородного уравнения найдём решение задачи Коши.

2. Введём в рассмотрение вспомогательную задачу Коши

𝛿𝑣𝑡𝑡−𝑣𝑡𝑡𝑥𝑥−𝛼2𝑣𝑡𝑥𝑥−𝛼1𝑣𝑡𝑥+𝛽2𝑣𝑥𝑥𝑥𝑥+𝛽1𝑣𝑥𝑥+𝛾𝑣= 𝜕2𝑥𝑓(𝑣), (4)

𝑣|𝑡=0=𝜙′(𝑥), 𝑣𝑡|𝑡=0=𝜓′(𝑥), 𝑥∈R, (5)

для которой найдём временной отрезок [0, 𝑡1] существования и единственности её классиче-
ского решения и оценим норму в 𝐶[R] этого локального решения.

3. Установим связь между решениями уравнений (1) и (4), полагая, что на отрезке [0, 𝑡1]
решение 𝑢=𝑢(𝑡, 𝑥) по переменной 𝑥 принадлежит пересечению подмножества 𝐶(4)[R]⊂𝐶[R]
с пространством Соболева 𝑊 4

2 (R), причём временны́е частные производные 𝑢𝑡 = 𝑢𝑡(𝑡, 𝑥) и
𝑢𝑡𝑡=𝑢𝑡𝑡(𝑡, 𝑥) принадлежат пересечению 𝐶(2)[R]∩𝑊 2

2 (R).
4. Найдём достаточные условия существования единственного классического глобального

(𝑡⩾0) решения и разрушения на конечном временно́м отрезке решения задачи Коши (1), (3).

2. ЗАДАЧА КОШИ ДЛЯ ЛИНЕЙНОГО ОДНОРОДНОГО УРАВНЕНИЯ

Рассмотрим линейное однородное уравнение, соответствующее (1):

(𝛿𝐼−𝜕2𝑥)𝑢𝑡𝑡−(𝛼2𝜕
2
𝑥+𝛼1𝜕𝑥)𝑢𝑡+(𝛽2𝜕

4
𝑥+𝛽1𝜕

2
𝑥+𝛾𝐼)𝑢=0. (6)

Введём в (6) новую неизвестную функцию

𝑣(𝑡, 𝑥)= 𝛿𝑢(𝑡, 𝑥)−𝑢𝑥𝑥(𝑡, 𝑥), (7)

полагая, что частные производные 𝑢𝑥𝑥, 𝑢𝑡𝑥𝑥 непрерывны при 𝑡 ∈ R+. Из замены (7) при
условии, что начальные функции 𝜙(𝑥), 𝜓(𝑥) принадлежат 𝐶(2)[R], можно единственным
образом определить начальные значения функции 𝑣= 𝑣(𝑡, 𝑥):

𝑣|𝑡=0= 𝑣0(𝑥)= 𝛿𝜙(𝑥)−𝜙′′(𝑥), 𝑣𝑡|𝑡=0= 𝑣1(𝑥)= 𝛿𝜓(𝑥)−𝜓′′(𝑥),
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и, используя принадлежность положительной полуоси резольвентному множеству дифферен-
циального оператора 𝜕2𝑥, выразить решение 𝑢(𝑡, 𝑥) уравнения (6) через новую неизвестную
функцию 𝑣(𝑡, 𝑥):

𝑢(𝑡, 𝑥)= (𝛿𝐼−𝜕2𝑥)
−1
𝑣(𝑡, 𝑥)=

1

2
√
𝛿

+∞ˆ

−∞

𝑒−|𝑠|
√
𝛿𝑣(𝑡, 𝑥+𝑠) 𝑑𝑠. (8)

В результате замены (7) получим эквивалентное (6) интегро-дифференциальное уравнение

𝑣𝑡𝑡+𝐴1𝑣𝑡+𝐴2𝑣=0, (9)

в котором операторные коэффициенты равны

𝐴1=𝛼2𝐼−(𝛼2

√
𝛿−𝛼1)

√
𝛿(𝛿𝐼−𝜕2𝑥)

−1−𝛼1(
√
𝛿𝐼−𝜕𝑥)

−1
, 𝐷(𝐴1)=𝐶[R],

𝐴2=−𝛽2𝜕2𝑥−(𝛽2𝛿+𝛽1)𝐼+(𝛽2𝛿
2+𝛽1𝛿+𝛾)(𝛿𝐼−𝜕2𝑥)

−1
, 𝐷(𝐴2)=𝐶(2)[R].

Ограниченный оператор 𝐴1 порождает равномерно непрерывную группу 𝑈(𝜏 ;𝐴1), 𝜏 ∈R,
представимую степенным рядом

𝑈(𝜏 ;𝐴1)=

+∞∑︁
𝑛=0

𝜏𝑛

𝑛!
𝐴𝑛

1 ,

равномерно сходящимся по 𝜏 на каждом конечном отрезке из R, причём в силу перестано-
вочности операторов (

√
𝛿𝐼−𝜕𝑥)−1 и (𝛿𝐼−𝜕2𝑥)−1 справедливы представление

𝑈(𝜏 ;𝐴1)= 𝑒𝛼2𝜏𝑈
(︀
−𝛼1𝜏 ; (

√
𝛿𝐼−𝜕𝑥)−1

)︀
𝑈
(︀
−(𝛼2

√
𝛿−𝛼1)

√
𝛿𝜏 ; (𝛿𝐼−𝜕2𝑥)−1

)︀
=

= 𝑒𝛼2𝜏

(︃
+∞∑︁
𝑛=0

(−1)𝑛𝛼𝑛
1 𝜏

𝑛

𝑛!
(
√
𝛿𝐼−𝜕𝑥)−𝑛

)︃(︃
+∞∑︁
𝑚=0

(−1)𝑚(𝛼2

√
𝛿−𝛼1)

𝑚𝛿𝑚/2𝜏𝑚

𝑚!
(𝛿𝐼−𝜕2𝑥)−𝑚

)︃
и оценка

‖𝑈(𝑡;𝐴1)‖⩽ 𝑒(𝛼2+𝛼1/
√
𝛿+|𝛼2−𝛼1/

√
𝛿|)𝑡, 𝑡∈𝑅+.

В уравнении (9) проведём замену неизвестной функции

𝑤(𝑡, 𝑥)=𝑈(𝑡/2;𝐴1)𝑣(𝑡, 𝑥), (10)

тогда можно единственным образом определить начальные значения функции 𝑤(𝑡, 𝑥):

𝑤|𝑡=0=𝑤0(𝑥)= 𝑣0(𝑥),

𝑤𝑡|𝑡=0=𝑤1(𝑥)=𝐴1𝑣0(𝑥)/2+𝑣1(𝑥)=

=𝛼2
𝑣0(𝑥)

2
− 𝛼2

√
𝛿−𝛼1

4

+∞ˆ

−∞

𝑒−|𝑠|
√
𝛿𝑣0(𝑥+𝑠) 𝑑𝑠−

𝛼1

2

+∞ˆ

0

𝑒−𝑟
√
𝛿𝑣0(𝑥+𝑟) 𝑑𝑟+𝑣1(𝑥)

и выразить решение 𝑣(𝑡, 𝑥) уравнения (9) через новую неизвестную функцию 𝑤(𝑡, 𝑥):

𝑣(𝑡, 𝑥)=𝑈(−𝑡/2;𝐴1)𝑤(𝑡, 𝑥). (11)
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В результате замены (10) получим эквивалентное (9) интегро-дифференциальное урав-
нение

𝑤𝑡𝑡=(𝐴2
1/4−𝐴2)𝑤, (12)

в котором операторный коэффициент

𝐴2
1/4−𝐴2=𝐵=𝐵0+𝐵1, 𝐷(𝐵)=𝐶(2)[R],

где 𝐵0=𝛽2𝜕
2
𝑥 и

𝐵1=

(︂
𝛽2𝛿+𝛽1+

𝛼2
2

4

)︂
𝐼−
(︂
𝑏2𝛿

2+𝛽1𝛿+𝛾+
𝛼2(𝛼2

√
𝛿−𝛼1)

2

√
𝛿

)︂
(𝛿𝐼−𝜕2𝑥)−1−

− 𝛼2𝛼1

2
(
√
𝛿𝐼−𝜕𝑥)−1+

1

4

(︁
𝛼1(

√
𝛿𝐼−𝜕𝑥)−1+(𝛼2

√
𝛿−𝛼1)

√
𝛿(𝛿𝐼−𝜕2𝑥)−1

)︁2
.

Уравнение (12) можно записать в виде абстрактного обыкновенного дифференциального
уравнения

𝑊𝑡𝑡=𝐵𝑊, 𝑡∈R+, (13)

где 𝑊 =𝑊 (𝑡) : 𝑡→𝑤(𝑡, 𝑥) — искомая вектор-функция, определённая для 𝑡∈R+ со значениями
в пространстве 𝐶[R].

Для уравнения (13) рассмотрим абстрактную задачу Коши с начальными условиями

𝑊 |𝑡=0=𝑊0, 𝑊 ′|𝑡=0=𝑊1, (14)

где 𝑊0=𝑤0(𝑥), 𝑊1=𝑤1(𝑥) — элементы пространства 𝐶[R].
Задача Коши (13), (14) равномерно корректна [6, § 1.4] только тогда, когда оператор 𝐵

является производящим оператором сильно непрерывной косинус оператор-функции 𝐶(𝜏 ;𝐵),
𝜏 ∈R.

В пространстве 𝐶[R] оператор 𝐵0 является производящим оператором сильно непрерыв-
ной косинус оператор-функции 𝐶(𝜏 ;𝐵0), 𝜏 ∈R [6, § 1.5]:

𝐶(𝜏 ;𝐵0)𝑔(𝑥)= 2−1
[︀
𝑈
(︀
𝜏
√︀
𝛽2; 𝜕𝑥

)︀
+𝑈

(︀
−𝜏
√︀
𝛽2; 𝜕𝑥

)︀]︀
𝑔(𝑥)= 2−1

[︀
𝑔(𝑥+𝜏

√︀
𝛽2)+𝑔(𝑥−𝜏

√︀
𝛽2)
]︀
,

для которой справедлива оценка нормы

‖𝐶(𝑡;𝐵0)‖⩽ 1, 𝑡∈𝑅+.

Соответствующая синус оператор-функция 𝑆(𝜏 ;𝐵0), 𝜏 ∈R, имеет вид

𝑆(𝜏 ;𝐵0)𝑔(𝑥)=

𝜏ˆ

0

𝐶(𝑠;𝐵0)𝑔(𝑥) 𝑑𝑠=
1

2
√
𝛽2

𝑥+𝜏
√
𝛽2ˆ

𝑥−𝜏
√
𝛽2

𝑔(𝜉) 𝑑𝜉

и для неё справедлива оценка нормы

‖𝑆(𝑡;𝐵0)‖⩽ 𝑡, 𝑡∈𝑅+.

Ограниченный оператор 𝐵1 порождает сильно непрерывную косинус оператор-функцию
𝐶(𝜏 ;𝐵1), для которой на произвольном элементе 𝑔(𝑥) ∈ 𝐶[R] справедливо представление
[6, §§ 1.4, 4.2]

𝐶(𝜏 ;𝐵1)𝑔(𝑥)=
+∞∑︁
𝑛=0

𝜏2𝑛

(2𝑛)!
𝐵𝑛

1 𝑔(𝑥), 𝜏 ∈R,
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причём степенной ряд сходится равномерно по 𝜏 на каждом конечном отрезке из R. Отметим,
что операторнозначная функция 𝐶(𝜏 ;𝐵1) непрерывна в равномерной операторной топологии
и для неё справедлива оценка нормы

‖𝐶(𝑡;𝐵1)‖⩽
+∞∑︁
𝑛=0

𝑡2𝑛

(2𝑛)!
‖𝐵1‖𝑛⩽ ch(𝑐1𝑡), 𝑡∈𝑅+,

где 𝑐21=2𝛽2𝛿+2𝛽1+𝛾/𝛿+(𝛼2

√
𝛿+𝛼1+ |𝛼2

√
𝛿−𝛼1|)2/(4𝛿).

Оператор 𝐵 получен возмущением неограниченного оператора 𝐵0 ограниченным опе-
ратором 𝐵1, но возмущение ограниченным оператором сохраняет [6, § 8.2] способность
оператора 𝐵0 порождать косинус оператор-функцию, поэтому 𝐵 = 𝐵0+𝐵1 является про-
изводящим оператором сильно непрерывной косинус оператор-функции 𝐶(𝜏 ;𝐵), 𝜏 ∈ R, и
значит, абстрактная задача Коши (13), (14) равномерно корректна.

Решение задачи Коши (13), (14) для любых начальных данных 𝑊0 ∈𝐷(𝐵) и 𝑊1 ∈𝐶1[R]
определяется формулой

𝑊 (𝑡)=𝐶(𝑡;𝐵)𝑊0+𝑆(𝑡;𝐵)𝑊1,

где 𝑆(𝑡;𝐵) — синус оператор-функция, ассоциированная с 𝐶(𝑡;𝐵):

𝑆(𝑡;𝐵)𝑔=

𝑡ˆ

0

𝐶(𝜏 ;𝐵)𝑔 𝑑𝜏, 𝑔 ∈𝐶[R],

𝐶1[R] = {𝑔∈𝐶[R] : 𝐶(𝑡;𝐵)𝑔∈𝐶(1)(R, 𝐶[R])} — линейное многообразие. Очевидно, что 𝐷(𝐵)=
=𝐶(2)[R]⊂𝐶1[R].

Для того чтобы вывести оценку нормы решения уравнения (13) — абстрактной функ-
ции 𝑊 (𝑡), найдём оценки норм косинус и синус оператор-функций, порождаемых операто-
ром 𝐵, для чего получим представление операторнозначной функции 𝐶(𝑡;𝐵) через 𝐶(𝑡;𝐵0)
и 𝐶(𝑡;𝐵1).

Рассматривая производящий оператор 𝐵 как результат возмущения производящего опе-
ратора 𝐵0 оператором 𝐵1, который, в свою очередь, порождает косинус оператор-функцию,
для 𝑔(𝑥)∈𝐷(𝐵0)∩𝐷(𝐵1)=𝐶(2)[R], получаем [6, § 8.2] представление

𝐶(𝑡;𝐵)𝑔(𝑥)=𝐶(𝑡;𝐵0)𝑔(𝑥)+
𝑡2

2

1ˆ

0

𝑗1(𝑡
√︀
1−𝑠2, 𝐵0)𝐶(𝑡𝑠;𝐵1)𝑔(𝑥) 𝑑𝑠,

где 𝑗1(𝑡, 𝐵0)𝑔(𝑥)= (4/𝜋)
´ 1
0

√
1−𝑟2𝐶(𝑡𝑟;𝐵0)𝑔(𝑥) 𝑑𝑟.

Для 𝑡∈R+ получим оценки норм: ‖𝑗1(𝑡, 𝐵0)‖⩽ (4/𝜋)
´ 1
0

√
1−𝑟2 𝑑𝑟=1 и

‖𝐶(𝑡;𝐵)‖⩽ 1+
𝑡2

2

1ˆ

0

ch(𝑐1𝑡𝑠) 𝑑𝑠=1+
𝑡

2𝑐1
sh(𝑐1𝑡)=𝜎1(𝑡), (15)

‖𝑆(𝑡;𝐵)‖⩽ 𝑡+
1

2𝑐1

𝑡ˆ

0

𝜏 sh(𝑐1𝜏) 𝑑𝜏 ⩽ 𝑡

(︂
1+

ch(𝑐1𝑡)

2𝑐21

)︂
=𝜎2(𝑡). (16)

С помощью формул (11) и (8) обратных замен имеем

𝑢(𝑡, 𝑥)= (𝛿𝐼−𝜕2𝑥)−1𝑣(𝑡, 𝑥)= (𝛿𝐼−𝜕2𝑥)−1𝑈(−𝑡/2;𝐴1)𝑤(𝑡, 𝑥). (17)
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Далее, используя перестановочность резольвенты (𝛿𝐼−𝜕2𝑥)−1 и полугруппы 𝑈(−𝑡/2;𝐴1) как
между собой, так и c косинус оператор-функцией, порождаемой оператором 𝐵, находим
решение задачи Коши для уравнения (6):

𝑢(𝑡, 𝑥)=𝑈(−𝑡/2;𝐴1)
[︀
𝐶(𝑡;𝐵)𝜙(𝑥)+𝑆(𝑡;𝐵)(𝐴1𝜙(𝑥)/2+𝜓(𝑥))

]︀
. (18)

Таким образом, имеет место
Теорема 1. Пусть начальные функции 𝜙(𝑥) и 𝜓(𝑥) принадлежат подмножеству 𝐶(4)[R]

пространства 𝐶[R], тогда задача Коши для линейного однородного уравнения (6) равномерно
корректна, классическое решение даётся формулой (18) и для него справедлива оценка

sup
𝑥∈R

|𝑢(𝑡, 𝑥)|⩽ 𝑒−(𝛼2−𝛼1/
√
𝛿−|𝛼2−𝛼1/

√
𝛿|)𝑡/2×

×
[︂
𝜎1(𝑡) sup

𝑥∈R
|𝜙(𝑥)|+𝜎2(𝑡)

(︂
sup
𝑥∈R

|𝜓(𝑥)|+ 𝛼2

√
𝛿+𝛼1+ |𝛼2

√
𝛿−𝛼1|

2
√
𝛿

sup
𝑥∈R

|𝜙(𝑥)|
)︂]︂
, 𝑡∈𝑅+.

Замечание 1. Классическое решение 𝑊 (𝑡) абстрактной задачи Коши (13), (14) принад-
лежит 𝐶(2)(𝑅+, 𝐶[R]) и для него 𝐵𝑊 (𝑡)∈𝐶(𝑅+, 𝐶[R]), следовательно, 𝑤(𝑡, 𝑥)=𝑈(𝑡/2;𝐴1)×
×(𝛿𝐼−𝜕2𝑥)𝑢(𝑡, 𝑥)∈𝐶2,2(𝑅+,R). В силу (17) найденное решение задачи Коши (6), (3) 𝑢(𝑡, 𝑥)∈
∈𝐶2,4(𝑅+,R).

3. ЛОКАЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ (4)

Уравнение (4) получается из уравнения (1) дифференцированием обеих частей по пере-
менной 𝑥 и последующей заменой 𝑢𝑥= 𝑣 (левые части этих уравнений совпадают).

Подействуем на обе части уравнения (4) оператором (𝛿𝐼−𝜕2𝑥)
−1 и получим эквивалентное

ему уравнение
𝑣𝑡𝑡+𝐴1𝑣𝑡+𝐴2𝑣= 𝑓1(𝑣), (19)

в котором нелинейность 𝑓1(𝑢)= [𝛿(𝛿𝐼−𝜕2𝑥)−1−𝐼]𝑓(𝑢), а операторы 𝐴1 и 𝐴2 такие же, как и
в уравнении (9).

Уравнение (19) заменой 𝑣(𝑡, 𝑥)=𝑈(−𝑡/2;𝐴1)𝑤(𝑡, 𝑥) сводится к абстрактному полулиней-
ному уравнению

𝑊𝑡𝑡=𝐵𝑊 +𝑓2(𝑡, 𝑈(−𝑡/2;𝐴1)𝑊 ), (20)

где оператор 𝐵 такой же, как и в (13), а нелинейный оператор 𝑓2 определяется формулой

𝑓2(𝑡, ·)=𝑈(𝑡/2;𝐴1)[𝛿(𝛿𝐼−𝜕2𝑥)−1−𝐼]𝑓(·),

здесь 𝑓(·) — оператор суперпозиции: 𝑓(𝑔)= 𝑓(𝑔(𝑥)), 𝑔(𝑥)∈𝐶[R].
При 𝑡∈R+ справедлива оценка нормы оператора 𝑓2(𝑡, ·) в пространстве 𝐶[R]:

‖𝐹 (𝑡, 𝑔)‖𝐶 ⩽ 2𝑒(𝛼2+𝛼1/
√
𝛿+|𝛼2−𝛼1/

√
𝛿|)𝑡/2𝑓(‖𝑔‖𝐶). (21)

Для уравнения (20) рассмотрим абстрактную задачу Коши с начальными условиями

𝑊 |𝑡=0=𝑊 ′
0, 𝑊 ′|𝑡=0=𝑊 ′

1, (22)

где 𝑊 ′
0=(𝑤0(𝑥))

′ и 𝑊 ′
1=(𝑤1(𝑥))

′ — элементы пространства 𝐶[R].
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Из непрерывной дифференцируемости оператора суперпозиции в пространстве непрерыв-
ных функций и ограниченности операторов 𝑈(𝑡/2;𝐴1) и (𝛿𝐼−𝜕2𝑥)−1 следует непрерывная
дифференцируемость по Фреше оператора 𝑓2(𝑡, ·) в пространстве 𝐶[R] и, следовательно, су-
ществует промежуток [0, 𝑡0), в котором абстрактная задача Коши (20), (22) имеет [7, § 3]
единственное классическое решение 𝑊 =𝑊 (𝑡) (при условии принадлежности начальных дан-
ных 𝑊 ′

0, 𝑊 ′
1 области определения оператора 𝐵), удовлетворяющее интегральному уравнению

𝑊 (𝑡)=𝐶(𝑡;𝐵)𝑊 ′
0+𝑆(𝑡;𝐵)𝑊 ′

1+

𝑡ˆ

0

𝑆(𝑡−𝜏 ;𝐵)𝑓2(𝜏, 𝑈(−𝜏/2;𝐴1)𝑊 ) 𝑑𝜏. (23)

Из уравнения (23), используя оценки (15), (16), (21) и (2), выводим интегральное нера-
венство

‖𝑊 (𝑡)‖𝐶 ⩽𝜎1(𝑡)‖𝑊 ′
0‖𝐶+𝜎2(𝑡)‖𝑊 ′

1‖𝐶+

+2

𝑡ˆ

0

𝜎2(𝑡−𝜏)𝑒(𝛼2+𝛼1/
√
𝛿+|𝛼2−𝛼1/

√
𝛿|)𝜏/2𝜒

(︀
𝑒−(𝛼2−𝛼1/

√
𝛿−|𝛼2−𝛼1/

√
𝛿|)𝜏/2)︀𝑓(‖𝑊 (𝜏)‖𝐶) 𝑑𝜏, (24)

где
‖𝑊 ′

0‖𝐶 = ‖(𝑤0(𝑥))
′‖𝐶 = ‖(𝑣0(𝑥))′‖𝐶 =sup

𝑥∈R
|𝛿𝜙′(𝑥)−𝜙′′′(𝑥)|,

‖𝑊 ′
1‖𝐶 = ‖(𝑤1(𝑥))

′‖𝐶 = ‖(𝑣1(𝑥))′‖𝐶 = ‖(𝐴1𝑣0(𝑥)/2+𝑣1(𝑥))
′‖𝐶 ⩽

⩽
𝛼2

√
𝛿+𝛼1+ |𝛼2

√
𝛿−𝛼1|

2
√
𝛿

sup
𝑥∈R

|𝛿𝜙′(𝑥)−𝜙′′′(𝑥)|+sup
𝑥∈R

|𝛿𝜓′(𝑥)−𝜓′′′(𝑥)|.

Обозначая
𝜎3(𝑡)=𝜎1(𝑡)‖𝑊 ′

0‖𝐶+𝜎2(𝑡)‖𝑊 ′
1‖𝐶 ,

𝜎4(𝜏)= 𝑒(𝛼2+𝛼1/
√
𝛿+|𝛼2−𝛼1/

√
𝛿|)𝜏/2𝜒

(︀
𝑒−(𝛼2−𝛼1/

√
𝛿−|𝛼2−𝛼1/

√
𝛿|)𝜏/2)︀

и используя неравенство

𝜎5(𝑡)= 𝑡(1+ch(𝑐1𝑡)/(2𝑐
2
1))⩾ (𝑡−𝜏)(1+ch(𝑐1(𝑡−𝜏))/(2𝑐21))=𝜎2(𝑡−𝜏), 𝑡⩾ 𝜏 ⩾ 0,

запишем интегральное неравенство (24) в виде

‖𝑊 (𝑡)‖𝐶 ⩽𝜎3(𝑡)+2𝜎5(𝑡)

𝑡ˆ

0

𝜎4(𝜏)𝑓(‖𝑊 (𝜏)‖𝐶) 𝑑𝜏. (25)

Из неравенства (25) выводим [3] оценку нормы в пространстве 𝐶[R] решения уравне-
ния (20) на отрезке [0, 𝑡1]:

‖𝑊 (𝑡)‖𝐶 ⩽𝜎3(𝑡)Φ
−1(Ψ(𝑡))=𝜎6(𝑡),

где

Ψ(𝑡)=Φ(1)+2𝜎5(𝑡)

𝑡ˆ

0

𝜎4(𝜏)
𝜒(𝜎3(𝜏))

𝜎3(𝜏)
𝑑𝜏,

Φ(𝜉) =
´ 𝜉
𝜉0
|𝑓(𝑠)|−1 𝑑𝑠 для 𝜉0, 𝜉 > 0; Φ−1 — обратная функция к Φ, отрезок [0, 𝑡1] ⊂ [0, 𝑡0)

определяется теми значениями 𝑡, для которых значения функции Ψ(𝑡) принадлежат области
существования Dom(Φ−1) обратной функции Φ−1.
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Таким образом, имеет место
Теорема 2. Пусть функция 𝑓 удовлетворяет условиям (2), а начальные функции 𝜙(𝑥),

𝜓(𝑥) задачи Коши (4), (5) принадлежат пространству 𝐶[R] вместе со своими производ-
ными до пятого порядка включительно, тогда на отрезке [0, 𝑡1] существует единственное
классическое решение 𝑢=𝑢(𝑡, 𝑥) этой задачи в пространстве 𝐶[R], для которого справедлива
оценка

sup
𝑥∈R

|𝑣(𝑡, 𝑥)|=sup
𝑥∈R

|𝑢𝑥(𝑡, 𝑥)|⩽ 𝑒−(𝛼2−𝛼1/
√
𝛿−|𝛼2−𝛼1/

√
𝛿|)𝑡/2𝜎6(𝑡)=𝜎7(𝑡), 𝑡∈ [0, 𝑡1].

4. СВЯЗЬ МЕЖДУ РЕШЕНИЯМИ УРАВНЕНИЙ (1) И (4)

Далее будем предполагать, что решение уравнения (1) принадлежит пересечению про-
странства 𝐶[R] с пространством 𝐿2(R) функций с интегрируемым квадратом.

Напомним, что скалярное произведение и норма в 𝐿2(R) определяются соответственно
формулами (𝜙,𝜓) =

´ +∞
−∞ 𝜙(𝑥)𝜓(𝑥) 𝑑𝑥 и ‖𝜙‖2 =

(︀´ +∞
−∞ |𝜙(𝑥)|2 𝑑𝑥

)︀1/2, и что для функций 𝑔(𝑥),
принадлежащих пересечению пространства непрерывных ограниченных функций 𝐶(R) с
пространством Соболева 𝑊 1

2 (R), справедлива оценка

‖𝑔‖𝐶 ⩽ ‖𝑔‖𝑊 1
2
=

(︃ +∞ˆ

−∞

[(𝑔(𝑥))2+(𝑔′(𝑥))2] 𝑑𝑥

)︃1/2
, (26)

причём если 𝑔(𝑥)∈𝐶(2)(R), то [8] пределы функций 𝑔(𝑥), 𝑔′(𝑥) при 𝑥→±∞ равны нулю.
Лемма. Из существования локального классического решения 𝑣= 𝑣(𝑡, 𝑥), 𝑡∈ [0, 𝑡1], урав-

нения (4) следует существование соответствующего решения

𝑢=𝑢(𝑡, 𝑥)= lim
𝑥0→−∞

𝑥ˆ

𝑥0

𝑣(𝑡, 𝑠) 𝑑𝑠=

𝑥ˆ

−∞

𝑣(𝑡, 𝑠) 𝑑𝑠 (27)

уравнения (1) на том же временно́м отрезке [0, 𝑡1] при выполнении условий

𝑢(𝑡, 𝑥)∈𝐶(4)[R]∩𝑊 4
2 (R), 𝑢𝑡(𝑡, 𝑥), 𝑢𝑡𝑡(𝑡, 𝑥)∈𝐶(2)[R]∩𝑊 2

2 (R), 𝑡∈ [0, 𝑡1]. (28)

Доказательство. Прежде всего отметим, что из условий (28) следуют предельные ра-
венства

lim
𝑥→±∞

𝜕𝑘𝑥𝑢(𝑡, 𝑥)= 0, 𝑘=0, 4; lim
𝑥→±∞

𝜕𝑛𝑡 𝜕
𝑚
𝑥 𝑢(𝑡, 𝑥)= 0, 𝑛=1, 2, 𝑚=0, 2; 𝑡∈ [0, 𝑡1]. (29)

Пусть 𝑣 = 𝑣(𝑡, 𝑥) — классическое решение уравнения (4) на временно́м отрезке [0, 𝑡1].
Тогда, используя соотношения (29), получаем равенства

𝑥ˆ

−∞

𝜕𝑖𝑡𝜕
𝑗
𝑠𝑣(𝑡, 𝑠) 𝑑𝑠=

𝑥ˆ

−∞

(𝜕𝑖𝑡𝜕
𝑗
𝑠𝑢(𝑡, 𝑠))𝑠 𝑑𝑠= 𝜕𝑖𝑡𝜕

𝑗
𝑥𝑢(𝑡, 𝑥)− lim

𝑠→−∞
𝜕𝑖𝑡𝜕

𝑗
𝑠𝑢(𝑡, 𝑠)= 𝜕𝑖𝑡𝜕

𝑗
𝑥𝑢(𝑡, 𝑥).

Далее, в силу непрерывности функции 𝑓 ′, имеем
𝑥ˆ

−∞

𝜕2𝑠𝑓(𝑣(𝑡, 𝑠)) 𝑑𝑠=
(︀
𝑓(𝑢𝑥(𝑡, 𝑥))

)︀
𝑥
−𝑓 ′

(︁
lim

𝑥0→−∞
𝑢𝑥(𝑡, 𝑥0)

)︁
lim

𝑥0→−∞
𝑢𝑥𝑥(𝑡, 𝑥0)=

=𝑢𝑥𝑥(𝑡, 𝑥)𝑓
′(𝑢𝑥(𝑡, 𝑥)).
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Теперь, используя полученные представления и подставляя функцию (27) в уравнение (1),
получаем тождественное равенство на отрезке [0, 𝑡1], откуда следует, что функция (27)
является решением уравнения (1). Лемма доказана.

Замечание 2. Из условий (28) для решения 𝑢= 𝑢(𝑡, 𝑥) задачи Коши (1), (3) с необхо-
димостью следуют условия, которым должны удовлетворять начальные функции:

𝜙(𝑥)∈𝐶(4)[R]∩𝑊 4
2 (R), 𝜓(𝑥)∈𝐶(2)[R]∩𝑊 2

2 (R). (30)

5. СУЩЕСТВОВАНИЕ ГЛОБАЛЬНОГО РЕШЕНИЯ ЗАДАЧИ КОШИ
ДЛЯ УРАВНЕНИЯ (1)

Рассмотрим так называемый интеграл энергии для уравнения (1):

𝑦(𝑡)= 𝛿(𝑢, 𝑢)+(𝑢𝑥, 𝑢𝑥)=

+∞ˆ

−∞

(𝛿𝑢2+𝑢2𝑥) 𝑑𝑥, 𝑡∈ [0, 𝑡1]. (31)

Применяя к производной интеграла энергии 𝑦′(𝑡)=2(𝛿(𝑢𝑡,𝑢)+(𝑢𝑡𝑥,𝑢𝑥)) неравенство Коши–
Буняковского |(𝜙,𝜓)|⩽ ‖𝜙‖2‖𝜓‖2, выводим вспомогательную оценку на отрезке 𝑡∈ [0, 𝑡1]:

𝑦′(𝑡)⩽ 𝑦(𝑡)+𝑧(𝑡), (32)

где

𝑧(𝑡)= 𝛿(𝑢𝑡, 𝑢𝑡)+(𝑢𝑡𝑥, 𝑢𝑡𝑥)=

+∞ˆ

−∞

(𝛿𝑢2𝑡 +𝑢
2
𝑡𝑥) 𝑑𝑥, 𝑡∈ [0, 𝑡1], (33)

— второй интеграл энергии для уравнения (1).
Теорема 3. Пусть выполнены условия леммы и теоремы 2 и пусть параметры 𝛼𝑖, 𝛽𝑖,

𝑖=1, 2, 𝛾, 𝛿 уравнения (1), нелинейность 𝑓 и начальные функции 𝜙(𝑥), 𝜓(𝑥) удовлетворяют
условиям (30) и

𝐸0= 𝛿‖𝜓‖22+‖𝜓′‖22+𝛽2‖𝜙′′‖22+𝛾‖𝜙‖22+2

+∞ˆ

−∞

𝐹 (𝜙′(𝑥)) 𝑑𝑥−𝛽1‖𝜙′‖22⩾ 0;

𝐹 (𝜂)=

𝜂ˆ

0

𝑓(𝑠) 𝑑𝑠⩾ 0, 𝜂 ∈R; 𝐹 (𝜙′(𝑥))∈𝐿(R).

Тогда существует единственное глобальное решение задачи Коши (1), (3) и для него спра-
ведлива оценка

sup
𝑥∈R

|𝑢(𝑡, 𝑥)|⩽

{︃√︀
𝑐2/𝛿𝑒

(1+𝛽1)𝑡/2, 0<𝛿< 1,
√
𝑐2𝑒

(1+𝛽1)𝑡/2, 𝛿⩾ 1,
𝑡⩾ 0,

где
𝑐2=

(︀
𝐸0+(1+𝛽1)(𝛿‖𝜙‖22+‖𝜙′‖22)

)︀
/(1+𝛽1).

Доказательство. Умножим обе части уравнения (1) на частную производную по вре-
мени 𝑢𝑡=𝑢𝑡(𝑡, 𝑥) и проинтегрируем от −∞ до +∞. Тогда, интегрируя по частям и учитывая
в силу (29) равенство нулю вне интегральных слагаемых, получаем

𝛿

2

𝑑

𝑑𝑡
‖𝑢𝑡‖22+(𝑢𝑡𝑡𝑥, 𝑢𝑡𝑥)+𝛼2(𝑢𝑡𝑥, 𝑢𝑡𝑥)−

𝛼1

2

+∞ˆ

−∞

(𝑢2𝑡 )𝑥 𝑑𝑥+

+𝛽2(𝑢𝑥𝑥, 𝑢𝑡𝑥𝑥)−𝛽1(𝑢𝑥, 𝑢𝑡𝑥)+
𝛾

2

𝑑

𝑑𝑡
‖𝑢‖22+(𝑓(𝑢𝑥), 𝑢𝑡𝑥)= 0. (34)
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Введём в рассмотрение потенциал 𝐹 (𝜂)=
´ 𝜂
0 𝑓(𝑠)𝑑𝑠, порождаемый нелинейностью 𝑓 урав-

нения (1), и, учитывая, что
´ +∞
−∞ (𝑢2𝑡 )𝑥 𝑑𝑥=𝑢2𝑡 |+∞

−∞=0, перепишем равенство (34) в виде

1

2

𝑑

𝑑𝑡
𝐸(𝑡)= 0, (35)

где

𝐸(𝑡)= 𝛿‖𝑢𝑡‖22+‖𝑢𝑡𝑥‖22+𝛽2‖𝑢𝑥𝑥‖22−𝛽1‖𝑢𝑥‖22+𝛾‖𝑢‖22+2

+∞ˆ

−∞

𝐹 (𝑢𝑥) 𝑑𝑥+2𝛼2

𝑡ˆ

0

‖𝑢‖22 𝑑𝜏

— функционал энергии уравнения (1).
Из соотношения (35) следует, что функционал энергии 𝐸(𝑡) не зависит от времени, тогда,

интегрируя обе части (35), получаем закон сохранения

𝐸(𝑡)=𝐸(0)≡𝐸0, (36)

где

𝐸0= 𝛿‖𝜓‖22+‖𝜓′‖22+𝛽2‖𝜙′′‖22−𝛽1‖𝜙′‖22+𝛾‖𝜙‖22+2

+∞ˆ

−∞

𝐹 (𝜙′(𝑥)) 𝑑𝑥

— начальная энергия.
Потребуем неотрицательности начальной энергии: 𝐸0⩾ 0, т.е. выполнения неравенства

𝛿‖𝜓‖22+‖𝜓′‖22+𝛽2‖𝜙′′‖22+𝛾‖𝜙‖22+2

+∞ˆ

−∞

𝐹 (𝜙′(𝑥)) 𝑑𝑥⩾𝛽1‖𝜙′‖22,

в котором функция 𝐹 (𝜙′(𝑥)) принадлежит пространству 𝐿(R) функций, абсолютно интегри-
руемых на R.

Из закона сохранения (36) выводим

𝛿‖𝑢𝑡‖22+‖𝑢𝑡𝑥‖22+𝛽2‖𝑢𝑥𝑥‖22+𝛾‖𝑢‖22+2

+∞ˆ

−∞

𝐹 (𝑢𝑥) 𝑑𝑥+2𝛼2

𝑡ˆ

0

‖𝑢𝑠𝑥‖22 𝑑𝑠=𝐸0+𝛽1‖𝑢𝑥‖22. (37)

Предположим, что
𝐹 (𝜂)⩾ 0, 𝜂 ∈R, (38)

тогда из равенства (37), уменьшив левую часть, получим

𝑧(𝑡)⩽𝐸10+𝛽1(𝛿‖𝑢‖22+‖𝑢𝑥‖22)=𝐸10+𝛽1𝑦(𝑡), 𝑡∈ [0, 𝑡1]. (39)

Из неравенств (32) и (39) следует интегральное неравенство

𝑦(𝑡)⩽𝐸10𝑡+𝑦(0)+(1+𝛽1)

𝑡ˆ

0

𝑦(𝑠) 𝑑𝑠, 𝑡∈ [0, 𝑡1]. (40)

Применив к (40) лемму Гронуолла [9, § 1, формула (1.10)], получим оценку первого
интеграла энергии

𝑦(𝑡)⩽

(︂
𝐸10

1+𝛽1
+𝑦(0)

)︂
𝑒(1+𝛽1)𝑡=𝜎8(𝑡), (41)
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справедливую на всей положительной полуоси 𝑡∈R+, и значит, классическое решение 𝑢=
=𝑢(𝑡, 𝑥) при 𝑡∈R+ принадлежит пространству Соболева 𝑊 1

2 (R):

‖𝑢‖2𝑊 1
2
= ‖𝑢‖22+‖𝑢𝑥‖22⩽

⎧⎪⎨⎪⎩
(︂
1+

1−𝛿
𝛿

)︂
𝑦(𝑡)⩽

1

𝛿
𝜎8(𝑡), 0<𝛿< 1,

𝛿‖𝑢‖22+‖𝑢𝑥‖22= 𝑦(𝑡)⩽𝜎8(𝑡), 𝛿⩾ 1.

Теперь, используя неравенства (26) и (41), получаем оценку решения 𝑢=𝑢(𝑡, 𝑥), 𝑡∈R+,
задачи Коши (1), (3) в пространстве 𝐶[R]:

‖𝑢‖𝐶 =sup
𝑥∈R

|𝑢(𝑡, 𝑥)|⩽ ‖𝑢‖𝑊 1
2
⩽

{︃√︀
𝜎8(𝑡)/𝛿, 0<𝛿< 1,√︀
𝜎8(𝑡), 𝛿⩾ 1,

обеспечивающую существование глобального решения. Теорема доказана.

6. РАЗРУШЕНИЕ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ УРАВНЕНИЯ (1)

Найдём достаточные условия возникновения разрыва второго рода для интеграла энер-
гии (31) на отрезке [0, 𝑡2]⊆ [0, 𝑡1], который выбираем так, чтобы на нём выполнялось нера-
венство 𝑦(𝑡)> 0, вытекающее из начального условия 𝑦(0)= 𝛿‖𝜙‖22+‖𝜙′‖22> 0.

Применив неравенство Коши–Буняковского к квадрату производной интеграла энергии
𝑦(𝑡) на отрезке 𝑡∈ [0, 𝑡2], будем иметь

[𝑦′(𝑡)]2⩽ 4𝑦(𝑡)𝑧(𝑡).

Выведем оценку квадрата нормы частной производной 𝑢𝑡𝑡, используя представление урав-
нения (1) в эквивалентном виде

𝑢𝑡𝑡=−𝐴1𝑢𝑡−𝐴2𝑢+(𝛿𝐼−𝜕2𝑥)−1𝑢𝑥𝑥𝑓
′(𝑢𝑥),

полученное действием на обе части уравнения (1) линейным ограниченным оператором
(𝛿𝐼−𝜕2𝑥)

−1. С этой целью получим вспомогательные оценки

‖𝑢𝑥𝑥𝑓 ′(𝑢𝑥)‖22⩽ sup
𝑥∈R

(𝑓 ′(𝑢𝑥))
2

+∞ˆ

−∞

𝑢2𝑥𝑥 𝑑𝑥⩽
(︁
𝑓 ′
(︁
sup
𝑥∈R

|𝑢𝑥|
)︁)︁2

‖𝑢𝑥𝑥‖22⩽𝜎9(𝑡)‖𝑢𝑥𝑥‖22,

где 𝜎9(𝑡)= (𝑓 ′(𝜎7(𝑡)))
2 — непрерывная функция на отрезке [0, 𝑡1];

‖𝐴1𝑢𝑡‖22⩽
⃦⃦
𝛼2𝑢𝑡−(𝛼2

√
𝛿−𝛼1)

√
𝛿(𝛿𝐼−𝜕2𝑥)−1𝑢𝑡−𝛼1(

√
𝛿𝐼−𝜕𝑥)−1𝑢𝑡

⃦⃦2
2
⩽

⩽

(︂
𝛼2‖𝑢𝑡‖2+

⃒⃒⃒⃒
𝛼2−

𝛼1√
𝛿

⃒⃒⃒⃒
‖𝑢𝑡‖2+

𝛼1√
𝛿
‖𝑢𝑡‖2

)︂2

⩽ 𝑐3‖𝑢𝑡‖22⩽ 𝑐3𝑧(𝑡),

где 𝑐3=(𝛼2+𝛼1/
√
𝛿+ |𝛼2−𝛼1/

√
𝛿|)2;

‖𝐴2𝑢‖22⩽
⃦⃦
−𝛽2𝜕2𝑥𝑢−(𝛽2𝛿+𝛽1)𝑢+(𝛽2𝛿

2+𝛽1𝛿+𝛾)(𝛿𝐼−𝜕2𝑥)−1𝑢
⃦⃦2
2
⩽

⩽
(︀
𝛽2‖𝑢𝑥𝑥‖2+(𝛽2𝛿+𝛽1)‖𝑢‖2+

(︀
𝛽2𝛿+𝛽1+𝛾/𝛿

)︀
‖𝑢‖2

)︀2
⩽

⩽ 2
(︀
𝛽22‖𝑢𝑥𝑥‖22+

(︀
2(𝛽2𝛿+𝛽1)+𝛾/𝛿

)︀2‖𝑢‖22)︀⩽ 2𝛽22‖𝑢𝑥𝑥‖22+𝑐4𝑦(𝑡),

где 𝑐4=2(2(𝛽2𝛿+𝛽1)+𝛾/𝛿)
2.
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Учитывая их, имеем

‖𝑢𝑡𝑡‖22⩽
(︀
‖𝐴1𝑢𝑡‖2+‖𝐴2𝑢‖2+‖(𝛿𝐼−𝜕2𝑥)−1𝑢𝑥𝑥𝑓

′(𝑢𝑥)‖2
)︀2

⩽

⩽ 3

(︂
‖𝐴1𝑢𝑡‖22+‖𝐴2𝑢‖22+

1

𝛿2
‖𝑢𝑥𝑥𝑓 ′(𝑢𝑥)‖22

)︂
⩽ 3

(︂
𝑐3𝑧(𝑡)+2𝛽22‖𝑢𝑥𝑥‖22+𝑐4𝑦(𝑡)+

𝜎9(𝑡)

𝛿2
‖𝑢𝑥𝑥‖22

)︂
,

откуда следует неравенство

‖𝑢𝑡𝑡‖22⩽ 3𝑐3𝑧(𝑡)+3𝑐4𝑦(𝑡)+𝑐5‖𝑢𝑥𝑥‖22, 𝑡∈ [0, 𝑡2], (42)

где 𝑐5=6𝛽22+3𝑐6/𝛿
2, 𝑐6=max𝑡∈[0,𝑡1] 𝜎9(𝑡).

Вернёмся к рассмотрению закона сохранения (37) и получим из него соотношение

𝑧(𝑡)+𝛽2‖𝑢𝑥𝑥‖22+𝛾‖𝑢‖22+2𝛼2

𝑡ˆ

0

‖𝑢𝑠𝑥‖22 𝑑𝑠⩽𝐸10+𝛽1‖𝑢𝑥‖22+2

⃒⃒⃒⃒
⃒

+∞ˆ

−∞

𝐹 (𝑢𝑥) 𝑑𝑥

⃒⃒⃒⃒
⃒. (43)

Ранее при доказательстве существования глобального решения предполагалось выполне-
ние условия (38) — неотрицательности потенциала 𝐹 (𝜂) на всей числовой оси 𝜂∈R. Теперь
при рассмотрении разрушения решения потребуем для нелинейности 𝑓 выполнения нера-
венства ⃒⃒⃒⃒

⃒
+∞ˆ

−∞

𝑑𝑥

𝑤(𝑥)ˆ

0

𝑓(𝑠) 𝑑𝑠

⃒⃒⃒⃒
⃒⩽
⃒⃒⃒⃒
⃒

+∞ˆ

−∞

𝑤(𝑥)𝑓(𝑤(𝑥)) 𝑑𝑥

⃒⃒⃒⃒
⃒, (44)

где 𝑤(𝑥) — произвольная функция из 𝐶[R], для которой функции 𝐹 (𝑤(𝑥)) и 𝑤(𝑥)𝑓(𝑤(𝑥))
принадлежат пространству 𝐿1(R).

Используя неравенство (44), оценим интеграл в правой части (43). Интегрируя по частям,
применяя предельные равенства (29) и неравенство Коши–Буняковского, имеем

2

⃒⃒⃒⃒
⃒

+∞ˆ

−∞

𝐹 (𝑢𝑥) 𝑑𝑥

⃒⃒⃒⃒
⃒⩽ 2

⃒⃒⃒⃒
⃒

+∞ˆ

−∞

𝑓(𝑢𝑥) 𝑑𝑢(𝑥)

⃒⃒⃒⃒
⃒=
⃒⃒⃒⃒
⃒𝑢(𝑥)𝑓(𝑢𝑥)|+∞

−∞−
+∞ˆ

−∞

𝑢𝑓 ′(𝑢𝑥)𝑢𝑥𝑥 𝑑𝑥

⃒⃒⃒⃒
⃒⩽

⩽ 2|(𝑢𝑓 ′(𝑢𝑥), 𝑢𝑥𝑥)|⩽ 2‖𝑢𝑓 ′(𝑢𝑥)‖2‖𝑢𝑥𝑥‖2⩽ ‖𝑢𝑓 ′(𝑢𝑥)‖22+‖𝑢𝑥𝑥‖22⩽

⩽ sup
𝑥∈R

(𝑓 ′(𝑢𝑥))
2

+∞ˆ

−∞

𝑢22 𝑑𝑥+‖𝑢𝑥𝑥‖22⩽ (𝑓 ′(𝜎7(𝑡)))
2‖𝑢‖22+‖𝑢𝑥𝑥‖22=𝜎9(𝑡)‖𝑢‖22+‖𝑢𝑥𝑥‖22,

откуда следует неравенство

2

⃒⃒⃒⃒
⃒

+∞ˆ

−∞

𝐹 (𝑢𝑥) 𝑑𝑥

⃒⃒⃒⃒
⃒⩽ 𝑐6‖𝑢‖22+‖𝑢𝑥𝑥‖22, 𝑡∈ [0, 𝑡2]. (45)

Применив оценку (45) к соотношению (43) при условии

𝛽2> 1, (46)

получим неравенство

‖𝑢𝑥𝑥‖22⩽
𝐸0

𝛽2−1
+
𝛽1+𝑐6
𝛽2−1

𝑦(𝑡)− 1

𝛽2−1
𝑧(𝑡), 𝑡∈ [0, 𝑡2],
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используя которое увеличим правую часть оценки (42):

‖𝑢𝑡𝑡‖22⩽
𝑐5

𝛽2−1
𝐸0+

(︂
3𝑐4+𝑐5

𝛽1+𝑐6
𝛽2−1

)︂
𝑦(𝑡)+

(︂
3𝑐3−

𝑐5
𝛽2−1

)︂
𝑧(𝑡), 𝑡∈ [0, 𝑡2].

Вычислим производную второго порядка функционала (31) и выразим её значение через
второй интеграл энергии (33):

𝑦′′(𝑡)+2(𝑢𝑡𝑡, 𝑢𝑥𝑥)−2𝛿(𝑢𝑡𝑡, 𝑢)= 2𝑧(𝑡).

Используя оценки

2(𝑢𝑡𝑡, 𝑢𝑥𝑥)⩽ 2|(𝑢𝑡𝑡, 𝑢𝑥𝑥)|⩽ ‖𝑢𝑡𝑡‖22+‖𝑢𝑥𝑥‖22⩽ 3𝑐3𝑧(𝑡)+3𝑐4𝑦(𝑡)+(𝑐5+1)‖𝑢𝑥𝑥‖22⩽

⩽
𝑐5+1

𝛽2−1
𝐸0+

(︂
3𝑐4+(𝑐5+1)

𝛽1+𝑐6
𝛽2−1

)︂
𝑦(𝑡)+

(︂
3𝑐3−

𝑐5+1

𝛽2−1

)︂
𝑧(𝑡),

−2𝛿(𝑢𝑡𝑡, 𝑢)⩽ 2𝛿|(𝑢𝑡𝑡, 𝑢)|⩽ 𝛿‖𝑢𝑡𝑡‖22+𝛿‖𝑢‖22⩽ 3𝛿𝑐3𝑧(𝑡)+𝛿(3𝑐4+1)𝑦(𝑡)+𝛿𝑐5‖𝑢𝑥𝑥‖22⩽

⩽
𝛿𝑐5
𝛽2−1

𝐸0+𝛿

(︂
3𝑐4+1+𝑐5

𝛽1+𝑐6
𝛽2−1

)︂
𝑦(𝑡)+𝛿

(︂
3𝑐3−

𝑐5
𝛽2−1

)︂
𝑧(𝑡),

увеличим его левую часть:

𝑦′′(𝑡)+𝑐7+𝑐8𝑦(𝑡)⩾ 𝑐9𝑧(𝑡), 𝑡∈ [0, 𝑡2], (47)

где

𝑐7=
(𝛿+1)𝑐5+1

𝛽2−1
𝐸0, 𝑐8=3(𝛿+1)𝑐4+𝛿+((𝛿+1)𝑐5+1)

𝛽1+𝑐6
𝛽2−1

,

𝑐9=2+
(𝛿+1)𝑐5+1

𝛽2−1
−3(𝛿+1)𝑐3.

Уменьшим теперь правую часть неравенства (47):

𝑦(𝑡)𝑦′′(𝑡)− 𝑐9
4
(𝑦′(𝑡))

2
+𝑐7𝑦(𝑡)+𝑐8𝑦

2(𝑡)⩾ 0, 𝑡∈ [0, 𝑡2]. (48)

Потребуем, чтобы коэффициент при квадрате производной в неравенстве (48) был больше
единицы, т.е. потребуем выполнения неравенства 𝑐9/4> 1 или (в подробной записи)

6(𝛿+1)𝛽22−(2+3(𝛿+1)𝑐3)𝛽2+3(𝛿+1)(𝑐6/𝛿
2+𝑐3)+3> 0. (49)

Здесь возникают два случая: 1) если дискриминант квадратного трёхчлена

𝐷1=𝐷1(𝛿, 𝑐3, 𝑐6)= (2+3(𝛿+1)𝑐3)
2−72(𝛿+1)((𝛿+1)(𝑐6/𝛿

2+𝑐3)+1)< 0, (50)

то неравенство (49) справедливо при всех значениях 𝛽2>1; 2) если 𝐷1⩾0, то неравенство (49)
выполняется при

1<𝛽2<
2+3(𝛿+1)𝑐3−

√︀
𝐷1(𝛿, 𝑐3, 𝑐6)

12(𝛿+1)
или 𝛽2>

2+3(𝛿+1)𝑐3+
√︀
𝐷1(𝛿, 𝑐3, 𝑐6)

12(𝛿+1)
. (51)

Из условия (50) следует неравенство

9𝑐23−12

(︂
6− 1

(𝛿+1)2

)︂
𝑐3−72

𝑐6
𝛿2

− 72(𝛿+1)−4

(𝛿+1)2
< 0, (52)
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причём дискриминант квадратного трёхчлена

𝐷2=𝐷2(𝛿, 𝑐6)= 36(6−(𝛿+1)−2)2+648(𝛿−2𝑐6+(𝛿+17/18)(𝛿+1)−2)⩾ 0,

поэтому неравенство (52), а значит и (50), выполняется при

0<𝑐3=

(︂
𝛼2+

𝛼1√
𝛿
+

⃒⃒⃒⃒
𝛼2−

𝛼1√
𝛿

⃒⃒⃒⃒)︂2
<

6(6−(𝛿+1)−2)+
√︀
𝐷2(𝛿, 𝑐6)

9
, (53)

т.е. при выполнении условия (53) неравенство 𝑐9/4> 1 справедливо для любого значения
параметра 𝛽2> 1.

В случае 𝐷1⩾ 0 неравенство (49) выполняется для значений параметров, удовлетворяю-
щих условиям (51), в которых величины 𝛿, 𝑐3 и 𝑐6 связаны соотношением(︂

𝛼2+
𝛼1√
𝛿
+

⃒⃒⃒⃒
𝛼2−

𝛼1√
𝛿

⃒⃒⃒⃒)︂2
⩾

6(6−(𝛿+1)−2)+
√︀
𝐷2(𝛿, 𝑐6)

9
.

Сравнивая неравенство (48) с одним из основных обыкновенных дифференциальных
неравенств для интеграла энергии [10, Приложение A, § 5], заключаем, что если выполнены
начальные условия

(𝛿(𝜙,𝜓)+(𝜙′, 𝜓′))2>

(︂
𝑐8

𝑐9−4

(︀
𝛿‖𝜙‖22+‖𝜙′‖22

)︀
+

𝑐7
𝑐9−2

)︂(︀
𝛿‖𝜙‖22+‖𝜙′‖22

)︀
, (54)

то время 𝑡2 существования решения задачи Коши (1), (3) не может быть сколь угодно
больши́м, а именно, имеет место оценка сверху

𝑡2⩽𝑇∞⩽
1

𝑐10(𝛿‖𝜙‖22+‖𝜙′‖22)(𝑐9−4)/4
, (55)

где

𝑐210=
(𝑐9−4)2

4(𝛿‖𝜙‖22+‖𝜙′‖22)𝑐9/2

(︂
(𝛿(𝜙,𝜓)+(𝜙′,𝜓′))2−

(︂
𝑐8(𝛿‖𝜙‖22+‖𝜙′‖22)

𝑐9−4
+

𝑐7
𝑐9−2

)︂
(𝛿‖𝜙‖22+‖𝜙′‖22)

)︂
>0,

причём для функционала 𝑦(𝑡) справедлива оценка снизу

𝑦(𝑡)=

+∞ˆ

−∞

(𝛿𝑢2+𝑢2𝑥) 𝑑𝑥⩾
1(︀

(𝛿‖𝜙‖22+‖𝜙′‖22)(𝑐9−4)/4−𝑐10𝑡
)︀4/(𝑐9−4)

, (56)

и значит, не существует глобального по времени решения задачи Коши (1), (3).
Таким образом, доказана
Теорема 4. Пусть выполнены условия леммы и теоремы 2 и пусть параметры 𝛼𝑖, 𝛽𝑖,

𝑖=1, 2, 𝛾, 𝛿 уравнения (1), нелинейность 𝑓 и начальные функции 𝜙(𝑥), 𝜓(𝑥) удовлетворяют
соответственно условиям (30), (44), (46), (49), (54), тогда время 𝑡2 существования решения
𝑢(𝑡, 𝑥) задачи Коши (1), (3) не может быть сколь угодно больши́м, а именно оно ограничено
сверху и имеет место оценка (55), причём для интеграла энергии 𝑦(𝑡) справедлива оценка
снизу (56).

КОНФЛИКТ ИНТЕРЕСОВ

Автор данной работы заявляет, что у него нет конфликта интересов.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



82 Х. Г. УМАРОВ

СПИСОК ЛИТЕРАТУРЫ

1. Светлицкий, В.А. Механика гибких стержней и нитей / В.А. Светлицкий. — М. : Машиностро-
ение, 1978. — 222 с.

2. Демиденко, Г.В. Условия разрешимости задачи Коши для псевдогиперболических уравнений /
Г.В. Демиденко // Сиб. мат. журн. — 2015. — Т. 56, № 6. — С. 1289–1303.

3. Dannan, F.M. Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of
certain second order nonlinear differential equations / F.M. Dannan // J. Math. Anal. Appl. —
1985. — V. 108, № 1. — P. 151–164.

4. Ерофеев И.В. Изгибно-крутильные, продольно-изгибные и продольно-крутильные волны в стерж-
нях / И.В. Ерофеев // Вестн. научно-технического развития. — 2012. — Т. 5, № 57. — С. 3–18.

5. Данфорд, Н. Линейные операторы. Общая теория / Н. Данфорд, Дж.Т. Шварц. — М. : Изд-во
иностр. лит., 1962. — 895 c.

6. Васильев, В.В. Полугруппы операторов, косинус оператор-функции и линейные дифференци-
альные уравнения / В.В. Васильев, С.Г. Крейн, С.И. Пискарев // Итоги науки и техн. Сер.
Мат. анализ. — 1990. — Т. 28. — С. 87–202.

7. Travis, C.C. Cosine families and abstract nonlinear second order differential equations / C.C. Travis,
G.F. Webb // Acta Mathematica Academiae Scientiarum Hungaricae. — 1978. — V. 32. — P. 75–96.

8. Benjamin, T.B. Model equations for long waves in nonlinear dispersive systems / T.B. Benjamin,
J.L. Bona, J.L. Mahony // Philos. Trans. Roy. Soc. London. — 1972. — V. 272. — P. 47–78.

9. Филатов, А.Н. Интегральные неравенства и теория нелинейных колебаний / А.Н. Филатов,
Л.В. Шарова. — М. : Наука, 1976. — 152 с.

10. Корпусов, М.О. Разрушение в нелинейных волновых уравнениях с положительной энергией /
М.О. Корпусов. — М. : Книжный дом «Либроком», 2012. — 256 с.

BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY OF THE CAUCHY PROBLEM
FOR THE EQUATION OF VIBRATIONS OF A HOLLOW ROD

© 2025 / Kh. G. Umarov

Academy of Sciences of the Chechen Republic, Grozny, Russia
Chechen State Pedagogical University, Grozny, Russia

e-mail: umarov50@mail.ru

For a nonlinear partial differential equation of Sobolev type, generalizing the equation of oscillations
of a hollow flexible rod, the Cauchy problem is studied in the space of continuous functions defined
on the entire numerical axis and for which there are limits at infinity. The conditions for the existence
of a global classical solution and the blow-up of the solution to the Cauchy problem on a finite time
interval are considered.

Keywords: equation of vibrations of a hollow flexible rod, nonlinear equation of Sobolev type, global
solution, blow-up of the solution

REFERENCES

1. Svetlitsky, V.A., Mekhanika gibkikh sterzhney i nitey (Mechanics of Flexible Rods and Threads), Moscow:
Mashinostroenie, 1978.

2. Demidenko, G.V. Solvability conditions of the Cauchy problem for pseudohyperbolic equations, Sib. J. Math.,
2015, vol. 56, no. 6, pp. 1028–1041.

3. Dannan, F.M., Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of certain second
order nonlinear differential equations, J. Math. Anal. Appl., 1985, vol. 108, no. 1, pp. 151–164.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



РАЗРУШЕНИЕ РЕШЕНИЯ И ГЛОБАЛЬНАЯ РАЗРЕШИМОСТЬ 83

4. Erofeev, I.V., Flexural-torsional, longitudinal-flexural and longitudinal-torsional waves in rods, Bulletin of Sci-
entific and Technical Development, 2012, vol. 5, no. 57, pp. 3–18.

5. Dunford, N. and Schwartz, J.T., Linear Operators. Part I: General Theory, New York: Interscience, 1958.
6. Vasilyev, V.V., Crane, S.G., and Piskarev, S.I., Operator semigroups, cosine operator functions and linear dif-

ferential equations, Results of Science and Technology. Series Math. Analysis, 1990, vol. 28, pp. 87–202.
7. Travis, C.C. and Webb, G.F., Cosine families and abstract nonlinear second order differential equations, Acta

Mathematica Academiae Scientiarum Hungaricae, 1978, vol. 32, pp. 75–96.
8. Benjamin, T.B., Bona J.L., and Mahony, J.L., Model equations for long waves in nonlinear dispersive systems,

Philos. Trans. Roy. Soc. London, 1972, vol. 272, pp. 47–78.
9. Filatov, A.N. and Sharova, L.V., Integral’nyye neravenstva i teoriya nelineynykh kolebaniy (Integral Inequalities

and the Theory of Nonlinear Oscillations), Moscow: Nauka, 1976.
10. Korpusov, M.O., Razrusheniye v nelineynykh volnovykh uravneniyakh s polozhitel’noy energiyey (Blow-up in

Nonlinear Wave Equations with Positive Energy), Moscow: Librokom, 2012.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 2025, том 61, № 1, с. 84–98

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

УДК 517.968.4

О РАЗРЕШИМОСТИ ОДНОЙ СИСТЕМЫ МНОГОМЕРНЫХ
ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ С ВОГНУТЫМИ

НЕЛИНЕЙНОСТЯМИ

© 2025 г. Х. А. Хачатрян1, А. С. Петросян2

1Ереванский государственный университет, Армения
2Национальный аграрный университет Армении, г. Ереван

e-mail: 1khachatur.khachatryan@ysu.am, 2Haykuhi25@mail.ru

Поступила в редакцию 22.06.2024 г., после доработки 30.10.2024 г.; принята к публикации 31.10.2024 г.

Исследованы вопросы существования и единственности непрерывного ограниченного и
положительного решения системы нелинейных многомерных интегральных уравнений,
скалярный аналог которой при различных представлениях соответствующего матрич-
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тыми графиками доказана единственность решения в достаточно широком подклассе
непрерывных ограниченных и покоординатно неотрицательных вектор-функций. В слу-
чае когда интеграл матричного ядра имеет единичный спектральный радиус, уста-
новлено, что в определённом подклассе непрерывных ограниченных и покоординатно
неотрицательных вектор-функций данная система имеет только тривиальное решение,
являющееся собственным вектором матрицы интегрального ядра.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим систему нелинейных многомерных интегральных уравнений

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)=

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛, 𝑖=1, 𝑁, (1)

относительно вектор-функции 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))
т с неотрица-

тельными непрерывными и ограниченными на множестве R𝑛 координатами 𝑓𝑖(𝑥1, . . . , 𝑥𝑛),
𝑖= 1, 𝑁 , где (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, R= (−∞,+∞), т — знак транспонирования. В системе (1)
матричное ядро

𝐾(x, 𝑡) := (𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛))𝑖,𝑗=1,𝑁

удовлетворяет следующим условиям:
1) 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)> 0, (𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)∈R2𝑛, 𝐾𝑖𝑗 ∈𝐶(R2𝑛), 𝑖, 𝑗=1, 𝑁 ;
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2) существуют 𝑎𝑖𝑗 := sup(𝑥1,...,𝑥𝑛)∈R𝑛

´
R𝑛 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛<+∞, 𝑖, 𝑗=1, 𝑁 ,

причём 𝑟(𝐴) = 1, 𝐴= (𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , где 𝑟(𝐴) — спектральный радиус матрицы 𝐴, т.е. модуль
наибольшего по модулю собственного значения.

Согласно теореме Перрона (см. [1, с. 260]) существует вектор 𝜂=(𝜂1, . . . , 𝜂𝑁 )т с положи-
тельными координатами 𝜂𝑖 такой, что

𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖, 𝑖=1, 𝑁. (2)

Зафиксируем вектор 𝜂 и наложим следующие условия на нелинейности {𝐺𝑗(𝑢)}𝑗=1,𝑁 (рис. 1):
a) 𝐺𝑗 ∈𝐶(R+), R+= [0,+∞), 𝐺𝑗(𝑢) монотонно возрастают на множестве R+, 𝑗=1, 𝑁 ;
b) 𝐺𝑗(0)= 0, 𝐺𝑗(𝜂𝑗)= 𝜂𝑗 , 𝑗=1, 𝑁 ;
c) 𝐺𝑗(𝑢), 𝑗 = 1, 𝑁 , строго вогнуты (выпуклы вверх) на R+ и существует непрерывное

отображение 𝜙 : [0, 1]→ [0, 1] со свойствами

𝜙(0)= 0, 𝜙(1)= 1, 𝜙 монотонно возрастает на отрезке [0, 1], (3)

𝜙 строго вогнута на отрезке [0, 1], (4)

такое, что имеют место следующие неравенства:

𝐺𝑗(𝜎𝑢)⩾𝜙(𝜎)𝐺𝑗(𝑢), 𝑢∈ [0, 𝜂𝑗 ], 𝜎 ∈ [0, 1], 𝑗=1, 𝑁 ;

d) существует число 𝑟>0 такое, что функциональные уравнения 𝐺𝑖(𝑢)=𝑢/𝜀𝑖(𝑟), 𝑖=1, 𝑁 ,
имеют положительные решения 𝑑𝑖, где

𝜀𝑖(𝑟) := min
𝑗=1,𝑁

{︃
inf

(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛

}︃
∈ (0, 1), 𝑖=1, 𝑁,

𝐵𝑟 :=
{︁
x := (𝑥1, . . . , 𝑥𝑛) : |x|=

√︁
𝑥21+ . . .+𝑥

2
𝑛⩽ 𝑟

}︁
.

Рис. 1. График функции 𝑦=𝐺𝑖(𝑢)

Основная цель настоящей работы — исследовать вопросы существования и единствен-
ности непрерывного ограниченного и положительного решения системы (1), а также рав-
номерную сходимость к решению соответствующего итерационного процесса со скоростью
убывающей геометрической прогрессии.

Скалярный аналог системы нелинейных интегральных уравнений (1), кроме чисто тео-
ретического интереса, имеет ряд важных приложений к исследованиям различных приклад-
ных задач из физики и биологии. В частности, при конкретных представлениях матричного
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ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 скалярная система (1) встречается в задачах из дина-
мической теории 𝑝-адических открытых, замкнутых и открыто-замкнутых струн (см. [2–5])
и в математической теории пространственно-временно́го распространения пандемии в рам-
ках модифицированных моделей Аткинсона–Ройтера и Дикмана–Капера (см. [6, с. 318] и
[7, с. 121] соответственно).

Математические исследования системы вида (1) в основном проводились в одномерном
случае при 𝑛=1. Так, например в случае, когда 𝑛=1 и ядро 𝐾 зависит от разности своих
аргументов, система (1) достаточно подробно изучена в работах [8–10]. Соответствующий
скалярный аналог системы (1) (𝑁 =1) в многомерном случае рассмотрен в работах [5, 11–
13], когда ядро 𝐾 либо зависит от разности своих аргументов, либо мажорируется таким
ядром. Следует также отметить, что соответствующие скалярные одномерные уравнения при
различных ограничениях на ядро и на нелинейность исследовались (разными методами) в
статьях [2, 3, 14–17].

В настоящей работе при условиях 1), 2) и a)–d) докажем сначала конструктивную тео-
рему существования положительного непрерывного и ограниченного решения системы (1).
В ходе доказательства этой теоремы получим равномерную оценку разности построенного
решения и соответствующих последовательных приближений, причём правая часть получен-
ного неравенства стремится к нулю как бесконечно убывающая геометрическая прогрессия,
когда номер 𝑚-го приближения стремится к бесконечности. Далее, используя некоторые
оценки для строго вогнутых и монотонных функций, докажем единственность решения си-
стемы (1) в достаточно широком подклассе непрерывных ограниченных и покоординатно
неотрицательных вектор-функций. В случае когда

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛) :=
ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛= 𝑎𝑖𝑗

для всех (𝑥1, . . . , 𝑥𝑛)∈R𝑛 и 𝑖, 𝑗=1, 𝑁 , покажем, что в отмеченном выше подклассе вектор-
функций единственным решением системы (1) является только вектор 𝜂 = (𝜂1, . . . , 𝜂𝑁 )т.
В работе приводятся конкретные примеры матричного ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 ,
удовлетворяющих всем условиям доказанных утверждений. Некоторые из этих примеров
имеют прикладное значение в указанных выше областях физики и биологии.

2. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ И ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Следующая лемма играет важную роль в наших дальнейших рассуждениях.
Лемма 1. Пусть выполняются условия a), b), 1), 2), причём на R+ графики функций

{𝐺𝑗(𝑢)}𝑗=1,𝑁 строго вогнуты. Тогда для любого покоординатно неотрицательного и огра-
ниченного на R𝑛 решения 𝑓*(𝑥1, . . . , 𝑥𝑛) = (𝑓*1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓

*
𝑁 (𝑥1, . . . , 𝑥𝑛))

т системы (1)
справедливо неравенство

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

где 𝜂=(𝜂1, . . . , 𝜂𝑁 )т — неподвижный вектор матрицы 𝐴 (см. (2)).
Доказательство. Обозначим 𝛾𝑖 := sup(𝑥1,...,𝑥𝑛)∈R𝑛 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁 . Тогда из систе-

мы (1) в силу условий 1), 2), a) и соотношения (2) будем иметь

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽
𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝐺𝑗(𝛾𝑗)⩽ max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂ 𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖 max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.
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Отсюда следует, что

𝛾𝑖⩽ 𝜂𝑖 max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
, 𝑖=1, 𝑁. (5)

Очевидно, что существует индекс 𝑗* ∈{1, 2, . . . , 𝑁} такой, что

max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
=
𝐺𝑗*(𝛾𝑗*)

𝜂𝑗*
. (6)

Заменив в неравенстве (5) индекс 𝑖 на индекс 𝑗*, получим 𝛾𝑗* ⩽𝐺𝑗*(𝛾𝑗*). Убедимся, что из
последнего неравенства следует оценка 𝛾𝑗* ⩽ 𝜂𝑗* . Предположим обратное: 𝛾𝑗* >𝜂𝑗* . В силу
условий a), b) и строгой вогнутости графика 𝐺𝑗*(𝑢) следует, что функция 𝐺𝑗*(𝑢)/𝑢 мо-
нотонно убывает на (0,+∞). Значит, 𝐺𝑗*(𝛾𝑗*)/𝛾𝑗* <𝐺𝑗*(𝜂𝑗*)/𝜂𝑗* =1. Последнее неравенство
противоречит полученному выше неравенству 𝛾𝑗* ⩽𝐺𝑗*(𝛾𝑗*). Таким образом, 𝛾𝑗* ⩽ 𝜂𝑗* . В си-
лу этой оценки, соотношения (6) и условий a), b) приходим из (5) к неравенству 𝛾𝑖 ⩽ 𝜂𝑖,
𝑖=1, 𝑁 . Лемма доказана.

Полезна также следующая
Лемма 2. Пусть выполняются условия a), b), d), 1) и 2) и 𝑓(𝑥1, . . . , 𝑥𝑛) — произвольное

покоординатно неотрицательное и непрерывное на R𝑛 решение системы (1). Тогда если
существует индекс 𝑗0∈{1, 2, . . . , 𝑁} такой, что 𝛿𝑗0 := inf(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

𝑓𝑗0(𝑥1, . . . , 𝑥𝑛)>0, то
inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁 , где число 𝑟 определено в условии d).

Доказательство. Прежде всего заметим, что из условий a), b), 1) и 2) следует, что

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾
𝑁∑︁
𝑗=1

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗0(𝑓𝑗0(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾𝐺𝑗0(𝛿𝑗0)
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛. (7)

Далее рассмотрим функции

𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛) :=
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

и следующие возможные случаи: A) (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟, B) (𝑥1, . . . , 𝑥𝑛)∈𝐵𝑟.
В случае A), учитывая определение чисел 𝜀𝑖(𝑟) в условии d) и неравенство (7), получаем

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾𝐺𝑗0(𝛿𝑗0)𝜀𝑖(𝑟), (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟, 𝑖=1, 𝑁. (8)

Рассмотрим теперь случай B). Из условий 1), 2) немедленно следует, что 𝐶𝑖𝑗0 ∈𝐶(R𝑛),
𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛) > 0, (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑖 = 1, 𝑁 . Учитывая компактность шара 𝐵𝑟, согласно
теореме Вейерштрасса можно утверждать, что для каждого 𝑖 ∈ {1, 2, . . . , 𝑁} существует
точка x𝑖=(𝑥𝑖1, . . . , 𝑥

𝑖
𝑛)∈𝐵𝑟 такая, что

min
(𝑥1,...,𝑥𝑛)∈𝐵𝑟

{𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛)}=𝐶𝑖𝑗0(𝑥
𝑖
1, . . . , 𝑥

𝑖
𝑛)> 0. (9)
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Из (7)–(9) заключаем, что

inf
(𝑥1,...,𝑥𝑛)∈R𝑛

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾min{𝜀𝑖(𝑟), 𝐶𝑖𝑗0(𝑥
𝑖
1, . . . , 𝑥

𝑖
𝑛)}𝐺𝑗0(𝛿𝑗0), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Лемма доказана.
Рассмотрим теперь функции 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛), 𝑖, 𝑗=1, 𝑁 , и предположим, что
e) существуют точка (𝑥1, . . . , 𝑥𝑛)∈R𝑛 и индексы 𝑖1, 𝑗1 ∈{1, 2, . . . , 𝑁} такие, что

𝐶𝑖1,𝑗1(𝑥1, . . . , 𝑥𝑛)<𝑎𝑖1𝑗1 .

Имеет место
Лемма 3. Пусть выполняются условия леммы 1 и e). Тогда любое непрерывное ограни-

ченное и покоординатно неотрицательное решение 𝑓(𝑥1, . . . , 𝑥𝑛) системы (1) удовлетворяет
неравенствам 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁 .

Доказательство. Согласно лемме 1 решение 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 𝜂𝑖, 𝑖=1, 𝑁 . Убедимся, что
𝑓𝑖(𝑥1, . . . , 𝑥𝑛) ̸≡ 𝜂𝑖, 𝑖=1, 𝑁 . Действительно, в противном случае из (1) с учётом условия b)
получим

𝑁∑︁
𝑗=1

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗 ≡ 𝜂𝑖, 𝑖=1, 𝑁.

Принимая во внимание (2), приходим к равенству

𝑁∑︁
𝑗=1

𝜂𝑗(𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)−𝑎𝑖𝑗)≡ 0, 𝑖=1, 𝑁. (10)

Так как 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)⩽ 𝑎𝑖𝑗 , 𝜂𝑗 > 0, 𝑖, 𝑗 =1, 𝑁 , то в силу условия e) приходим в (10) к
противоречию. Следовательно, существуют точка (𝑥*1, . . . , 𝑥

*
𝑛)∈R𝑛 и индекс 𝑗*∈{1, 2, . . . , 𝑁}

такие, что 𝑓𝑗*(𝑥
*
1, . . . , 𝑥

*
𝑛) < 𝜂𝑗* . Отсюда в силу непрерывности функции 𝑓𝑗* следует, что

существует окрестность 𝑂𝛿(𝑥
*
1, . . . , 𝑥

*
𝑛) точки (𝑥*1, . . . , 𝑥

*
𝑛) такая, что

𝑓𝑗*(𝑥1, . . . , 𝑥𝑛)<𝜂𝑗* , (𝑥1, . . . , 𝑥𝑛)∈𝑂𝛿(𝑥
*
1, . . . , 𝑥

*
𝑛). (11)

В силу (11), соотношения (2) и неравенства 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)⩽𝑎𝑖𝑗 из (1) с учётом условий a), b)
будем иметь

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)=
∑︁
𝑗 ̸=𝑗*

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

R𝑛

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝜂𝑗*
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛<
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<
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝜂𝑗*
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+𝜂𝑗*
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝑑𝑡1 . . . 𝑑𝑡𝑛=

=
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝐶𝑖𝑗*(𝑥1, . . . , 𝑥𝑛)𝜂𝑗* ⩽
𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖, 𝑖, 𝑗=1, 𝑁.

Лемма доказана.

3. ТЕОРЕМА СУЩЕСТВОВАНИЯ ОГРАНИЧЕННОГО РЕШЕНИЯ

Рассмотрим теперь следующие последовательные приближения для системы (1):

𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)=

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(𝑚)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛,

𝑓
(0)
𝑖 (𝑥1, . . . , 𝑥𝑛)≡ 𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, 𝑚=0, 1, 2, . . . (12)

Предположим, что выполняются условия a)–d), 1) и 2). Индукцией по 𝑚 несложно
проверить достоверность следующих утверждений:

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛) монотонно убывают по 𝑚, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁, (13)

𝑓
(𝑚)
𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁, (14)

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)> 0, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (15)

Докажем, что для всех (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟 имеют место следующие оценки снизу:

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾ 𝑑𝑖, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁, (16)

где числа 𝑑𝑖 определены в условии d).
Проверим неравенство (16) при 𝑚=0. Действительно, так как функции 𝐺𝑖(𝑢)/𝑢 моно-

тонно убывают на (0,+∞), 𝑖=1, 𝑁 , то из оценки

1=
𝐺𝑖(𝜂𝑖)

𝜂𝑖
<

1

𝜀𝑖(𝑟)
=
𝐺𝑖(𝑑𝑖)

𝑑𝑖

получаем, что 𝑑𝑖<𝜂𝑖= 𝑓
(0)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁 .

Предположим теперь, что для (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛∖𝐵𝑟 неравенство (16) выполняется при
некотором натуральном 𝑚. Тогда, используя условия a), b), d), 1) и 2), из (12) и (15) будем
иметь

𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾

𝑁∑︁
𝑗=1

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(𝑚)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾
𝑁∑︁
𝑗=1

𝐺𝑗(𝑑𝑗)
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾𝐺𝑖(𝑑𝑖)𝜀𝑖(𝑟)= 𝑑𝑖, 𝑖=1, 𝑁.

При выполнении условия e) по аналогии с доказательством леммы 3 можно также убедиться,
что имеют место неравенства

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, (𝑥1, . . . , 𝑥𝑛)∈R𝑛. (17)
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Принимая во внимание (14), (15) и компактность шара 𝐵𝑟, можно утверждать, что для
каждых 𝑖∈{1, 2, . . . , 𝑁} и 𝑚∈{0, 1, 2, . . .} существует точка (𝑥𝑚,𝑖

1 , . . . , 𝑥𝑚,𝑖
𝑛 )∈𝐵𝑟 такая, что

min
(𝑥1,...,𝑥𝑛)∈𝐵𝑟

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)= 𝑓

(𝑚)
𝑖 (𝑥𝑚,𝑖

1 , . . . , 𝑥𝑚,𝑖
𝑛 )> 0, (𝑥1, . . . , 𝑥𝑛)∈𝐵𝑟. (18)

Итак, из (16) и (18) для (𝑥1, . . . , 𝑥𝑛)∈R𝑛 следует, что

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾min{𝑓 (𝑚)

𝑖 (𝑥𝑚,𝑖
1 , . . . , 𝑥𝑚,𝑖

𝑛 ), 𝑑𝑖}> 0, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (19)

Рассмотрим теперь функции 𝜒𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛)/𝑓

(1)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖= 1, 𝑁 , на

множестве R𝑛. Из (13), (14) и (19) имеем

𝜒𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁,

𝛼𝑖

𝜂𝑖
⩽𝜒𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 1, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, (20)

где в силу (17), (19)

0<𝛼𝑖 :=min{𝑓 (2)𝑖 (𝑥2,𝑖1 , . . . , 𝑥2,𝑖𝑛 ), 𝑑𝑖}<𝜂𝑖, 𝑖=1, 𝑁.

Обозначим через 𝜎0=min𝑖=1,𝑁 (𝛼𝑖/𝜂𝑖). Очевидно, что 𝜎0 ∈ (0, 1).
Следовательно, учитывая (20) и (12), а также условия 1), a), будем иметь

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝜎0𝑓
(1)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽ 𝑓
(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(1)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Отсюда в силу условия c) приходим к неравенствам

𝜙(𝜎0)𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(2)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁. (21)

Теперь, используя (21), (12), условия 1), a) и c), запишем

𝜙(𝜙(𝜎0))𝑓
(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(4)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(3)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁.

Продолжая эти рассуждения, на 𝑚-м шаге получим следующую оценку:

𝐹𝑚(𝜎0)𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(𝑚+2)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, 𝐹𝑚(𝜎) :=𝜙(𝜙 . . . 𝜙(𝜎))⏟  ⏞  
𝑚 раз

, 𝜎 ∈ [0, 1]. (22)

Далее, используя свойства (3) и (4) функции 𝜙, докажем справедливость неравенства

𝐹𝑚(𝜎0)⩾ 𝑘𝑚𝜎0+1−𝑘𝑚, 𝑚=1, 2, . . . , (23)
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где

𝑘 :=
1−𝜙(𝜎0/2)
1−𝜎0/2

∈ (0, 1), 𝜎0= min
𝑖=1,𝑁

{𝛼𝑖/𝜂𝑖}∈ (0, 1). (24)

Для этого рассмотрим прямую 𝑦=𝑘𝑢+1−𝑘, проходящую через точки (1, 1) и (𝜎0/2, 𝜙(𝜎0/2)),
где число 𝑘 задаётся согласно формуле (24). Из свойств (3) и (4) немедленно следует, что
(рис. 2)

𝜙(𝜎0)⩾ 𝑘𝜎0+1−𝑘. (25)
Так как 𝑘𝜎0+1−𝑘∈(0, 1), то с учётом свойств вогнутости графика и монотонности функции 𝜙
из (25) будем иметь

𝐹2(𝜎0)=𝜙(𝜙(𝜎0))⩾𝜙(𝑘𝜎0+1−𝑘)⩾ 𝑘(𝑘𝜎0+1−𝑘)+1−𝑘= 𝑘2𝜎0+1−𝑘2.

Продолжив этот процесс, на 𝑚-м шаге получим неравенство (23).

Рис. 2. График функции 𝑦=𝜙(𝑢)

Таким образом, ввиду (22), (23), (17) и (13) приходим к следующей равномерной оценке
для последовательных приближений (12):

0⩽ 𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁. (26)

Из (26) получаем равномерную сходимость последовательности непрерывных вектор-функ-
ций 𝑓 (𝑚)(𝑥1, . . . , 𝑥𝑛)=(𝑓

(𝑚)
1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓

(𝑚)
𝑁 (𝑥1, . . . , 𝑥𝑛))

т, 𝑚=0, 1, 2, . . . , на множестве R𝑛:

lim
𝑚→∞

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)= 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

причём 𝑓𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁 .
В силу (13), условий 1), 2), a), (14), (16), (26) и теоремы Б. Леви (см. [18, с. 303])

предельная вектор-функция 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))
т удовлетворяет

системе (1) и оценке снизу

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾ 𝑑𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛 ∖𝐵𝑟, 𝑖=1, 𝑁. (27)

Учитывая оценку (27) и лемму 2, заключаем, что

inf
(𝑥1,...,𝑥𝑛)∈R𝑛

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁. (28)

Далее, принимая во внимание условие e), утверждение леммы 3 и свойство монотонности (13),
приходим к строгому неравенству

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (29)
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Теперь в оценке (26) вместо 𝑚 возьмём 𝑚+1, 𝑚+2, . . . , 𝑚+𝑝. В результате получим
следующие неравенства:

0⩽ 𝑓
(𝑚+2)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+3)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+1,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁,

0⩽ 𝑓
(𝑚+3)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+4)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+2,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0⩽ 𝑓
(𝑚+𝑝+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+𝑝,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑝,𝑚=1, 2, . . . , 𝑖=1, 𝑁.

Суммируя их с неравенством (26), приходим к двусторонней оценке

0⩽ 𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)(𝑘𝑚+𝑘𝑚+1+ . . .+𝑘𝑚+𝑝),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑝,𝑚=1, 2, . . . , 𝑖=1, 𝑁. (30)

Из (30), в частности, следует, что

0<𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)
𝑘𝑚

1−𝑘
. (31)

Зафиксировав индекс 𝑚 и устремив 𝑝→∞ в (31), получим

0<𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)

𝑘𝑚

1−𝑘
. (32)

Заметим также, что если функции {𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)}𝑖,𝑗=1,𝑁 удовлетворяют дополнительному
условию

𝑎𝑖𝑗−𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)∈𝐿1(R𝑛), 𝑖, 𝑗=1, 𝑁, (33)

то, рассуждая аналогично доказательству основной теоремы (об интегральной асимптотике
решения) из работы [13], можно утверждать, что существуют положительные постоянные
𝒟1, 𝒟2, . . . , 𝒟𝑁 такие, что

0⩽
ˆ

R𝑛

(𝜂𝑖−𝑓 (𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛))𝑑𝑥1 . . . 𝑑𝑥𝑛⩽𝒟𝑖, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁.

Отсюда согласно теореме Б. Леви заключаем, что 𝜂𝑖−𝑓𝑖 ∈𝐿1(R𝑛), 𝑖=1, 𝑁 , и
ˆ

R𝑛

(𝜂𝑖−𝑓𝑖(𝑥1, . . . , 𝑥𝑛)) 𝑑𝑥1 . . . 𝑑𝑥𝑛⩽𝒟𝑖, 𝑖=1, 𝑁.

На основании изложенного выше справедлива следующая
Теорема 1. При выполнении условий a)–e), 1), 2) система нелинейных многомерных

интегральных уравнений (1) имеет покоординатно положительное непрерывное и ограни-
ченное на R𝑛 решение 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))

т, являющееся равно-
мерным пределом последовательных приближений (12). Более того, имеют место оцен-
ки (27)–(29) и (32). Если к тому же выполняется условие (33), то 𝜂𝑖−𝑓𝑖∈𝐿1(R𝑛), 𝑖=1, 𝑁 .
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4. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ СИСТЕМЫ (1)

Рассмотрим следующий подкласс непрерывных покоординатно неотрицательных и огра-
ниченных на R𝑛 вектор-функций:

H :=
{︁
𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))

т : 𝑓𝑖 ∈𝐶𝑀 (R𝑛),

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾ 0, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

существует 𝑗0 ∈{1, 2, . . . , 𝑁} такое, что inf
(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

𝑓𝑗0(𝑥1, . . . , 𝑥𝑛)> 0
}︁
, (34)

где число 𝑟 > 0 определяется в условии d), через 𝐶𝑀 (R𝑛) обозначено пространство непре-
рывных и ограниченных функций на множестве R𝑛. Имеет место следующая

Теорема 2. При выполнении условий a)–e), 1), 2) система нелинейных многомерных
интегральных уравнений (1) кроме решения 𝑓, построенного при помощи последовательных
приближений (13), в классе H других решений не имеет.

Доказательство. Предположим обратное: система (1) кроме решения 𝑓 ∈H, построен-
ного при помощи последовательных приближений (12), обладает также другим решением
𝑓*∈H. Тогда, используя леммы 2 и 3, заключаем, что

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, (35)

𝛼*
𝑖 := inf

(𝑥1,...,𝑥𝑛)∈R𝑛
𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁. (36)

Применив метод индукции по 𝑚, несложно убедиться в достоверности следующих нера-
венств:

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)<𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (37)

В (37) устремляя 𝑚→∞, приходим к неравенству

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (38)

Рассмотрим функции 𝐵𝑖(𝑥1, . . . ,𝑥𝑛)=𝑓
*
𝑖 (𝑥1, . . . ,𝑥𝑛)/𝑓𝑖(𝑥1, . . . ,𝑥𝑛), (𝑥1, . . . ,𝑥𝑛)∈R𝑛, 𝑖=1,𝑁 .

Так как 𝑓, 𝑓*∈H, то в силу (28), (29), (35), (36), (38) имеем, что 𝐵𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁 , и

𝛼*
𝑖

𝜂𝑖
⩽𝐵𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 1, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Обозначим 𝜎* =min𝑖∈1,𝑁{𝛼*
𝑖 /𝜂𝑖}. В силу (35) и (36) число 𝜎* ∈ (0, 1). Таким образом,

получаем неравенство

𝜎*𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (39)

Далее, рассуждая как при доказательстве теоремы 1, из (39) получаем следующие оценки:

0⩽𝑓𝑖(𝑥1, . . . , 𝑥𝑛)−𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽𝜂𝑖(1−𝜎*)𝑘𝑚* , (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, (40)

где 𝑘*=(1−𝜙(𝜎*/2))/(1−𝜎*/2)∈ (0, 1).
В (40) устремляя число 𝑚→ ∞, приходим к равенству 𝑓𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁 . Теорема доказана.
Аналогичным образом доказывается следующая
Теорема 3. Пусть выполняются условия a)–d), 1), 2) и имеют место соотношения

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 𝑎𝑖𝑗 , (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁.

Тогда система (1) в классе H обладает только тривиальным решением 𝜂=(𝜂1, . . . , 𝜂𝑁 )т.
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5. ПРИМЕРЫ

Для наглядности полученных теоретических результатов приведём примеры матричного
ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 .

Примеры ядра 𝐾:
p1) 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) =𝐾𝑖𝑗(𝑥1− 𝑡1, 𝑥2− 𝑡2, . . . , 𝑥𝑛− 𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛) ∈R𝑛,

𝑖, 𝑗=1,𝑁 , где 𝐾𝑖𝑗(𝜏1, 𝜏2, . . . , 𝜏𝑛)>0, 𝐾𝑖𝑗∈𝐶(R𝑛),
´
R𝑛𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) 𝑑𝜏1 . . .𝑑𝜏𝑛=𝑎𝑖𝑗<1, 𝑖, 𝑗=1,𝑁 ,

𝑟(𝐴)= 1, 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , (𝜏1, . . . , 𝜏𝑛)∈R𝑛.
p2) 𝐾𝑖𝑗(𝑥1,...,𝑥𝑛,𝑡1,...,𝑡𝑛)=𝜆𝑖𝑗(|𝑥|)𝐾𝑖𝑗(𝑥1−𝑡1,𝑥2−𝑡2,...,𝑥𝑛−𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛)∈R𝑛,

|𝑥|=
√︀
𝑥21+ . . .+𝑥

2
𝑛, 0< inf𝑣⩾0 𝜆𝑖𝑗(𝑣)⩽𝜆𝑖𝑗(𝑣)< 1, 𝑣⩾ 0, 1−𝜆𝑖𝑗 ∈𝐿1(0,+∞), 𝑖, 𝑗=1, 𝑁 .

p3) 𝐾𝑖𝑗(𝑥1,...,𝑥𝑛,𝑡1,...,𝑡𝑛)=𝐶
*
𝑖𝑗(𝑥1,...,𝑥𝑛)𝐾𝑖𝑗(𝑥1−𝑡1,...,𝑥𝑛−𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛)∈R𝑛,

inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)> 0, 𝐶*

𝑖𝑗 ∈𝐶(R𝑛), sup(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 1, 𝑖, 𝑗=1, 𝑁 .

Приведём также примеры функций 𝐾𝑖𝑗 , 𝜆𝑖𝑗 , 𝐶*
𝑖𝑗 , 𝑖, 𝑗=1, 𝑁 :

q1) 𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛)=𝜋−𝑛/2𝑎𝑖𝑗𝑒
−(𝜏21+...+𝜏2𝑛), 𝑟(𝐴)= 1, 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , 𝜏𝑗 ∈R, 𝑖, 𝑗=1, 𝑁 ,

q2) 𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) =
´ 𝑏
𝑎 𝑒

−(|𝜏1|+...+|𝜏𝑛|)𝑠 𝑑𝑄𝑖𝑗(𝑠), 𝜏𝑗 ∈ R, 𝑖, 𝑗 = 1, 𝑁 , где 𝑄𝑖𝑗(𝑠) — монотонно
возрастающие функции на [𝑎, 𝑏), 0<𝑎<𝑏⩽+∞, причём

2𝑛
𝑏ˆ

𝑎

1

𝑠𝑛
𝑑𝑄𝑖𝑗(𝑠)= 𝑎𝑖𝑗 , 𝑖, 𝑗=1, 𝑁 ;

q3) 𝜆𝑖𝑗(|𝑥|)= 1−𝜀𝑖𝑗𝑒−(𝑥2
1+...+𝑥2

𝑛), 0<𝜀𝑖𝑗 < 1 — параметры, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁 ,
q4) 𝐶*

𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 1−𝜀𝑖𝑗𝑒−(|𝑥1|+...|𝑥𝑛|), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁 .
Перейдем теперь к примерам нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 :

r1) 𝐺𝑗(𝑢)=𝑢𝛽𝑗𝜂
1−𝛽𝑗

𝑗 , 𝑢∈ [0,+∞), 𝛽𝑗 ∈ (0, 1), 𝑗=1, 𝑁 ;

r2) 𝐺𝑗(𝑢)= 𝜂𝑗(𝑢
𝛽𝑗 +𝑢𝛿𝑗 )/(𝜂

𝛽𝑗

𝑗 +𝜂
𝛿𝑗
𝑗 ), 𝑢∈ [0,+∞), 𝛽𝑗 , 𝛿𝑗 ∈ (0, 1), 𝑗=1, 𝑁 ;

r3) 𝐺𝑗(𝑢)= 𝑙𝑗(1−𝑒−𝑢𝛽𝑗
), 𝑢∈ [0,+∞), 𝛽𝑗 ∈ (0, 1), 𝑙𝑗 = 𝜂𝑗/(1−exp{−𝜂𝛽𝑗

𝑗 }), 𝑗=1, 𝑁 .
Подробно остановимся на примерах p3), q1), r3) и проверим выполнение условий 2) и d).

Прежде всего заметим, что в данном случае

sup
(𝑥1,...,𝑥𝑛)∈R𝑛

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= sup
(𝑥1,...,𝑥𝑛)∈R𝑛

(︂
𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛
)︂
=

= sup
(𝑥1,...,𝑥𝑛)∈R𝑛

(︂
𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)

ˆ

R𝑛

𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) 𝑑𝜏1 . . . 𝑑𝜏𝑛

)︂
=

= 𝑎𝑖𝑗 sup
(𝑥1,...,𝑥𝑛)∈R𝑛

𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 𝑎𝑖𝑗 , 𝑖, 𝑗=1, 𝑁.

Так как 𝑟(𝐴)=1 (см. пример q1)), то условие 2) выполняется. Для полноты изложения при-
ведём пример матрицы 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 с единичным спектральным радиусом и с элементами
𝑎𝑖𝑗 ∈ (0, 1), 𝑖, 𝑗=1, 𝑁 (в случае когда 𝑁 =2):

𝐴=

⎛⎝7/9 1/3

1/3 1/2

⎞⎠.
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Проверим условие d). Сначала оценим интеграл от функции 𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) по
множеству R𝑛 ∖𝐵𝑟:

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

=
ˆ

R𝑛

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛−
ˆ

𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑎𝑖𝑗−
ˆ

𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾ 𝑎𝑖𝑗−
𝑟ˆ

−𝑟

ˆ

R𝑛−1

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑎𝑖𝑗−
𝑟ˆ

−𝑟

Φ𝑖𝑗(𝑥𝑛− 𝑡𝑛) 𝑑𝑡𝑛= 𝑎𝑖𝑗−
𝑥𝑛+𝑟ˆ

𝑥𝑛−𝑟

Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛,

где Φ𝑖𝑗(𝜏) :=
´
R𝑛−1 𝐾𝑖𝑗(𝑡1, . . . , 𝑡𝑛−1, 𝜏) 𝑑𝑡1 . . . 𝑑𝑡𝑛−1.

Рассмотрим функции 𝐹𝑖𝑗(𝑥𝑛) :=
´ 𝑥𝑛+𝑟
𝑥𝑛−𝑟 Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛, 𝑖, 𝑗 =1, 𝑁 , 𝑥𝑛 ∈R. Так как 𝐹𝑖𝑗(𝑥𝑛)→ 0

при |𝑥𝑛| →∞, то для каждых фиксированных 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} существует число 𝑟0 > 0
такое, что при |𝑥𝑛|>𝑟0

𝐹𝑖𝑗(𝑥𝑛)⩽
𝑎𝑖𝑗
2
.

Но поскольку 𝐹𝑖𝑗 ∈𝐶(R) и 𝐾𝑖𝑗(𝑡1, . . . , 𝑡𝑛)> 0, (𝑡1, . . . , 𝑡𝑛)∈R𝑛, то для 𝑥𝑛 ∈ [−𝑟0, 𝑟0]

𝐹𝑖𝑗(𝑥𝑛)⩽ max
𝑥𝑛∈[−𝑟0,𝑟0]

{︃ 𝑥𝑛+𝑟ˆ

𝑥𝑛−𝑟

Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛

}︃
=: 𝛿𝑖𝑗 <𝑎𝑖𝑗 .

Следовательно, 𝐹𝑖𝑗(𝑥𝑛)⩽max{𝑎𝑖𝑗/2, 𝛿𝑖𝑗}<𝑎𝑖𝑗 , 𝑥𝑛 ∈R, 𝑖, 𝑗=1, 𝑁 .
Таким образом, имеем

inf
(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾ inf
(𝑥1,...,𝑥𝑛)∈R𝑛

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾ 𝑎𝑖𝑗−max
{︁𝑎𝑖𝑗

2
, 𝛿𝑖𝑗

}︁
> 0, 𝑖, 𝑗=1, 𝑁,

откуда вытекает, что

𝜀𝑖(𝑟)⩾ min
𝑗=1,𝑁

{︁
𝐶0
𝑖𝑗

(︁
𝑎𝑖𝑗−max

{︁𝑎𝑖𝑗
2
, 𝛿𝑖𝑗

}︁)︁}︁
> 0,

где 𝐶0
𝑖𝑗 := inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*

𝑖𝑗(𝑥1, . . . , 𝑥𝑛).
С другой стороны, очевидно, что 𝜀𝑖(𝑟)⩽ 𝑎𝑖𝑗 < 1, 𝑖, 𝑗=1, 𝑁 .
Теперь убедимся, что для примера p3) уравнения 𝐺𝑖(𝑢) = 𝑢/𝜀𝑖(𝑟) имеют положитель-

ные решения 𝑑𝑖. Действительно, так как 𝐺𝑖 ∈ 𝐶(R+), 𝐺𝑖(𝜂𝑖) = 𝜂𝑖, lim𝑢→+0𝐺𝑖(𝑢)/𝑢 = +∞,
lim𝑢→+∞𝐺𝑖(𝑢)/𝑢= 0, 𝑖= 1, 𝑁 , а 𝜀𝑖(𝑟) ∈ (0, 1) и 𝐺𝑖(𝑢)/𝑢 монотонно убывает на (0,+∞), то
при каждом 𝑖∈{1, 2, . . . , 𝑁} существует единственное 𝑑𝑖> 0 такое, что 𝐺𝑖(𝑑𝑖)/𝑑𝑖= 𝜀𝑖(𝑟).

Проверка условий 2) и d) для остальных примеров выполняется аналогично.
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Теперь приведём конкретный пример нелинейного многомерного интегрального уравне-
ния, имеющего приложение в теории 𝑝-адической струны (см. [5]):

𝜙𝑝(𝑥1, . . . , 𝑥𝑛)=𝜋−𝑛/2
ˆ

R𝑛

𝑒−((𝑥1−𝑡1)2+...+(𝑥𝑛−𝑡𝑛)2)𝜙(𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛,

где 𝑝 > 2 — нечётное число. С помощью обозначения 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝜙𝑝(𝑥1, . . . , 𝑥𝑛) данное
уравнение сводится к многомерному уравнению вида (1) с вогнутой нелинейностью относи-
тельно искомой неотрицательной функции 𝑓(𝑥1, . . . , 𝑥𝑛).

Приведём также пример одномерного интегрального уравнения свёрточного типа с экспо-
ненциальной нелинейностью, возникающего в математической теории географического рас-
пространения эпидемии:

𝑓(𝑥)= 𝑎

∞̂

−∞

𝐾(𝑥− 𝑡)(1−𝑒−𝑓(𝑡)) 𝑑𝑡, 𝑥∈R,

где 𝑎 > 1 — числовой параметр, ядро 𝐾(𝑥) > 0, 𝑥 ∈ R,
´∞
−∞𝐾(𝑥) 𝑑𝑥 = 1 (см. [6, с. 318] в

формулировке теоремы 1 (𝑓(𝑥)=−𝜒(𝑥))).
Авторы выражают благодарность рецензентам за полезные замечания.
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The work is devoted to the study of questions of existence and uniqueness of a continuous bounded and
positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue
of the indicated system of integral equations, with different representations of the corresponding matrix
kernel and nonlinearities, has important applied significance in a number of areas of physics and biology.
This article proposes a special iterative approach for constructing a positive continuous and bounded
solution to the system under study. It is possible to prove that the corresponding iterations uniformly
converge to a continuous solution of the specified system. Using some a priori estimates for strictly
concave functions, we also prove the uniqueness of the solution in a fairly wide subclass of continuous
bounded and coordinately nonnegative vector functions. In the case when the integral of the matrix
kernel has a unit spectral radius, it is proved that in a certain subclass of continuous bounded and
coordinate-wise non-negative vector functions, this system has only a trivial solution, which is an
eigenvector of the kernel integral matrix.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Рассматривается система обыкновенных дифференциальных уравнений

𝑦̇(𝑡)= 𝑓(𝑡, 𝑦(𝑡))+𝐵𝑢(𝑡), 𝑡∈𝑇 = [0, 𝜗], (1)

с начальным условием
𝑦(0)= 𝑦0. (2)

Здесь 0<𝜗<+∞, 𝑦∈R𝑁, 𝑢∈R𝑟 — входное воздействие, 𝑓(𝑡, 𝑦) — липшицевая (с константой
Липшица 𝐿) по совокупности переменных векторная функция, 𝐵 — стационарная матрица
размерности 𝑁×𝑟, 𝑛, 𝑟∈N.

Предполагается, что на систему (1) действует неизвестное входное воздействие 𝑢(·) ∈
∈𝐿2(𝑇 ;R𝑟). В дискретные, достаточно частые, моменты времени 𝜏𝑖 ∈Δ= {𝜏𝑖}𝑖=0,𝑚 (𝜏0 = 0,
𝜏𝑚=𝜗, 𝜏𝑖+1= 𝜏𝑖+𝛿) измеряются фазовые состояния 𝑦(𝜏𝑖)= 𝑦(𝜏𝑖; 𝑦0, 𝑢(·)) системы (1). Состо-
яния 𝑦(𝜏𝑖), 𝑖=0,𝑚−1, измеряются с ошибкой. Результатами измерений являются векторы
𝜉ℎ𝑖 ∈R𝑁 , удовлетворяющие неравенствам

|𝑦(𝜏𝑖)−𝜉ℎ𝑖 |𝑁 ⩽ℎ, (3)
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где ℎ ∈ (0, 1) — уровень погрешности измерения, | · |𝑁 означает евклидову норму в про-
странстве R𝑁 .

Требуется указать алгоритм приближённого восстановления входного воздействия по
результатам неточных измерений 𝑦(𝜏𝑖). Для этого рассматривается задача, состоящая в
построении алгоритма, который по текущим измерениям величин 𝑦(𝜏𝑖) в “реальном времени”
формирует (по принципу обратной связи) функцию 𝑢=𝑢ℎ(·), являющуюся приближением (в
метрике пространства 𝐿2(𝑇 ;R𝑟)) некоторого входного воздействия, порождающего решение
𝑦(·) уравнения (1).

Сформулированная задача является задачей динамического восстановления (реконструк-
ции). Один из подходов к её решению был развит в исследованиях [1, с. 7–87; 2, с. 400–415;
3, с. 13–93; 4–12]. В работах [1–10] рассматривался случай наличия мгновенных ограничений
на возмущения, случай отсутствия таких ограничений описан в [3, с. 41–64; 6; 11; 12]. Подход
основан на комбинации методов теории позиционного управления [13], согласно которым для
динамического, реализуемого в темпе “реального времени”, восстановления возмущения, дей-
ствующего на систему (1), поступают следующим образом: вводится некоторая управляемая
система, довольно часто называемая моделью; после этого задача восстановления заменя-
ется задачей формирования управления этой моделью по принципу обратной связи таким
образом, что при подходящем согласовании погрешности измерения ℎ, величины промежут-
ка измерения 𝛿 (а также, возможно, и некоторых других параметров, например, параметра
регуляризации) управление 𝑢ℎ(·) аппроксимирует в той или иной метрике некоторое входное
воздействие, порождающее измеряемое решение 𝑦(·) системы (1). Обычно, говоря об аппрок-
симации, подразумевают равномерную (метрику пространства 𝐶) или среднеквадратичную
(метрику пространства 𝐿2) метрики. При реализации этого подхода во многих случаях пра-
вая часть модели имеет ту же структуру, что и реальная система (система (1)). Однако
вместо фазового вектора модели в её правой части стоят величины 𝜉ℎ𝑖 , т.е. результаты изме-
рений фазовых состояний реальной системы, а не состояний модели. Довольно часто (см.,
например, [1, с. 23; 4; 5]) модель имеет следующий вид:

𝑦̇ℎ(𝑡)= 𝑓(𝜏𝑖, 𝜉
ℎ
𝑖 )+𝐵𝑢

ℎ
𝑖 при п.в. 𝑡∈ 𝛿𝑖= [𝜏𝑖, 𝜏𝑖+1), 𝑖=0,𝑚−1. (4)

При этом управление 𝑢ℎ(·) в модели формируется согласно некоторому правилу 𝑈 в форме
обратной связи:

𝑢ℎ(𝑡)=𝑢ℎ𝑖 =𝑈(𝜏𝑖, 𝜉
ℎ
𝑖 , 𝑦

ℎ(𝜏𝑖)) при п.в. 𝑡∈ 𝛿𝑖, 𝑖=0,𝑚−1. (5)

В математической теории управления одной из “классических” задач является так на-
зываемая задача слежения, исследование которой началось в пятидесятые годы XX века
и было вызвано практическими проблемами, возникающими в авиации и космонавтике. Не
потеряла актуальность эта задача и в настоящее время, в частности, в связи с потребно-
стями развития динамики полёта. Задача слежения является востребованной и при анализе
процессов, возникающих в задачах управления механическими системами [14, 15], а также
системами, функционирующими в условиях неопределённости [16]. Ей отводится важная
роль и в рамках позиционных дифференциальных игр [13].

Суть задачи слежения в простейшем случае состоит в следующем. Имеется система (1) с
неизвестным входным воздействием 𝑢(·), удовлетворящим обычно мгновенному ограничению
𝑢(𝑡)∈𝑃 при п.в. 𝑡∈𝑇 , где 𝑃 ⊂R𝑟 — компактное множество. Наряду с системой (1) имеется
ещё одна система того же вида

𝑥̇(𝑡)= 𝑓(𝑡, 𝑥(𝑡))+𝐵𝑣(𝑡), 𝑡∈𝑇, (6)
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с начальным состоянием
𝑥(0)=𝑥0

и управлением 𝑣(·), которое подчиняется тем же ограничениям, что и функция 𝑢(·). В мо-
менты 𝜏𝑖 измеряются (с ошибкой) фазовые состояния систем (1) и (6) — 𝑦(𝜏𝑖) и 𝑥(𝜏𝑖)
соответственно. Результаты измерений — векторы 𝜉ℎ𝑖 ∈ R𝑁 и 𝜓ℎ

𝑖 ∈ R𝑁 , удовлетворяющие
неравенствам

|𝜉ℎ𝑖 −𝑦(𝜏𝑖)|𝑁 ⩽ℎ, |𝜓ℎ
𝑖 −𝑥(𝜏𝑖)|𝑁 ⩽ℎ.

Суть задачи слежения состоит в конструировании такого алгоритма формирования управ-
ления 𝑣= 𝑣ℎ(·) системой (6) по принципу обратной связи

𝑣ℎ(𝑡)= 𝑣ℎ𝑖 =𝑉 (𝜏𝑖, 𝜉
ℎ
𝑖 , 𝜓

ℎ
𝑖 ) при п.в. 𝑡∈ 𝛿𝑖, 𝑖=0,𝑚−1, (7)

что при соответствующем согласовании величин ℎ и 𝛿 решения систем (1) и (6) будут близки,
как правило в равномерной метрике (в случае близости начальных состояний этих систем),
какова бы ни была допустимая реализация входного воздействия 𝑣(·). Таким образом, при
решении задачи слежения необходимо сконструировать такой закон 𝑉 формирования управ-
ления (7), что каково бы ни было число 𝜀> 0, по нему указываются числа ℎ* и 𝛿* такие,
что при всех ℎ∈ (0, ℎ*) и 𝛿 ∈ (0, 𝛿*) справедливо неравенство

sup
𝑡∈𝑇

|𝑥(𝑡;𝑥0, 𝑣ℎ(·))−𝑦(𝑡; 𝑦0, 𝑢(·))|𝑁 ⩽ 𝜀,

если величина |𝑥0−𝑦0|𝑁 достаточно мала. Здесь 𝑥(·;𝑥0, 𝑣ℎ(·)) — решение системы (6), по-
рождённое управлением 𝑣ℎ(·) вида (7). Обратим внимание на тот факт, что как в задаче
реконструкции, так и в задаче слежения входное воздействие заданной системы является
неизвестным.

Если бы описанные в цитированных выше работах алгоритмы решения задачи рекон-
струкции позволяли получать для произвольного измеримого входного воздействия 𝑢(·) (воз-
можно, стеснённого некоторыми заданными мгновенными ограничениями) оценки скорости
сходимости (к 𝑢(·)) управлений 𝑢ℎ(·) (в модели (4) формируемым согласно правилу (5))
в равномерной или среднеквадратичной метрике, то, решая задачу реконструкции, мы од-
новременно решали бы и задачу слежения. Однако, к сожалению, такие оценки удаётся
получить лишь для специальных классов 𝑢(·), например, для функций с ограниченной ва-
риацией. В случае же когда 𝑢(·) не является такой функцией, алгоритмы из этих работ
гарантируют лишь сходимость управлений 𝑢ℎ(·) к 𝑢(·).

Естественно возникает вопрос: можно ли в алгоритмах реконструкции в качестве модели
выбрать не систему вида (4), а систему вида (6), т.е. полную копию системы (1)? Тогда,
решая задачу реконструкции в соответствии с описанным подходом, мы одновременно реша-
ли бы и задачу слежения. К сожалению, для произвольных 𝑓 и 𝐵, пусть даже достаточно
гладких, дать положительный ответ на него не представляется возможным. Цель данной
работы и состоит в том, чтобы указать два класса систем вида (1), для которых ответ на
поставленный вопрос является положительным. При этом для каждого из этих двух классов
будет указано своё правило формирования управлений. Первый класс — это линейная как
по фазовым переменным, так и по возмущению система; второй — система с монотонной по
фазовой переменной функцией 𝑓 . Следует отметить, что развиваемый в настоящей работе
подход к решению задач динамической реконструкции применялся при решении задач вос-
становления неизвестных структурных характеристик биореактора с подпиткой [3], задачи
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формирования телеметрии полёта по косвенным данным [3], задач моделирования процессов
распространения загрязнений [17].

В дальнейшем для каждого ℎ ∈ (0, 1) фиксируем семейство Δℎ разбиений отрезка 𝑇
контрольными моментами времени 𝜏ℎ,𝑖:

Δℎ= {𝜏ℎ,𝑖}𝑖=0,𝑚ℎ
, 𝜏ℎ,0=0, 𝜏ℎ,𝑚ℎ

=𝜗, 𝜏ℎ,𝑖+1= 𝜏ℎ,𝑖+𝛿(ℎ), 𝛿(ℎ)∈ (0, 1). (8)

Следует отметить, что одно и то же решение системы (1) может обуславливаться не един-
ственным воздействием. Пусть 𝒰(𝑦(·)) — множество всех входных воздействий из 𝐿2(𝑇 ;R𝑟),
порождающих решение 𝑦(·) системы (1), т.е.

𝒰(𝑦(·))= {𝑢̃(·)∈𝐿2(𝑇 ;R𝑟) : 𝑦̇(𝑡)−𝑓(𝑡, 𝑦(𝑡))=𝐵𝑢̃(𝑡) при п.в. 𝑡∈𝑇}.

Символом 𝑢*(·) обозначим минимальный по 𝐿2(𝑇 ;R𝑟)-норме элемент множества 𝒰(𝑦(·)), т.е.

𝑢*(·)= arg min
𝑢(·)∈𝒰(𝑦(·))

|𝑢(·)|𝐿2(𝑇 ;R𝑟).

Такой элемент существует и единственен. Следуя принятому в теории некорректных задач
подходу, мы будем восстанавливать 𝑢*(·). В дальнейшем 𝑐(0), 𝑐(1), . . . , 𝑐0, 𝑐1, . . . , 𝑘(1),
𝑘(2), . . . , 𝑘1, 𝑘2, . . . означают положительные постоянные, которые могут быть выписаны в
явном виде, (·, ·) — скалярное произведение в соответствующем конечномерном евклидовом
пространстве, а | · | — модуль числа.

2. АЛГОРИТМ РЕШЕНИЯ В СЛУЧАЕ ЛИНЕЙНОЙ СИСТЕМЫ

Рассмотрим случай, когда система (1) является линейной, т.е. имеет вид

𝑦̇(𝑡)=𝐴𝑦(𝑡)+𝐵𝑢(𝑡)+𝑓1(𝑡). (9)

Здесь 𝐴 и 𝐵 — постоянные матрицы соответствующих размерностей, 𝑓1(·) ∈ 𝐿2(𝑇 ;R𝑁 ) —
заданная функция. Модель является копией системы (9):

𝑦̇ℎ(𝑡)=𝐴𝑦ℎ(𝑡)+𝐵𝑢ℎ(𝑡)+𝑓1(𝑡) (10)

с начальным состоянием
𝑦ℎ(0)= 𝜉ℎ0 .

Зафиксируем функцию 𝛼(ℎ) : (0, 1)→ (0, 1). В дальнейшем нам понадобится следующее
Условие A. При ℎ→ 0 имеем 𝛼(ℎ)→ 0, 𝛿(ℎ)𝛼−2(ℎ)→ 0, ℎ2(𝛼(ℎ)𝛿(ℎ))−1→ 0.
Обозначим через 𝒴(𝑡) фундаментальную матрицу системы уравнений 𝑦̇(𝑡)=𝐴𝑦(𝑡). Спра-

ведливо неравенство
‖𝒴(𝑡)‖⩽ exp{𝜒𝑡}, 𝑡⩾ 0,

где 𝜒= ‖𝐴‖, ‖𝐴‖ — евклидова норма матрицы 𝐴.
До начала работы алгоритма фиксируем величину ℎ∈ (0, 1), разбиение Δℎ= {𝜏ℎ,𝑖}𝑖=0,𝑚ℎ

вида (8) и число 𝛼=𝛼(ℎ). Работу алгоритма разобьём на конечное число однотипных шагов.
На 𝑖-м шаге, осуществляемом на промежутке времени 𝛿𝑖 = [𝜏𝑖, 𝜏𝑖+1), 𝜏𝑖 = 𝜏ℎ,𝑖, выполняются
следующие операции: в момент 𝜏𝑖 вычисляется вектор 𝑢ℎ𝑖 по формуле (5), в которой

𝑈(𝜏𝑖, 𝜉
ℎ
𝑖 , 𝑦

ℎ(𝜏𝑖))=𝛼−1 exp{−2𝜒𝜏𝑖+1}𝐵′(𝜉ℎ𝑖 −𝑦ℎ(𝜏𝑖)) (11)
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(здесь штрих означает транспонирование); затем на вход системы (10) при всех 𝑡∈𝛿𝑖 подаётся
управление 𝑢ℎ(𝑡) вида (5), (11), под действием которого система (10) переходит из состояния
𝑦ℎ(𝜏𝑖) в состояние 𝑦ℎ(𝜏𝑖+1). Работа алгоритма заканчивается в момент 𝜗.

Введём функционал
𝜆(𝑡)= exp{−2𝜒𝑡}|𝑦ℎ(𝑡)−𝑦(𝑡)|2𝑁 .

В дальнейшем нам потребуется следующая
Лемма 1 (дискретное неравенство Гронуолла [18, с. 311]). Пусть 𝜑𝑗 ⩾ 0, 𝑓𝑗 ⩾ 0 при

𝑗=0,𝑚 и 𝑓𝑗 ⩽ 𝑓𝑗+1 при 𝑗=0,𝑚−1. Тогда из неравенств

𝜑𝑗+1⩽ 𝑐0𝛿

𝑗∑︁
𝑖=1

𝜑𝑖+𝑓𝑗 , 𝑗=1,𝑚−1,

вытекают неравенства
𝜑𝑗+1⩽ 𝑓𝑗 exp{𝑐0𝑗𝛿}, 𝑗=0,𝑚−1,

если 𝑐0=const> 0, 𝜑1⩽ 𝑓0.
Лемма 2. Пусть выполнено условие A. Тогда можно указать такое число ℎ* ∈ (0, 1),

что при всех ℎ∈ (0, ℎ*) справедливы неравенства

max
𝑖∈0,𝑚ℎ−1

𝜆(𝜏𝑖+1)⩽ 𝑑1{𝛼+𝛿+ℎ2𝛿−1}, (12)

𝜗ˆ

0

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽ (1+𝑑2𝛿𝛼
−2)

𝜗ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠+𝑑3ℎ2(𝛼𝛿)−1, (13)

где 𝑑𝑗 , 𝑗=1, 2, 3, — положительные постоянные, не зависящие от ℎ, 𝛿 и 𝛼.
Доказательство. Оценим изменение величины

𝜀(𝑡)=𝜆(𝑡)+𝛼

𝑡ˆ

0

(︀
|𝑢ℎ(𝜏)|2𝑟−|𝑢*(𝜏)|2𝑟

)︀
𝑑𝜏.

Здесь 𝛼=𝛼(ℎ), 𝛿= 𝛿(ℎ). Нетрудно видеть, что справедливо неравенство

𝜀(𝜏𝑖+1)⩽ 𝜀(𝜏𝑖)+𝜆1𝑖+𝜇1𝑖+𝛼

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ(𝜏)|2𝑟−|𝑢*(𝜏)|2𝑟

)︀
𝑑𝜏, (14)

где

𝜆1𝑖=2

(︃
𝑆ℎ
𝑖 ,

𝜏𝑖+1ˆ

𝜏𝑖

𝒴(𝜏𝑖+1−𝜏)𝐵(𝑢ℎ(𝜏)−𝑢*(𝜏)) 𝑑𝜏

)︃
,

𝜇1𝑖= 𝛿 exp{−2𝜒𝜏𝑖+1}
𝜏𝑖+1ˆ

𝜏𝑖

|𝒴(𝜏𝑖+1−𝜏)𝐵(𝑢ℎ(𝜏)−𝑢*(𝜏))|2𝑁 𝑑𝜏,

𝑆ℎ
𝑖 =exp{−2𝜒𝜏𝑖+1}𝒴(𝛿)𝑠ℎ𝑖 , 𝑠ℎ𝑖 = 𝑦ℎ(𝜏𝑖)−𝑦(𝜏𝑖).

Заметим, что при 𝑡∈ [0, 𝛿*], 𝛿* ∈ (0, 1),

‖𝒴(𝑡)−𝐼‖⩽ 𝑐*𝑡, 𝑐*= 𝑐*(𝛿*),
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где 𝐼 — единичная матрица размерности 𝑁×𝑁 . Поэтому

|𝑆ℎ
𝑖 −exp{−2𝜒𝜏𝑖+1}𝑠ℎ𝑖 |𝑁 ⩽ 𝛿𝑐* exp{−2𝜒𝜏𝑖+1}|𝑠ℎ𝑖 |𝑁 ⩽ 𝛿𝑐*|𝑠ℎ𝑖 |𝑁 . (15)

В этом случае, учитывая (15), а также неравенство |𝑆ℎ
𝑖 |𝑁 ⩽ |𝑠ℎ𝑖 |𝑁 , имеем

|(𝑆ℎ
𝑖 ,𝒴(𝛿)𝐵𝑢)−exp{−2𝜒𝜏𝑖+1}(𝑠ℎ𝑖 , 𝐵𝑢)|⩽

⩽ |𝑆ℎ
𝑖 |𝑁 |𝒴(𝛿)−𝐼|𝑁 |𝐵𝑢|𝑁 + |(𝑆ℎ

𝑖 , 𝐵𝑢)−exp{−2𝜒𝜏𝑖+1}(𝑠ℎ𝑖 , 𝐵𝑢)|⩽ 2𝛿𝑐(0)|𝑠ℎ𝑖 |𝑁 |𝐵𝑢|𝑁 . (16)

Далее, в силу (16) справедливо неравенство

𝜆1𝑖⩽ 2 exp{−2𝜒𝜏𝑖+1}

(︃
𝑦ℎ(𝜏𝑖)−𝑦(𝜏𝑖),

𝜏𝑖+1ˆ

𝜏𝑖

𝐵{𝑢ℎ𝑖 −𝑢*(𝜏)} 𝑑𝜏

)︃
+𝐼1𝑖,

где

𝐼1𝑖= 𝛿𝑐(1)|𝑠ℎ𝑖 |𝑁
𝜏𝑖+1ˆ

𝜏𝑖

|𝑢ℎ𝑖 −𝑢*(𝜏)|𝑟 𝑑𝜏.

Нетрудно видеть, что имеет место оценка

𝐼1𝑖⩽ 𝛿2𝜆(𝜏𝑖)+𝑐
(2)𝛿

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |2𝑟+ |𝑢*(𝜏)|2𝑟

)︀
𝑑𝜏. (17)

Учитывая (17), а также правило выбора управления 𝑢ℎ(·) (см. (5), (11)), получаем

𝜆1𝑖+𝛼

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ(𝑠)|2𝑟−|𝑢*(𝑠)|2𝑟

)︀
𝑑𝑠⩽

⩽ 𝛿2𝜆(𝜏𝑖)𝑐
(3)ℎ

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |𝑟+ |𝑢*(𝑠)|𝑟

)︀
𝑑𝑠+𝑐(2)𝛿

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |2𝑟+ |𝑢*(𝑠)|2𝑟

)︀
𝑑𝑠. (18)

Кроме того, верны оценки

𝜇1𝑖⩽ 𝛿𝑐(4)
𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |2𝑟+ |𝑢*(𝜏)|2𝑟

)︀
𝑑𝜏,

𝑐(3)ℎ

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |𝑟+ |𝑢*(𝑠)|𝑟

)︀
𝑑𝑠⩽ 𝛿𝑐(5)

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |2𝑟+ |𝑢*(𝑠)|2𝑟

)︀
𝑑𝑠+𝑐(6)ℎ2. (19)

Из (14), воспользовавшись (18), (19), устанавливаем справедливость неравенства

𝛾(𝜏𝑖+1)=𝜆(𝜏𝑖+1)+𝛼

𝜏𝑖+1ˆ

𝜏𝑖

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽

⩽ (1+𝛿2)𝜆(𝜏𝑖)+𝛼

𝜏𝑖+1ˆ

𝜏𝑖

|𝑢*(𝜏)|2𝑟 𝑑𝜏+𝛿𝑐(7)
𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢*(𝜏)|2𝑟+ |𝑢ℎ𝑖 |2𝑟

)︀
𝑑𝜏+𝑐(6)ℎ2. (20)
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В свою очередь, в силу (3), (11) имеем

|𝑢ℎ𝑖 |2𝑟 ⩽𝛼−2𝑐(8)(ℎ2+ |𝑦ℎ(𝜏𝑖)−𝑦(𝜏𝑖)|2𝑁 )2⩽𝛼−2𝑐(9)(𝜆(𝜏𝑖)+ℎ
2)⩽𝛼−2𝑐(9)(𝛾(𝜏𝑖)+ℎ

2). (21)

Из (20), (21) следует оценка

𝛾(𝜏𝑖+1)⩽ (1+𝛿2)𝛾(𝜏𝑖)+(𝛼+𝑐(7)𝛿)

𝜏𝑖+1ˆ

𝜏𝑖

|𝑢*(𝑠)|2𝑟𝑑𝑠+𝑐(6)ℎ2+𝑐(9)𝛿2𝛼−2(𝛾(𝜏𝑖)+ℎ
2). (22)

Учитывая условие A, заключаем, что можно указать число ℎ1 ∈ (0, 1) такое, что имеет
место неравенство

sup
ℎ∈(0,ℎ1)

𝛿(ℎ)𝛼−2(ℎ)⩽ 1.

Из (22) стандартным образом (см., например, [13, с. 59–64]) выводим соотношение

𝛾(𝜏𝑖+1)⩽

(︃
(𝛼+𝑐(7)𝛿)

𝜏𝑖+1ˆ

𝜏𝑖

|𝑢*(𝑠)|2𝑟 𝑑𝑠+𝑐(6)ℎ2𝛿−1+𝑐(9)ℎ2

)︃
exp{𝛿(1+𝑐(9)𝛼−2)𝜏𝑖+1}. (23)

Заметим, что 𝛿(ℎ)𝛼−2(ℎ)→ 0 при ℎ→ 0. Поэтому можно указать число 𝑐(10) > 0 такое,
что при всех ℎ∈ (0, ℎ1) справедливо неравенство

exp{𝛿(1+𝑐(9)𝛼−2)𝜗}⩽ 1+𝛿𝑐(10)(1+𝛼−2).

Тогда из (23) вытекает соотношение

𝜗ˆ

0

|𝑢ℎ(𝑠)|2𝑟𝑑𝑠⩽ (1+𝑐(7)𝛿𝛼−1)(1+𝑐(10)𝛿𝛼(1+𝛼−2))

𝜗ˆ

0

|𝑢*(𝑠)|2𝑟𝑑𝑠+𝑐(11)ℎ2(𝛿𝛼)−1. (24)

В силу условия A найдётся такое число ℎ* ∈ (0, ℎ1), что при всех ℎ∈ (0, ℎ*)

(1+𝑐(7)𝛿𝛼−1)(1+𝑐(10)𝛿(1+𝛼−2))⩽ 1+𝑑2𝛿𝛼
−2. (25)

Неравенство (13) следует из (24) и (25). В свою очередь неравенство (12) следует из (23).
Лемма доказана.

Замечание. Если 𝛿(ℎ)=𝑑4ℎ, 𝛼(ℎ)=𝑑5ℎ1/2−𝜀, где 𝑑4 и 𝑑5 — положительные постоянные,
𝜀=const∈ (0, 1/2), то имеют место неравенства

max
𝑖=0,𝑚ℎ−1

𝜆(𝜏𝑖+1)⩽ 𝑑6ℎ
1/2−𝜀,

𝜗ˆ

0

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽ (1+𝑑7ℎ
2𝜀)

𝜗ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠+𝑑8ℎ1/2+𝜀.

Из леммы 2 вытекает
Теорема 1. Пусть выполнены условия леммы 2. Тогда имеет место сходимость

𝑢ℎ(·)→𝑢*(·) при ℎ→ 0.
Доказательство этой теоремы проводится по стандартной схеме (см., например, доказа-

тельство теоремы 1.2.3 в [3, с. 21–27]).
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При некоторых дополнительных условиях может быть получена оценка скорости сходи-
мости алгоритма. Для её обоснования нам потребуется следующая

Лемма 3 [3, с. 29]. Пусть 𝑥1(·)∈𝐿∞(𝑇*;R𝑛), 𝑦1(·)∈𝑊 (𝑇*;R𝑛), 𝑇*=[𝑎,𝑏], −∞< 𝑎<𝑏<+∞,⃒⃒⃒⃒
⃒

𝑡ˆ

𝑎

𝑥1(𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒
𝑛

⩽ 𝜀, |𝑦1(𝑡)|𝑛⩽𝐾, 𝑡∈𝑇*.

Тогда при всех 𝑡∈𝑇* верно неравенство⃒⃒⃒⃒
⃒

𝑡ˆ

𝑎

(𝑥1(𝜏), 𝑦1(𝜏)) 𝑑𝜏

⃒⃒⃒⃒
⃒⩽ 𝜀(𝐾+var(𝑇*; 𝑦1(·))).

Здесь var(𝑇*; 𝑦1(·)) означает вариацию функции 𝑦1(·) на отрезке 𝑇*, а 𝑊 (𝑇*;R𝑛) — мно-
жество функций 𝑦(·) : 𝑇*→R𝑛 с ограниченной вариацией.

Лемма 4. Пусть 𝑢*(·) — функция ограниченной вариации, 𝐵 — не зависящая от 𝑡 и 𝑦
(стационарная) матрица, 𝑁 ⩾ 𝑟, rank𝐵 = 𝑟. Пусть также выполнены условия леммы 2.
Тогда можно указать число 𝑑9> 0 такое, что при всех ℎ∈ (0, ℎ*) верно неравенство

𝜗ˆ

0

|𝑢ℎ(𝜏)−𝑢*(𝜏)|2𝑟 𝑑𝜏 ⩽ 𝑑9
(︀
𝛼1/2+ℎ2(𝛼𝛿)−1+𝛿𝛼−2+ℎ1/2+ℎ𝛿−1/2

)︀
. (26)

Доказательство. Заметим, что для любых 𝑡1, 𝑡2 ∈𝑇 , 𝑡1<𝑡2, справедливо соотношение⃒⃒⃒⃒
⃒

𝑡2ˆ

𝑡1

𝐵{𝑢ℎ(𝑡)−𝑢*(𝑡)} 𝑑𝑡

⃒⃒⃒⃒
⃒
𝑁

=

⃒⃒⃒⃒
⃒

𝑡2ˆ

𝑡1

[𝑦̇ℎ(𝜏)− 𝑦̇(𝜏)−𝐴(𝑦ℎ(𝜏)−𝑦(𝜏))] 𝑑𝜏

⃒⃒⃒⃒
⃒
𝑁

⩽

⩽ |𝜇ℎ(𝑡2)−𝜇ℎ(𝑡1)|𝑁 +𝑘(1)
𝑡2ˆ

𝑡1

|𝜇ℎ(𝜏)|𝑁 𝑑𝜏,

где 𝜇ℎ(𝑡)= 𝑦ℎ(𝑡)−𝑦(𝑡). Нетрудно видеть, что при 𝑡∈ 𝛿𝑖 верны неравенства

|𝜇ℎ(𝑡)|2𝑁 ⩽ 𝑘(2)𝜆(𝜏𝑖)+𝑘
(3)

⃒⃒⃒⃒
⃒

𝑡ˆ

𝜏𝑖

𝒴(𝑡−𝑠)𝐵(𝑢ℎ(𝑠)−𝑢*(𝑠)) 𝑑𝑠

⃒⃒⃒⃒
⃒
𝑁

⩽

⩽ 𝑘(2)𝜆(𝜏𝑖)+𝑘
(4)

𝑡ˆ

𝜏𝑖

(︀
|𝑢ℎ(𝑠)|𝑟+ |𝑢*(𝑠)|𝑟

)︀
𝑑𝑠. (27)

В свою очередь, в силу (12) и (21) при 𝑡∈ 𝛿𝑖 имеем

𝑡ˆ

𝜏𝑖

|𝑢ℎ(𝑠)|𝑟 𝑑𝑠⩽ 𝑘(5)𝛿𝛼−1(𝜆1/2(𝜏𝑖)+ℎ)⩽ 𝑘(6)𝛿𝛼−1(𝛼1/2+𝛿1/2+ℎ𝛿−1/2). (28)

Учитывая сходимость 𝛿(ℎ)𝛼−2(ℎ)→ 0 при ℎ→ 0, заключаем, что при ℎ∈ (0, ℎ*) справед-
ливы оценки

𝛿𝛼−1/2⩽ 𝑘(7)𝛼3/2, 𝛿3/2𝛼−1⩽ 𝑘(8)𝛼2, ℎ𝛿1/2𝛼−1⩽ 𝑘(9)ℎ. (29)
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Кроме того, ввиду (28) и (29) при 𝑡∈ 𝛿𝑖 верны оценки

𝑡ˆ

𝜏𝑖

|𝑢ℎ(𝑠)|𝑟𝑑𝑠⩽ 𝑘(10)(ℎ+𝛼3/2),

𝑡ˆ

𝜏𝑖

|𝑢*(𝑠)|𝑟𝑑𝑠⩽ 𝑘(11)𝛿1/2⩽ 𝑘(12)𝛼. (30)

Из (27), учитывая (30), выводим справедливое при 𝑡∈ 𝛿𝑖 соотношение

|𝜇ℎ(𝑡)|2𝑁 ⩽ 𝑘(2)𝜆(𝜏𝑖)+𝑘
(13)(ℎ+𝛼). (31)

В таком случае в силу (12) из (31) получаем

sup
𝑡∈𝑇

|𝜇ℎ(𝑡)|𝑁 ⩽ 𝑘(14)(𝛼+ℎ+ℎ2𝛿−1)1/2.

Отсюда выводим⃒⃒⃒⃒
⃒

𝑡2ˆ

𝑡1

(𝑢ℎ(𝑡)−𝑢*(𝑡)) 𝑑𝑡

⃒⃒⃒⃒
⃒
𝑟

⩽ 𝑘(15)

⃒⃒⃒⃒
⃒

𝑡2ˆ

𝑡1

𝐵(𝑢ℎ(𝑡)−𝑢*(𝑡)) 𝑑𝑡

⃒⃒⃒⃒
⃒
𝑁

⩽ 𝑘(16)(𝛼1/2+ℎ1/2+ℎ𝛿−1/2). (32)

Снова воспользовавшись леммой 2 (см. (13)), устанавливаем

𝜗ˆ

0

|𝑢ℎ(𝜏)−𝑢*(𝜏)|2𝑟 𝑑𝜏 =
𝜗ˆ

0

|𝑢ℎ(𝜏)|2𝑟 𝑑𝜏−2

𝜗ˆ

0

(𝑢ℎ(𝜏), 𝑢*(𝜏)) 𝑑𝜏+

𝜗ˆ

0

|𝑢*(𝜏)|2𝑟 𝑑𝜏 ⩽

⩽ (2+𝑑2𝛼
−2𝛿)

𝜗ˆ

0

|𝑢*(𝜏)|2𝑟 𝑑𝜏−
𝜗ˆ

0

(𝑢ℎ(𝜏), 𝑢*(𝜏)) 𝑑𝜏+𝑑3ℎ
2(𝛼𝛿)−1=

=2

𝜗ˆ

0

(𝑢*(𝜏)−𝑢ℎ(𝜏), 𝑢*(𝜏)) 𝑑𝜏+𝑑2𝛼−2𝛿

𝜗ˆ

0

|𝑢*(𝜏)|2𝑟 𝑑𝜏+𝑑3ℎ2(𝛼𝛿)−1. (33)

Учитывая лемму 3, а также (32), получаем

sup
𝑡∈𝑇

⃒⃒⃒⃒
⃒

𝑡ˆ

0

(𝑢*(𝜏)−𝑢ℎ(𝜏), 𝑢*(𝜏)) 𝑑𝜏

⃒⃒⃒⃒
⃒⩽ 𝑘(17)(𝛼1/2+ℎ1/2+ℎ𝛿−1/2). (34)

Таким образом, при всех ℎ∈ (0, ℎ*), 𝑡∈𝑇 , в силу (33), (34) верно неравенство (26). Лемма
доказана.

3. АЛГОРИТМ РЕШЕНИЯ В СЛУЧАЕ НЕЛИНЕЙНОЙ СИСТЕМЫ

Укажем алгоритм решения рассматриваемой задачи в случае, когда система нелинейна
по фазовой переменной. Пусть система (1) имеет следующий вид:

𝑦̇(𝑡)= 𝑓(𝑡, 𝑦(𝑡))+𝐵𝑢(𝑡), (35)

где 𝐵 — постоянная матрица размерности 𝑁×𝑟. Будем полагать, что функция 𝑓 непрерывна
по 𝑡, монотонна по 𝑥, т.е. при некотором 𝜔⩾ 0 выполняется неравенство

(𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑦), 𝑥−𝑦)⩽−𝜔|𝑥−𝑦|2𝑁 , 𝑡∈𝑇, 𝑥, 𝑦 ∈R𝑁,
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и удовлетворяет условию роста

|𝑓(𝑡, 𝑥)|𝑁 ⩽ 𝑐(1+ |𝑥|𝑁 ), 𝑡∈𝑇, 𝑥∈R𝑁,

где 𝑐=const>0. При выполнении этих условий, как известно, при любом 𝑢(·)∈𝐿2(𝑇 ;R𝑟) су-
ществует единственное решение системы (35), понимаемое в смысле Каратеодори. В качестве
модели возьмём копию (35), а именно систему

𝑦̇ℎ(𝑡)= 𝑓(𝑡, 𝑦ℎ(𝑡))+𝐵𝑢ℎ(𝑡) (36)

с начальным состоянием
𝑦ℎ(0)= 𝜉ℎ0 .

Алгоритм решения задачи в данном случае аналогичен алгоритму, описанному выше
для линейной системы. Прежде всего выбираются некоторые семейство Δℎ (8) разбиений
отрезка 𝑇, а также функция 𝛼(ℎ) : (0, 1)→ (0, 1).

До начала работы алгоритма фиксируются величины ℎ ∈ (0, 1), 𝛼 = 𝛼(ℎ) и разбиение
Δℎ={𝜏ℎ,𝑖}𝑖=0,𝑚ℎ

вида (8). Работа алгоритма разбивается на 𝑚−1, 𝑚=𝑚ℎ, однотипных шагов.
На 𝑖-м шаге, осуществляемом на промежутке времени 𝛿𝑖 = [𝜏𝑖, 𝜏𝑖+1), 𝜏𝑖 = 𝜏ℎ,𝑖, выполняются
следующие операции. Сначала (в момент 𝜏𝑖) вычисляется вектор 𝑢ℎ𝑖 по формуле (5), в
которой

𝑈(𝜏𝑖, 𝜉
ℎ
𝑖 , 𝑦

ℎ(𝜏𝑖))=𝛼−1𝐵′(𝜉ℎ𝑖 −𝑦ℎ(𝜏𝑖)). (37)

Затем на вход системы (36) подаётся управление 𝑢ℎ(𝑡) вида (5), (37). Под действием этого
управления система (36) переходит из состояния 𝑦ℎ(𝜏𝑖) в состояние 𝑦ℎ(𝜏𝑖+1). Работа алгоритма
заканчивается в момент 𝜗.

Как и в линейном случае, оказывается, что при определённом согласовании величин ℎ,
𝛿(ℎ) и 𝛼(ℎ) функция 𝑢ℎ(·) является аппроксимацией 𝑢*(·). Прежде чем перейти к доказа-
тельству этого факта, приведём лемму, которая понадобится в дальнейшем.

Лемма 5. Можно указать такое число 𝑑10> 0, что равномерно по всем 𝑡∈𝑇, 𝑦0 ∈R𝑁,
𝑢(·)∈𝐿2(𝑇 ;R𝑟) выполняется неравенство

𝑡ˆ

0

|𝑦̇(𝑠; 𝑦0, 𝑢(·))|2𝑁 𝑑𝑠⩽ 𝑑10

(︃
|𝑦0|2𝑁 +

𝑡ˆ

0

|𝑢(𝑠)|2𝑟 𝑑𝑠

)︃
.

Здесь 𝑦(·; 𝑦0, 𝑢(·)) — решение системы (1) с начальным состоянием (2), порождённое
𝑢(·)∈𝐿2(𝑇 ;R𝑟).

Лемма 6. Пусть 𝛼(ℎ) → 0, 𝛿(ℎ)𝛼−2(ℎ) → 0 при ℎ→ 0. Тогда можно указать такое
число ℎ1 ∈ (0, 1), что при всех ℎ∈ (0, ℎ1), 𝑡∈𝑇 для некоторых положительных 𝑑11, 𝑑12, 𝑑13
справедливы неравенства

max
𝑖=0,𝑚ℎ−1

𝜀1(𝜏𝑖)⩽ 𝑑11(𝛼+𝛿+ℎ
2𝛿−1), (38)

𝜗ˆ

0

|𝑢ℎ(𝜏)|2𝑟 𝑑𝜏 ⩽ (1+𝑑12𝛿𝛼
−2)

𝜗ˆ

0

|𝑢*(𝜏)|2𝑟 𝑑𝜏+𝑑13(ℎ2(𝛼𝛿)−1+𝛿𝛼−1), (39)

где 𝜀1(𝑡)= |𝑦ℎ(𝑡)−𝑦(𝑡)|2𝑁 , 𝛼=𝛼(ℎ), 𝛿= 𝛿(ℎ).
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Доказательство. Рассмотрим изменение величины 𝜀1(𝑡) при 𝑡∈𝑇 . Для 𝑡∈ 𝛿𝑖=[𝜏𝑖, 𝜏𝑖+1),
𝑖=0,𝑚−1, имеем

𝑑𝜀1(𝑡)

𝑑𝑡
=2(𝑦ℎ(𝑡)−𝑦(𝑡), 𝑓(𝑡, 𝑦ℎ(𝑡))−𝑓(𝑡, 𝑦(𝑡))+𝐵(𝑢ℎ𝑖 −𝑢*(𝑡)))⩽

⩽−2𝜔𝜀1(𝑡)+2(𝑦ℎ(𝑡)−𝑦(𝑡), 𝐵(𝑢ℎ𝑖 −𝑢*(𝑡)))⩽−2𝜔𝜀1(𝑡)+
3∑︁

𝑗=1

𝐼𝑗𝑖(𝑡), (40)

где
𝐼1𝑖(𝑡)= 2(𝑦ℎ(𝜏𝑖)−𝜉ℎ𝑖 , 𝐵(𝑢ℎ𝑖 −𝑢*(𝑡))),

𝐼2𝑖(𝑡)= 2‖𝐵‖ℎ(|𝑢ℎ𝑖 |𝑟+ |𝑢*(𝑡)|𝑟),

𝐼3𝑖(𝑡)= 2‖𝐵‖(|𝑢ℎ𝑖 |𝑁 + |𝑢*(𝑡)|𝑁 )

𝜏𝑖+1ˆ

𝜏𝑖

|𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)|𝑁 𝑑𝑠.

Из (40) следует неравенство

𝜀1(𝜏𝑖+1)⩽ 𝜀1(𝜏𝑖)−2𝜔

𝜏𝑖+1ˆ

𝜏𝑖

𝜀1(𝑠) 𝑑𝑠+

𝜏𝑖+1ˆ

𝜏𝑖

3∑︁
𝑗=1

𝐼𝑗𝑖(𝑠) 𝑑𝑠. (41)

Далее, при 𝑡∈ 𝛿𝑖 имеем

𝜀1(𝜏𝑖)=

⃒⃒⃒⃒
⃒𝑦ℎ(𝑡)−𝑦(𝑡)−

𝑡ˆ

𝜏𝑖

(𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)) 𝑑𝑠

⃒⃒⃒⃒
⃒
2

𝑁

⩽ 2𝜀1(𝑡)+2𝛿

𝑡ˆ

𝜏𝑖

|𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)|2𝑁 𝑑𝑠,

поэтому

−𝜔𝜀1(𝜏𝑖)⩾−2𝜔𝜀1(𝑡)−2𝜔𝛿

𝑡ˆ

𝜏𝑖

|𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)|2𝑁𝑑𝑠.

Таким образом, при 𝑡∈ 𝛿𝑖 справедливо неравенство

−2𝜔𝜀1(𝑡)⩽−𝜔𝜀(𝜏𝑖)+2𝜔𝛿

𝑡ˆ

𝜏𝑖

|𝑦̇ℎ(𝑠)− 𝑦̇(𝑡)|2𝑁𝑑𝑠.

Отсюда после интегрирования при 𝑡∈ [𝜏𝑖, 𝜏𝑖+1] получаем

−2𝜔

𝑡ˆ

𝜏𝑖

𝜀1(𝑠)𝑑𝑠⩽−𝜔𝛿𝜀1(𝜏𝑖)+2𝜔𝛿2
𝑡ˆ

𝜏𝑖

|𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)|2𝑁𝑑𝑠. (42)

Из (41), (42), считая в (42) 𝑡= 𝜏𝑖+1, выводим

𝜀1(𝜏𝑖+1)⩽ (1−𝜔𝛿)𝜀1(𝜏𝑖)+𝐼1𝑖+
3∑︁

𝑗=1

𝜏𝑖+1ˆ

𝜏𝑖

𝐼𝑗𝑖(𝑠)𝑑𝑠, (43)

где

𝐼1𝑖=4𝜔𝛿2
𝜏𝑖+1ˆ

𝜏𝑖

(|𝑦̇ℎ(𝑠)|2𝑁 + |𝑦̇(𝑠)|2𝑁 ) 𝑑𝑠.
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Далее, учитывая определение 𝑢ℎ𝑖 (см. (5), (37)), заключаем, что имеет место неравенство

𝜏𝑖+1ˆ

𝜏𝑖

(︀
𝐼1𝑖(𝑡)+𝛼(|𝑢ℎ𝑖 |2𝑟−|𝑢*(𝑡)|2𝑟)

)︀
𝑑𝑡⩽ 0. (44)

Нетрудно видеть, что
𝜏𝑖+1ˆ

𝜏𝑖

𝐼2𝑖(𝑡) 𝑑𝑡⩽ 𝑐0ℎ
2+𝐼2𝑖, (45)

где

𝐼2𝑖= 𝛿

𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑢ℎ𝑖 |2𝑟+ |𝑢*(𝑡)|2𝑟

)︀
𝑑𝑡.

В свою очередь, в силу (5), (37) и (3) верно неравенство

|𝑢ℎ𝑖 |𝑟 ⩽𝛼−1𝑐1(ℎ+𝜀1(𝜏𝑖)),

поэтому

𝛿

𝜏𝑖+1ˆ

𝜏𝑖

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽ 2𝛿2𝛼−2𝑐21(ℎ
2+𝜀1(𝜏𝑖)), (46)

следовательно,

𝛿

𝜏𝑖+1ˆ

0

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽ 2𝛿2𝛼−2𝑐21

(︃
𝑖∑︁

𝑗=0

𝜀1(𝜏𝑗)+𝜗ℎ
2𝛿−1

)︃
. (47)

Учитывая (47), получаем

𝑖∑︁
𝑗=0

𝐼2𝑗 ⩽ 𝛿

𝜏𝑖+1ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠+2𝜗𝑐21𝛿ℎ
2𝛼−2+2𝑐21𝛿

2𝛼−2
𝑖∑︁

𝑗=0

𝜀1(𝜏𝑗). (48)

Далее имеем
𝜏𝑖+1ˆ

𝜏𝑖

𝐼3𝑖(𝑡) 𝑑𝑡⩽ 𝐼3𝑖+𝐼2𝑖, (49)

где

𝐼3𝑖= ‖𝐵‖2𝛿
𝜏𝑖+1ˆ

𝜏𝑖

(︀
|𝑦̇ℎ(𝑠)|2𝑁 + |𝑦̇(𝑠)|2𝑁

)︀
𝑑𝑠.

В силу леммы 5 при всех 𝑖=1,𝑚 верно соотношение

𝜏𝑖ˆ

0

(︀
|𝑦̇ℎ(𝑠)|2𝑁 + |𝑦̇(𝑠)|2𝑁

)︀
𝑑𝑠⩽ 𝑐2

(︃
1+

𝜏𝑖ˆ

0

(︀
|𝑢ℎ(𝑠)|2𝑟+ |𝑢*(𝑠)|2𝑟

)︀
𝑑𝑠

)︃
. (50)

Тогда
𝑖∑︁

𝑗=0

𝐼1𝑗 ⩽ 𝑐3𝛿

(︃
1+

𝑖∑︁
𝑗=0

𝐼2𝑗

)︃
,

𝑖∑︁
𝑗=0

𝐼3𝑗 ⩽ 𝑐4

(︃
𝛿+

𝑖∑︁
𝑗=0

𝐼2𝑗

)︃
.
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В таком случае, учитывая (49), заключаем, что имеет место неравенство

𝑖∑︁
𝑗=0

𝜏𝑗+1ˆ

𝜏𝑗

𝐼3𝑗(𝑠)𝑑𝑠⩽ 𝑐5𝛿+𝑐6

𝑖∑︁
𝑗=0

𝐼2𝑗 . (51)

Далее из (45), (47), (48) и (51) получаем

𝑖∑︁
𝑗=0

(︃
𝐼1𝑗+

𝜏𝑗+1ˆ

𝜏𝑗

(𝐼2𝑗(𝑡)+𝐼3𝑗(𝑡)) 𝑑𝑡

)︃
⩽ 𝑐7ℎ

2𝛿−1+𝑐8𝛿+𝑐9

(︃
𝛿2𝛼−2

𝑖∑︁
𝑗=0

𝜀1(𝜏𝑗)+𝛿ℎ
2𝛼−2

)︃
. (52)

В свою очередь, из (43), воспользовавшись (44) и (52), выводим оценку

𝜀1(𝜏𝑖+1)+𝛼

𝜏𝑖+1ˆ

0

(︀
|𝑢ℎ(𝑠)|2𝑟−|𝑢*(𝑠)|2𝑟

)︀
𝑑𝑠⩽

⩽ 𝜀1(0)+𝑐7ℎ
2𝛿−1+𝑐8𝛿+𝑐9𝛿ℎ

2𝛼−2+𝑐9𝛿
2𝛼−2

𝑖∑︁
𝑗=0

𝜀1(𝜏𝑗). (53)

В силу дискретного неравенства Гронуолла (см. лемму 1) из (53) имеем

𝜀1(𝜏𝑖+1)+𝛼

𝜏𝑖+1ˆ

0

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽

⩽

(︃
𝜀0(0)+𝑐7ℎ

2𝛿−1+𝑐8𝛿+𝑐9𝛿ℎ
2𝛼−2+𝛼

𝜏𝑖+1ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠

)︃
exp{𝑐9(𝑖+1)𝛿2𝛼−2}. (54)

Заметим, что
𝜀1(0)⩽ℎ2, exp{𝑐9(𝑖+1)𝛿2𝛼−2}⩽ exp{𝑐9𝜗𝛿𝛼−2}.

Кроме того, если 𝛿(ℎ)𝛼−2(ℎ) → 0 при ℎ→ 0, то при ℎ ∈ (0, ℎ1), ℎ1 ∈ (0, 1) выполняются
неравенства

exp{𝑐9𝜗𝛿𝛼−2}⩽ 1+𝑐10𝛿𝛼
−2, 𝛿𝛼−2⩽ 𝑐11,

где 𝑐10= 𝑐10(ℎ1)> 0, 𝑐11= 𝑐11(ℎ1)> 0.
Таким образом, ввиду (54) при ℎ∈ (0, ℎ1), 𝑖=0,𝑚−1 справедливо неравенство

𝜀1(𝜏𝑖+1)+𝛼

𝜏𝑖+1ˆ

0

|𝑢ℎ(𝑠)|2𝑟 𝑑𝑠⩽𝛼(1+𝑐12𝛿𝛼
−2)

𝜏𝑖+1ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠+𝑐13(ℎ2𝛿−1+𝛿),

из которого вытекают неравенства (38) и (39). Лемма доказана.
С помощью леммы 6 может быть доказана
Теорема 2. Пусть выполнены условия леммы 6. Пусть также ℎ2(𝛼(ℎ)𝛿(ℎ))−1→ 0 при

ℎ→ 0. Тогда имеет место сходимость 𝑢ℎ(·)→𝑢*(·) при ℎ→ 0.
Как и в случае линейной системы, можем выписать оценку скорости сходимости алго-

ритма.
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Лемма 7. Пусть выполнены условия теоремы 2. Пусть также функция 𝑦→ 𝑓(𝑡, 𝑦)
липшицева, 𝑟⩽𝑁 , rank𝐵= 𝑟. Тогда при ℎ∈ (0, ℎ1) имеет место следующая оценка скорости
сходимости алгоритма:

𝜗ˆ

0

|𝑢ℎ(𝑠)−𝑢*(𝑠)|2𝑟 𝑑𝑠⩽ 𝑑14
(︀
𝛼1/2+𝛿1/2+ℎ𝛿−1/2+ℎ𝛼−1/2+𝛿𝛼−2+ℎ2(𝛼𝛿)−1

)︀
. (55)

Доказательство. Доказательство леммы аналогично доказательству леммы 4. Действи-
тельно, пусть 𝐿 — постоянная Липшица функции 𝑓 . Нетрудно видеть, что при п.в. 𝑡∈ 𝛿𝑖
справедливо соотношение

𝜀̇1(𝑡)⩽−2𝜔𝜀1(𝑡)+𝐼4𝑖(𝑡)+𝐼3𝑖(𝑡)⩽ 𝐼4𝑖(𝑡)+𝐼3𝑖(𝑡), (56)

где
𝐼4𝑖(𝑡)= 2(𝑦ℎ(𝜏𝑖)−𝑦(𝜏𝑖), 𝐵(𝑢ℎ𝑖 −𝑢*(𝑡))).

Заметим, что при 𝑡∈ 𝛿𝑖 верно неравенство⃒⃒⃒⃒
⃒

𝑡ˆ

𝜏𝑖

𝐼4𝑖(𝑠) 𝑑𝑠

⃒⃒⃒⃒
⃒
𝑁

⩽ 𝜀1(𝜏𝑖)+2‖𝐵‖2𝐼2𝑖,

поэтому (см. (49)) при всех 𝑡∈ 𝛿𝑖 справедлива оценка⃒⃒⃒⃒
⃒

𝑡ˆ

𝜏𝑖

(𝐼4𝑖(𝑠)+𝐼3𝑖(𝑠)) 𝑑𝑠

⃒⃒⃒⃒
⃒
𝑁

⩽ 𝜀1(𝜏𝑖)+𝐼3𝑖+(1+2‖𝐵‖2)𝐼2𝑖. (57)

В условиях теоремы 2 можно считать, что при ℎ∈ (0, ℎ1) имеют место соотношения

max
𝑖=0,𝑚ℎ

𝜀1(𝜏𝑖)⩽ 𝑘1, 𝛿𝛼−2⩽ 𝑘2. (58)

Воспользовавшись (39), получаем

𝜗ˆ

0

|𝑢ℎ(𝑠)|2𝑁𝑑𝑠⩽ 𝑘3(1+𝛿𝛼
−2+ℎ2𝛿−1𝛼−1). (59)

В свою очередь, в силу (46), (50), (58), (59) и леммы 6 при ℎ∈ (0, ℎ1) верны неравенства

𝐼2𝑖⩽ 𝑘4𝛿+𝑘5𝛿
2𝛼−2(ℎ2+𝜀1(𝜏𝑖))⩽ 𝑘6𝛿, (60)

𝐼3𝑖⩽ 𝑘7𝛿+𝑘8𝛿

𝜏𝑖ˆ

0

|𝑢ℎ(𝑠)|2𝑟𝑑𝑠⩽ 𝑘9𝛿+𝑘10(ℎ
2𝛼−1+𝛿2𝛼−2)⩽ 𝑘11(𝛿+ℎ

2𝛼−1). (61)

Ввиду (58)
𝛼−1⩽ 𝑘12𝛿

−1/2⩽ 𝑘13𝛿
−1.

В таком случае, учитывая (57), (60), (61), из (56) получаем справедливые при 𝑡∈ 𝛿𝑖 соот-
ношения

𝜀1(𝑡)⩽ 2𝜀1(𝜏𝑖)+𝑘11(𝛿+ℎ
2𝛼−1)⩽ 2𝜀(𝜏𝑖)+𝑘14(𝛿+ℎ

2𝛿−1). (62)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



УСТОЙЧИВОЕ РЕШЕНИЕ ЗАДАЧ СЛЕЖЕНИЯ 113

Следовательно, в силу (38) и (62) при 𝑡∈ 𝛿𝑖 имеет место цепочка неравенств⃒⃒⃒⃒
⃒

𝑡ˆ

0

(𝑢ℎ(𝑠)−𝑢*(𝑠)) 𝑑𝑠

⃒⃒⃒⃒
⃒
𝑟

⩽ 𝑘15

⃒⃒⃒⃒
⃒

𝑡ˆ

0

(︀
𝑦̇ℎ(𝑠)− 𝑦̇(𝑠)−𝑓(𝑠, 𝑦ℎ(𝑠))+𝑓(𝑠, 𝑦(𝑠))

)︀
𝑑𝑠

⃒⃒⃒⃒
⃒
𝑁

⩽

⩽ 𝑘15

(︃
𝜀
1/2
1 (𝑡)+𝜀

1/2
1 (0)+𝐿

𝑡ˆ

0

𝜀
1/2
1 (𝑠) 𝑑𝑠

)︃
⩽ 𝑘16(𝛼+𝛿+ℎ

2𝛿−1+ℎ2𝛼−1)1/2.

Кроме того, аналогично (33), (34) устанавливаются оценки

𝜗ˆ

0

|𝑢ℎ(𝑠)−𝑢*(𝑠)|2𝑟 𝑑𝑠⩽

⩽ 2

𝜗ˆ

0

(𝑢*(𝑠)−𝑢ℎ(𝑠), 𝑢*(𝑠))𝑑𝑠+𝑑12𝛿𝛼−2

𝜗ˆ

0

|𝑢*(𝑠)|2𝑟 𝑑𝑠+𝑑13(ℎ2(𝛼𝛿)−1+𝛿𝛼−1), (63)

sup
𝑡∈𝑇

⃒⃒⃒⃒
⃒

𝑡ˆ

0

(𝑢ℎ(𝑠)−𝑢*(𝑠), 𝑢*(𝑠)) 𝑑𝑠

⃒⃒⃒⃒
⃒⩽ 𝑘18(𝛼+𝛿+ℎ

2𝛿−1+ℎ2𝛼−1)1/2. (64)

При выводе неравенства (64) используется лемма 3. Неравенство (55) следует из нера-
венств (63) и (64). Лемма доказана.
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The problem of dynamic reconstruction of input actions in a system of ordinary differential equations
and the problem of tracking a trajectory of a system by some trajectory of another one influenced
by an unknown disturbance are under consideration. An input action is assumed to be an unbounded
function, namely, an element of the space of square integrable functions. Two solving algorithms, which
are stable with respect to informational noises and computational errors and oriented to program
realization, are designed. Upper estimates of their convergence rates are established. The algorithms
are based on constructions from feedback control theory. They operate under conditions of (inaccurate)
measuring the phase states of the given systems at discrete times.
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ВВЕДЕНИЕ

Одним из направлений развития современной теории дифференциальных игр является
исследование задач преследования–уклонения с участием группы участников [1–4], причём
кроме углубления классических методов исследования активно ведётся поиск игровых задач,
к которым применимы ранее разработанные методы.

Впервые дифференциальные игры с дробными производными были рассмотрены в рабо-
те [5], где для исследования применялся метод скалярных разрешающих функций. Диффе-
ренциальные игры с дробной производной на основе уравнения Гамильтона–Якоби изучались
в статье [6]. В [7] рассматривалась задача преследования группой преследователей одного
убегающего в дифференциальных играх, описываемых уравнениями с дробными производ-
ными. Задача конфликтного взаимодействия группы преследователей и группы убегающих
в играх с дробной динамикой рассматривалась в [8], для анализа использовались скалярные
разрешающие функции. А.А. Чикрий в своей работе [9] отмечает, что скалярные разреша-
ющие функции осуществляют притяжение терминального множества с образами некоторых
многозначных отображений, которые происходят в конусе, натянутом на данное множество,
что ограничивает возможности для манёвра преследователя, а также предлагает исполь-
зовать матричные разрешающие функции для анализа игр преследования двух лиц. Для
исследования задачи преследования группой преследователей одного убегающего, описыва-
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емой стационарной линейной системой с дробными по Капуто производными, в статье [10]
были применены матричные разрешающие функции.

В работе [11] была рассмотрена задача преследования группой преследователей группы
убегающих в линейных стационарных дифференциальных играх с простыми матрицами
при условии, что все убегающие используют одно и то же управление. Были получены
достаточные условия поимки хотя бы одного убегающего. Задачу преследования, в которой
все убегающие используют одно и то же управление, в дальнейшем будем называть задачей
о преследовании скоординированных убегающих.

В данной работе рассматривается задача конфликтного взаимодействия группы пресле-
дователей и группы убегающих в дифференциальной игре, описываемой нестационарной
линейной системой дифференциальных уравнений с дробными производными по Капуто.
При условии, что убегающие используют одно и то же управление, получены достаточ-
ные условия поимки хотя бы одного убегающего, при этом используются матричные или
скалярные разрешающие функции. Исследование нестационарного случая дополнено некото-
рыми результатами для игр, описываемых линейными стационарными системами с простой
матрицей.

1. ПОСТАНОВКА ЗАДАЧИ

В пространстве R𝑘 (𝑘⩾2) рассматривается дифференциальная игра 𝑛+𝑚 лиц: 𝑛 пресле-
дователей 𝑃1, . . . , 𝑃𝑛 и 𝑚 убегающих 𝐸1, . . . , 𝐸𝑚, описываемая системой вида(︀

𝐷(𝛼)
)︀
𝑧𝑖𝑗 =𝐴𝑖𝑗(𝑡)𝑧𝑖𝑗+𝑢𝑖−𝑣, 𝑧𝑖𝑗(𝑡0)= 𝑧0𝑖𝑗 , 𝑢𝑖 ∈𝑈𝑖, 𝑣 ∈𝑉. (1)

Здесь 𝑖 ∈ 𝐼 = {1, . . . , 𝑛}, 𝑗 ∈ 𝐽 = {1, . . . ,𝑚}, 𝑧𝑖𝑗 , 𝑢𝑖, 𝑣 ∈ R𝑘, 𝑈𝑖, 𝑉 — компакты R𝑘, 𝛼 ∈ (0, 1),
𝐷(𝛼)𝑥 — производная по Капуто функции 𝑥 порядка 𝛼 [12], 𝐴𝑖𝑗(𝑡) — непрерывные матричные
функции порядка 𝑘×𝑘. Заданы терминальные множества 𝑀*

𝑖𝑗 вида

𝑀*
𝑖𝑗 =𝑀𝑖𝑗+𝑀

0
𝑖𝑗 ,

где 𝑀𝑖𝑗 — линейное подпространство R𝑘, 𝑀0
𝑖𝑗 — выпуклые компакты из 𝐿𝑖𝑗 — ортогонального

дополнения к 𝑀𝑖𝑗 в R𝑘. Считаем, что 𝑧0𝑖𝑗 /∈𝑀*
𝑖𝑗 для всех 𝑖∈ 𝐼, 𝑗 ∈ 𝐽 .

Действия убегающих можно трактовать следующим образом: имеется центр, который
для всех убегающих 𝐸1, . . . , 𝐸𝑚 выбирает одно и то же управление 𝑣(·).

Пусть 𝑣 : [𝑡0,+∞) → 𝑉 — измеримая функция, которую будем называть допустимой.
Предысторией 𝑣𝑡(·) в момент 𝑡 функции 𝑣(·) будем называть сужение функции 𝑣 на [𝑡0, 𝑡].

2. ДОСТАТОЧНЫЕ УСЛОВИЯ ПОИМКИ

Определение 1. Будем говорить, что задана квазистратегия 𝒰𝑖 преследователя 𝑃𝑖, если
определено отображение 𝑈0

𝑖 , ставящее в соответствие начальным позициям 𝑧0=(𝑧0𝑖𝑗 , 𝑖∈𝐼, 𝑗∈𝐽),
моменту 𝑡 и произвольной предыстории управления 𝑣𝑡(·) убегающих 𝐸𝑗 , 𝑗 ∈ 𝐽 , измеримую
функцию 𝑢𝑖(𝑡) со значениями в 𝑈𝑖.

Обозначим данную игру 𝐺(𝑛,𝑚, 𝑧0).
Определение 2. В игре 𝐺(𝑛,𝑚, 𝑧0) происходит поимка хотя бы одного убегающего, если

существуют момент 𝑇 > 0, квазистратегии 𝒰1, . . . , 𝒰𝑛 преследователей 𝑃1, . . . , 𝑃𝑛 такие,
что для любой измеримой функции 𝑣(·), 𝑣(𝑡)∈𝑉 , 𝑡∈ [𝑡0, 𝑇 ], существуют момент 𝜏 ∈ [𝑡0, 𝑇 ] и
номера 𝑝∈ 𝐼, 𝑞 ∈ 𝐽 , для которых 𝑧𝑝𝑞(𝜏)∈𝑀𝑝𝑞.
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Введём следующие обозначения: 𝐸0 — единичная матрица порядка 𝑘×𝑘, 𝜋𝑖𝑗 : R𝑘→𝐿𝑖𝑗 —
оператор ортогонального проектирования,

Γ(𝛽)=

+∞ˆ

0

𝑠𝛽−1𝑒−𝑠 𝑑𝑠, 𝜏𝐽𝑡𝑓(𝑡)=
1

Γ(𝛼)

𝑡ˆ

𝜏

(𝑡−𝑠)𝛼−1𝑓(𝑠) 𝑑𝑠, 𝐺0
𝑖𝑗(𝑡, 𝜏)=

(𝑡−𝜏)𝛼−1

Γ(𝛼)
𝐸0,

𝐺𝑙+1
𝑖𝑗 (𝑡, 𝜏)=𝜏 𝐽𝑡

(︀
𝐴𝑖𝑗(𝑡)𝐺

𝑙
𝑖𝑗(𝑡, 𝜏)

)︀
, 𝑙=0, 1, . . . , Φ𝑖𝑗(𝑡, 𝜏)=

+∞∑︁
𝑙=0

𝐺𝑙
𝑖𝑗(𝑡, 𝜏),

𝐺̃0
𝑖𝑗(𝑡, 𝜏)=𝐸0, 𝐺̃𝑙+1

𝑖𝑗 (𝑡, 𝜏)=𝜏 𝐽𝑡
(︀
𝐴𝑖𝑗(𝑡)𝐺̃

𝑙
𝑖𝑗(𝑡, 𝜏)

)︀
, 𝑙=0, 1, . . . , Ψ𝑖𝑗(𝑡, 𝜏)=

+∞∑︁
𝑙=0

𝐺̃𝑙
𝑖𝑗(𝑡, 𝜏),

𝑊𝑖𝑗(𝑡, 𝜏, 𝑣)=𝜋𝑖𝑗Φ𝑖𝑗(𝑡, 𝜏)
(︀
𝑈𝑖−𝑣), 𝑊𝑖𝑗(𝑡, 𝜏)=

⋂︁
𝑣∈𝑉

𝑊𝑖𝑗(𝑡, 𝜏, 𝑣),

Int𝐴, co𝐴 — соответственно внутренность и выпуклая оболочка множества 𝐴.
Предположение 1. Существует отображение 𝑞 : 𝐼→𝐽 такое, что для всех 𝑖∈ 𝐼, 𝑡⩾ 𝑡0,

𝜏 ∈ [𝑡0, 𝑡] выполнено условие
𝑊𝑖𝑞(𝑖)(𝑡, 𝜏) ̸=∅.

Замечание 1. Выполнение предположения 1 позволит в дальнейшем организовать пре-
следование убегающих так, что каждый преследователь будет осуществлять поимку “своего”
убегающего.

Из теоремы об измеримом выборе [13, теорема 8.1.3] следует, что для каждого 𝑖∈ 𝐼 при
любом 𝑡⩾ 𝑡0 существует хотя бы один измеримый селектор 𝛾𝑖𝑞(𝑖)(𝑡, 𝜏)∈𝑊𝑖𝑞(𝑖)(𝑡, 𝜏) для всех
𝑡⩾ 𝑡0, 𝜏 ∈ [𝑡0, 𝑡]. Выберем произвольные измеримые селекторы 𝛾𝑖𝑞(𝑖)(𝑡, 𝜏), зафиксируем их и
обозначим

𝜉𝑖𝑞(𝑖)(𝑡)=𝜋𝑖𝑞(𝑖)Ψ𝑖𝑞(𝑖)(𝑡, 𝑡0)𝑧
0
𝑖𝑞(𝑖)+

𝑡ˆ

𝑡0

𝛾𝑖𝑞(𝑖)(𝑡, 𝜏) 𝑑𝜏.

Теорема 1. Пусть выполнено предположение 1 и существуют 𝑇 > 𝑡0, 𝑙∈ 𝐼 такие, что
𝜉𝑙𝑞(𝑙)(𝑇 )∈𝑀0

𝑙𝑞(𝑙). Тогда в игре 𝐺(𝑛,𝑚, 𝑧0) происходит поимка.
Доказательство. Рассмотрим многозначное отображение (𝜏 ∈ [𝑡0, 𝑇 ], 𝑣 ∈𝑉 )

𝑈𝑙(𝑇, 𝜏, 𝑣)=
{︀
𝑢𝑙 ∈𝑈𝑙 : 𝜋𝑙𝑞(𝑙)Φ𝑙𝑞(𝑙)(𝑇, 𝜏)(𝑢−𝑣)−𝛾𝑙𝑞(𝑙)(𝑇, 𝜏)= 0

}︀
.

В силу предположения 1 𝑈𝑙(𝑇, 𝜏, 𝑣) ̸=∅ для всех 𝜏 ∈ [𝑡0, 𝑇 ], 𝑣 ∈ 𝑉 . Из теоремы измеримого
выбора [13, теорема 8.1.3] следует, что существует измеримый селектор 𝑢*𝑙 (𝜏, 𝑣)∈𝑈𝑙(𝑇, 𝜏, 𝑣).
Полагаем управление преследователя 𝑃𝑙 равным

𝑢𝑙(𝜏)=𝑢*𝑙 (𝜏, 𝑣(𝜏)), 𝜏 ∈ [𝑡0, 𝑇 ].

Управления остальных преследователей задаём произвольным образом. Решение задачи Ко-
ши для системы (1) представимо в виде [14]

𝑧𝑙𝑞(𝑙)(𝑇 )=Ψ𝑙𝑞(𝑙)(𝑇, 𝑡0)𝑧
0
𝑙𝑞(𝑙)+

𝑇̂

𝑡0

Φ𝑙𝑞(𝑙)(𝑇, 𝑠)(𝑢𝑙(𝑠)−𝑣(𝑠)) 𝑑𝑠,

поэтому

𝜋𝑙𝑞(𝑙)𝑧𝑙𝑞(𝑙)(𝑇 )= 𝜉𝑙𝑞(𝑙)(𝑇 )+

𝑇̂

𝑡0

(︀
𝜋𝑙𝑞(𝑙)Φ𝑙𝑞(𝑙)(𝑇, 𝑠)(𝑢𝑙(𝑠)−𝑣(𝑠))−𝛾𝑙𝑞(𝑙)(𝑇, 𝑠)

)︀
𝑑𝑠= 𝜉𝑙𝑞(𝑙)(𝑇 )∈𝑀0

𝑙𝑞(𝑙).

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



О ЗАДАЧЕ ПРЕСЛЕДОВАНИЯ 119

Это и означает, что в игре 𝐺(𝑛,𝑚, 𝑧0) происходит поимка хотя бы одного убегающего.
Теорема доказана.

В дальнейшем будем считать, что 𝜉𝑖𝑞(𝑖)(𝑡) /∈𝑀0
𝑖𝑞(𝑖) для всех 𝑖∈ 𝐼, 𝑡⩾ 𝑡0.

Рассмотрим произвольную диагональную квадратную матрицу Λ𝑖 порядка 𝑘𝑖×𝑘𝑖, где
𝑘𝑖 — размерность 𝐿𝑖𝑞(𝑖), вида

Λ𝑖=

⎛⎜⎜⎝
𝜆𝑖1 0 . . . 0
0 𝜆𝑖2 . . . 0
. . . . . . . . . . . .
0 0 . . . 𝜆𝑖𝑘𝑖

⎞⎟⎟⎠=diag(𝜆𝑖1, 𝜆𝑖2, . . . , 𝜆𝑖𝑘𝑖).

Будем отождествлять матрицу Λ𝑖 с вектором (𝜆𝑖1, . . . , 𝜆𝑖𝑘𝑖). Неравенство Λ𝑖⩾ 0 будем пони-
мать покоординатно. Введём многозначные отображения

ℳ𝑖(𝑡, 𝜏, 𝑣)=
{︀
Λ𝑖 : Λ𝑖⩾ 0, Λ𝑖

(︀
𝑀0

𝑖𝑞(𝑖)−𝜉𝑖𝑞(𝑖)(𝑡)
)︀
∩
(︀
𝑊𝑖𝑞(𝑖)(𝑡, 𝜏, 𝑣)−𝛾𝑖𝑞(𝑖)(𝑡, 𝜏)

)︀
̸=∅

}︀
.

В силу свойств параметров конфликтно-управляемого процесса отображения ℳ𝑖(𝑡, 𝜏, 𝑣) яв-
ляются измеримыми по (𝜏, 𝑣) отображениями [15]. Определим скалярные функции

𝜆0𝑖 (𝑡, 𝜏, 𝑣)= sup
Λ𝑖∈ℳ𝑖(𝑡,𝜏,𝑣)

min
𝑙∈𝐽𝑖

𝜆𝑖𝑙(𝑡, 𝜏, 𝑣), 𝐽𝑖= {1, . . . , 𝑘𝑖}. (2)

Предположение 2. Для всех 𝑡⩾ 𝑡0, 𝜏 ∈ [𝑡0, 𝑡], 𝑣∈𝑉 в (2) достигается точная верхняя
грань.

Считаем данное предположение выполненным. Определим множество

ℳ*
𝑖 (𝑡, 𝜏, 𝑣)=

{︁
Λ𝑖(𝑡, 𝜏, 𝑣)∈ℳ𝑖(𝑡, 𝜏, 𝑣) : 𝜆

0
𝑖 (𝑡, 𝜏, 𝑣)=min

𝑙∈𝐽𝑖
𝜆𝑖𝑙(𝑡, 𝜏, 𝑣)

}︁
.

Из [15] следует, что при сделанных предположениях ℳ*
𝑖 (𝑡, 𝜏, 𝑣) измеримы по (𝜏, 𝑣) и замкнуто-

значны при любом 𝑡⩾ 0. По теореме измеримого выбора [13, теорема 8.1.3] для каждого
𝑖∈ 𝐼 в ℳ*

𝑖 (𝑡, 𝜏, 𝑣) существует хотя бы один измеримый по (𝜏, 𝑣) селектор при любом 𝑡⩾ 0.
Зафиксируем эти селекторы и обозначим их Λ*

𝑖 (𝑡, 𝜏, 𝑣)=diag(𝜆*𝑖1(𝑡, 𝜏, 𝑣), . . . , 𝜆
*
𝑖𝑘𝑖

(𝑡, 𝜏, 𝑣)). Пусть
далее

𝛿(𝑡, 𝜏)= inf
𝑣∈𝑉

max
𝑖∈𝐼

min
𝑙∈𝐽𝑖

𝜆*𝑖𝑙(𝑡, 𝜏, 𝑣).

Лемма 1. Пусть выполнены предположения 1, 2,

lim
𝑡→+∞

𝑡ˆ

𝑡0

𝛿(𝑡, 𝑠) 𝑑𝑠=+∞. (3)

Тогда существует такой момент 𝑇 >𝑡0, что для каждой измеримой функции 𝑣(·), 𝑣(𝑡)∈𝑉,
𝑡∈ [𝑡0, 𝑇 ], найдётся номер 𝑙∈ 𝐼 такой, что для всех 𝑝∈ 𝐽𝑙 справедливы неравенства

𝑇̂

𝑡0

𝜆*𝑙𝑝(𝑇, 𝑠, 𝑣(𝑠))𝑑𝑠⩾ 1.

Доказательство. Пусть 𝑣(·) — произвольная допустимая функция. Тогда для всех 𝑡⩾ 𝑡0,
𝑠∈ [𝑡0, 𝑡], 𝑙∈ 𝐼, 𝑝∈ 𝐽𝑙 справедливы неравенства

𝜆*𝑙𝑝(𝑡, 𝑠, 𝑣(𝑠))⩾𝜆*𝑙 (𝑡, 𝑠, 𝑣(𝑠)). (4)
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Кроме того, справедливы соотношения

max
𝑙∈𝐼

𝑡ˆ

𝑡0

𝜆*𝑙 (𝑡, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾
1

𝑛

𝑡ˆ

𝑡0

∑︁
𝑙∈𝐼

𝜆*𝑙 (𝑡, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾
1

𝑛

𝑡ˆ

𝑡0

max
𝑙∈𝐼

𝜆*𝑙 (𝑡, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾
1

𝑛

𝑡ˆ

𝑡0

𝛿(𝑡, 𝑠) 𝑑𝑠.

Из условия (3) следует, что существует число 𝑇 > 𝑡0, для которого

1

𝑛

𝑇̂

𝑡0

𝛿(𝑇, 𝑠) 𝑑𝑠⩾ 1.

Следовательно,

max
𝑙∈𝐼

𝑇̂

𝑡0

𝜆*𝑙 (𝑇, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾ 1,

поэтому найдётся номер 𝑙∈ 𝐼, для которого

𝑇̂

𝑡0

𝜆*𝑙 (𝑇, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾ 1.

Из последнего неравенства и неравенства (4) вытекает справедливость утверждения леммы.
Найдём число

𝑇0= inf

{︂
𝑡⩾ 𝑡0 : inf

𝑣(·)
max
𝑙∈𝐼

min
𝑝∈𝐽𝑙

𝑡ˆ

𝑡0

𝜆*𝑙𝑝(𝑡, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾ 1

}︂
.

Рассмотрим множества (𝑖∈ 𝐼, 𝑝∈ 𝐽𝑙)

𝑇𝑖𝑝
(︀
𝑣(·)
)︀
=

{︂
𝑡⩾ 𝑡0 :

𝑡ˆ

𝑡0

𝜆*𝑖𝑝(𝑇0, 𝑠, 𝑣(𝑠)) 𝑑𝑠⩾ 1

}︂
.

Определим величины

𝑡*𝑖𝑝(𝑣(·))=

{︃
inf
{︀
𝑡 : 𝑡∈𝑇𝑖𝑝

(︀
𝑣(·)
)︀}︀
, если 𝑇𝑖𝑝

(︀
𝑣(·)
)︀
̸=∅,

+∞, если 𝑇𝑖𝑝
(︀
𝑣(·)
)︀
=∅.

Предположение 3. 1. Для всех 𝜏 ∈ [𝑡0, 𝑇0], 𝑣 ∈ 𝑉, 𝑙 ∈ 𝐼, 𝐽0
𝑙 ⊂ 𝐽𝑙 селекторы 𝐵𝑙(𝑇0, 𝜏, 𝑣) =

=diag(𝛽𝑙1(𝑇0, 𝜏, 𝑣), . . . , 𝛽𝑙𝑘𝑙(𝑇0, 𝜏, 𝑣)), где

𝛽𝑙𝑝(𝑇0, 𝜏, 𝑣)=

{︃
𝜆*𝑙𝑝(𝑇0, 𝜏, 𝑣), если 𝑝∈ 𝐽0

𝑙 ,

0, если 𝑝 /∈ 𝐽0
𝑙 ,

удовлетворяют условию 𝐵𝑙(𝑇0, 𝜏, 𝑣)⊂ℳ𝑙(𝑇0, 𝜏, 𝑣).
2.
´ 𝑇0

𝑡0
𝐵𝑙(𝑇0, 𝑠, 𝑣(𝑠))𝑀

0
𝑙𝑞(𝑙) 𝑑𝑠⊂𝑀0

𝑙𝑞(𝑙).
Теорема 2. Пусть выполнены предположения 1–3 и условие (3). Тогда в игре 𝐺(𝑛,𝑚, 𝑧0)

происходит поимка хотя бы одного убегающего.
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Доказательство. Из леммы 1 следует, что 𝑇0<+∞. Пусть 𝑣 : [𝑡0, 𝑇0]→𝑉 — произвольная
допустимая функция. Введём функции 𝐵*

𝑙 (𝑇0, 𝑡, 𝑣)=diag
(︀
𝛽*𝑙1(𝑇0, 𝑡, 𝑣), . . . , 𝛽

*
𝑙𝑘𝑙
(𝑇0, 𝑡, 𝑣)

)︀
, где

𝛽*𝑙𝑝(𝑇0, 𝑡, 𝑣)=

{︃
𝜆*𝑙𝑝(𝑇0, 𝑡, 𝑣), если 𝑡∈ [𝑡0, 𝑡

*
𝑙𝑝(𝑣(·))

)︀
,

0, если 𝑡∈ [𝑡*𝑙𝑝(𝑣(·)), 𝑇0].

В силу предположения 3 𝐵*
𝑖 (𝑇0, 𝑡, 𝑣) является измеримым селектором ℳ𝑖(𝑇0, 𝑡, 𝑣). Рассмотрим

многозначные отображения

𝑈𝑖(𝑇0, 𝑡, 𝑣)=
{︀
𝑢𝑖 ∈𝑈𝑖 : 𝜋𝑖𝑞(𝑖)Φ𝑖𝑞(𝑖)(𝑇0, 𝑡)(𝑢𝑖−𝑣)−𝛾𝑖𝑞(𝑖)(𝑇0, 𝑡)∈𝐵*

𝑖 (𝑇0, 𝑡, 𝑣)(𝑀
0
𝑖𝑞(𝑖)−𝜉𝑖𝑞(𝑖)(𝑇0))

}︀
.

Тогда 𝑈𝑖(𝑇0, 𝑡, 𝑣) ̸=∅ для всех 𝑖∈ 𝐼, 𝑡∈ [𝑡0, 𝑇0], 𝑣 ∈ 𝑉 и, следовательно, по теореме измери-
мого выбора [13, теорема 8.1.3] у 𝑈𝑖(𝑇0, 𝑡, 𝑣) существует хотя бы один измеримый селектор
𝑢*𝑖 (𝑇0, 𝑡, 𝑣). Задаём управления преследователей, полагая 𝑢𝑖(𝑡)=𝑢

*
𝑖 (𝑇0, 𝑡, 𝑣(𝑡)). Покажем, что

данное управление преследователей гарантирует поимку хотя бы одного убегающего.
Решение задачи Коши системы (1) имеет вид [14]

𝑧𝑖𝑞(𝑖)(𝑡)=Ψ𝑖𝑞(𝑖)(𝑡, 𝑡0)𝑧
0
𝑖𝑞(𝑖)+

𝑡ˆ

𝑡0

Φ𝑖𝑞(𝑖)(𝑡, 𝑠)
(︀
𝑢𝑖(𝑠)−𝑣(𝑠)

)︀
𝑑𝑠,

поэтому

𝜋𝑖𝑞(𝑖)𝑧𝑖𝑞(𝑖)(𝑇0)=

=𝜋𝑖𝑞(𝑖)Ψ𝑖𝑞(𝑖)(𝑇0, 𝑡0)𝑧
0
𝑖𝑞(𝑖)+

𝑇0ˆ

𝑡0

𝛾𝑖𝑞(𝑖)(𝑇0, 𝑠) 𝑑𝑠+

𝑇0ˆ

𝑡0

(︀
𝜋𝑖𝑞(𝑖)Φ𝑖𝑞(𝑖)(𝑇0, 𝑠)(𝑢𝑖(𝑠)−𝑣(𝑠))−𝛾𝑖𝑞(𝑖)(𝑇0, 𝑠)

)︀
𝑑𝑠=

= 𝜉𝑖𝑞(𝑖)(𝑇0)+

𝑇0ˆ

𝑡0

(︀
𝜋𝑖𝑞(𝑖)Φ𝑖𝑞(𝑖)(𝑇0, 𝑠)(𝑢𝑖(𝑠)−𝑣(𝑠))−𝛾𝑖𝑞(𝑖)(𝑇0, 𝑠)

)︀
𝑑𝑠∈

∈ 𝜉𝑖𝑞(𝑖)(𝑇0)+
𝑇0ˆ

𝑡0

𝐵*
𝑖 (𝑇0, 𝑠, 𝑣(𝑠))

(︀
𝑀0

𝑖𝑞(𝑖)−𝜉𝑖𝑞(𝑖)(𝑇0)
)︀
𝑑𝑠=

= 𝜉𝑖𝑞(𝑖)(𝑇0)

(︂
𝐸0−

𝑇0ˆ

𝑡0

𝐵*
𝑖 (𝑇0, 𝑠, 𝑣(𝑠)) 𝑑𝑠

)︂
+

𝑇0ˆ

𝑡0

𝐵*
𝑖 (𝑇0, 𝑠, 𝑣(𝑠))𝑀

0
𝑖𝑞(𝑖) 𝑑𝑠.

Из определения 𝐵*
𝑖 (𝑇0, 𝑠, 𝑣) и леммы 1 следует, что существует номер 𝑙∈ 𝐼, для которого´ 𝑇0

𝑡0
𝐵*

𝑙 (𝑇0, 𝑠, 𝑣(𝑠)) 𝑑𝑠=𝐸0. Значит,

𝜋𝑙𝑞(𝑙)𝑧𝑙𝑞(𝑙)(𝑇0)=

𝑇0ˆ

𝑡0

𝐵*
𝑙 (𝑇0, 𝑠, 𝑣(𝑠))𝑀

0
𝑙𝑞(𝑙) 𝑑𝑠⊂𝑀0

𝑙𝑞(𝑙).

Теорема доказана.
Замечание 2. Скалярные разрешающие функции являются частным случаем матрич-

ных разрешающих функций, так как представимы в виде 𝜆𝐸0, где 𝜆 — неотрицательное
вещественное число.
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Пример 1. Пусть в системе (1) 𝑘=2, 𝑛=𝑚=1, 𝑡0=0, 𝐴11(𝑡)=0 для всех 𝑡, 𝑉={0}, 𝑧011=(2,1),
𝑀*

11={0}, 𝑈1={(𝑢1,𝑢2): 𝑢1=0, 𝑢2∈[−1,1]}∪{(𝑢1,𝑢2): 𝑢2=0, 𝑢1∈[−1,1]}∪{(𝑢1,𝑢2): 𝑢1=𝑢2∈[−1,1]}.
Тогда

Ψ11(𝑡, 𝑡0)=𝐸0, Φ11(𝑡, 𝑠)=
(𝑡−𝑠)𝛼−1

Γ(𝛼)
, 𝑊11(𝑡, 𝑠, 𝑣)=𝑊11(𝑡, 𝑠)=

(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑈1.

Возьмём 𝛾11(𝑡, 𝑠)= 0 для всех (𝑡, 𝑠), тогда 𝜉11(𝑡)= 𝑧011,

ℳ1(𝑡, 𝑠, 𝑣)=

{︂(︂
0 0
0 𝜆2

)︂
, 𝜆2=

𝜆(𝑡−𝑠)𝛼−1

Γ(𝛼)
, 𝜆∈ [0, 1]

}︂
∪

∪
{︂(︂

𝜆2/2 0
0 0

)︂
, 𝜆2=

𝜆(𝑡−𝑠)𝛼−1

Γ(𝛼)
, 𝜆∈ [0, 1]

}︂
∪
{︂(︂

𝜆2/2 0
0 𝜆2

)︂
, 𝜆2=

𝜆(𝑡−𝑠)𝛼−1

Γ(𝛼)
, 𝜆∈ [0, 1]

}︂
,

𝜆*1(𝑡, 𝑠, 𝑣)= sup
Λ∈ℳ1(𝑡,𝑠,𝑣)

min
𝑙∈𝐽1

𝜆1𝑙(𝑡, 𝑠, 𝑣)=
(𝑡−𝑠)𝛼−1

2Γ(𝛼)
.

Следовательно,

ℳ*
1(𝑡, 𝑠, 𝑣)=diag

(︂
(𝑡−𝑠)𝛼−1

2Γ(𝛼)
,
(𝑡−𝑠)𝛼−1

Γ(𝛼)

)︂
, 𝛿(𝑡, 𝑠)=

(𝑡−𝑠)𝛼−1

2Γ(𝛼)
.

Имеем lim𝑡→+∞
´ 𝑡
0 𝛿(𝑡, 𝑠) 𝑑𝑠=+∞, значит 𝑇0=(2Γ(𝛼+1))1/𝛼. Пусть 𝑇1=𝑇0−(Γ(𝛼+1))1/𝛼.

Управление преследователя 𝑃1 имеет вид

𝑢1(𝑡)=

{︃
(−1,−1), 𝑡∈ [0, 𝑇1),

(−1, 0), 𝑡∈ [𝑇1, 𝑇0],

тогда [14]

𝑧11(𝑇0)= 𝑧011+
1

Γ(𝛼)

𝑇0ˆ

0

(𝑇0−𝑠)𝛼−1𝑢1(𝑠) 𝑑𝑠=0.

Отметим, что использование скалярных разрешающих функций, т.е. функций вида

Λ=

(︂
𝜆 0
0 𝜆

)︂
,

не позволяет доказать разрешимость задачи преследования, так как в этом случае условие
−Λ𝑧011 ∈𝑈1−𝑣 выполнено только для нулевой матрицы Λ.

Пример 2. Рассмотрим игру 𝐺(𝑛, 1, 𝑧0), в которой система (1) имеет вид{︃(︀
𝐷(𝛼)

)︀
𝑧𝑖1= 𝑡𝑧𝑖2,(︀

𝐷(𝛼)
)︀
𝑧𝑖2=𝑢𝑖−𝑣,

𝑧𝑖(0)= 𝑧0𝑖 . (5)

Здесь 𝑧𝑖 = (𝑧𝑖1, 𝑧𝑖2) ∈R2𝑘, 𝑈𝑖 = 𝑉 = {𝑣 ∈R𝑘 : ‖𝑣‖⩽ 1}, 𝑀*
𝑖1 = {(𝑧𝑖1, 𝑧𝑖2) ∈R2𝑘 : 𝑧𝑖1 = 0}, поэтому

(𝑖∈ 𝐼)

𝑀0
𝑖1=

{︀
(𝑧𝑖1, 𝑧𝑖2)∈R2𝑘 : 𝑧𝑖1= 𝑧𝑖2=0

}︀
, 𝑀𝑖1=

{︀
(𝑧𝑖1, 𝑧𝑖2)∈R2𝑘 : 𝑧𝑖1=0

}︀
,

𝐿𝑖1=
{︀
(𝑧𝑖1, 𝑧𝑖2)∈R2𝑘 : 𝑧𝑖2=0

}︀
, 𝜋𝑖1=

(︂
𝐸0 0
0 0

)︂
.
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Обозначим

𝑝(𝑡, 𝜏)=
(𝑡−𝜏)𝛼−1

Γ(𝛼)
, 𝑞(𝑡, 𝜏)=

𝛼(𝑡−𝜏)2𝛼−1(𝑡+𝜏)

Γ(2𝛼+1)
, 𝑟(𝑡, 𝜏)=

(𝑡−𝜏)𝛼(𝑡+𝛼𝜏)
Γ(𝛼+2)

.

Тогда [14]

Ψ𝑖(𝑡, 𝜏)=

(︃
𝐸0 𝑟(𝑡, 𝜏)𝐸0

0 𝐸0

)︃
, Φ𝑖(𝑡, 𝜏)=

(︃
𝑝(𝑡, 𝜏)𝐸0 𝑞(𝑡, 𝜏)𝐸0

0 𝑝(𝑡, 𝜏)𝐸0

)︃
.

Следовательно,

𝑊𝑖(𝑡, 𝜏, 𝑣)= 𝑞(𝑡, 𝜏)(𝑉 −𝑣), 𝑊𝑖(𝑡, 𝜏)= {0}, 𝛾𝑖(𝑡, 𝜏)= 0, 𝜉𝑖(𝑡)=𝜋𝑖Ψ𝑖(𝑡, 0)𝑧
0
𝑖 = 𝑧0𝑖1+𝑟(𝑡, 0)𝑧

0
𝑖2,

𝜆𝑖(𝑡, 𝜏, 𝑣)= 𝑞(𝑡, 𝜏)
(𝜉𝑖(𝑡), 𝑣)+

√︀
(𝜉𝑖(𝑡), 𝑣)2+‖𝜉𝑖(𝑡)‖2(1−‖𝑣‖2)

‖𝜉𝑖(𝑡)‖2
.

Утверждение. Пусть 𝑧0𝑖2=0 для всех 𝑖∈ 𝐼 и 0∈ Int co{𝑧0𝑖1, 𝑖∈ 𝐼}. Тогда в игре 𝐺(𝑛, 1, 𝑧0)
происходит поимка.

Доказательство. В данном случае 𝜉𝑖1(𝑡)= 𝑧0𝑖1 для всех 𝑡> 0. Из [16] следует, что

𝛿(𝑡, 𝜏)=min
𝑣

max
𝑖
𝜆𝑖(𝑡, 𝜏, 𝑣)⩾ 𝑞(𝑡, 𝜏)𝛿0

для всех 𝑡, 𝜏 при некотором 𝛿0> 0. Поэтому выполнены все условия теоремы 2 и, значит,
в игре 𝐺(𝑛, 1, 𝑧0) происходит поимка. Утверждение доказано.

Отметим, что в работе [14] в пространстве R2 рассматривалась задача преследования
одним преследователем одного убегающего, описываемая системой (5), в которой преследо-
ватель имеет преимущество над убегающим.

3. ДОСТАТОЧНЫЕ УСЛОВИЯ ПОИМКИ В ЛИНЕЙНОМ СТАЦИОНАРНОМ СЛУЧАЕ
С ПРОСТЫМИ МАТРИЦАМИ

Теорема 3. Пусть в системе (1) для всех 𝑖, 𝑗 𝐴𝑖𝑗(𝑡) = 𝑎𝑖𝑗𝐸
0 при любом 𝑡, 𝑀*

𝑖𝑗 = {0},
𝑡0 = 0, 𝑈𝑖 = 𝑉 = {𝑣 : ‖𝑣‖⩽ 1}, существует отображение 𝑞 : 𝐼 → 𝐽 такое, что 𝑎𝑖𝑞(𝑖) < 0 для
всех 𝑖∈ 𝐼 и

0∈ Int co{𝑧0𝑖𝑞(𝑖), 𝑖∈ 𝐼}. (6)

Тогда в игре 𝐺(𝑛,𝑚, 𝑧0) происходит поимка хотя бы одного убегающего.
Доказательство. В данном случае

Ψ𝑖𝑞(𝑖)(𝑡, 𝑡0)=𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡
𝛼, 1), Φ𝑖𝑞(𝑖)(𝑡, 𝜏)= (𝑡−𝜏)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑡−𝜏)𝛼, 𝛼),

где 𝐸𝜌(𝑧, 𝜇)=
∑︀∞

𝑙=0 𝑧
𝑙/Γ(𝑙𝜌−1+𝜇) — функция Миттаг-Леффлера. Предположение 1 выполнено.

Возьмём в качестве селекторов 𝛾𝑖𝑞(𝑖)(𝑡, 𝜏)=0 для всех 𝑖∈ 𝐼, 𝑡⩾0, 𝜏 ∈ [0, 𝑡]. Тогда 𝜉𝑖𝑞(𝑖)(𝑡)=
=𝜋𝑖𝑞(𝑖)𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡

𝛼, 1)𝑧0𝑖𝑞(𝑖). Пусть

𝜆(𝑧, 𝑣)= sup{𝜆⩾ 0: −𝜆𝑧 ∈𝑉 −𝑣}, 𝛿=min
𝑣∈𝑉

max
𝑖∈𝐼

𝜆(𝑧0𝑖𝑞(𝑖), 𝑣), 𝑎=min
𝑖∈𝐼

𝑎𝑖𝑞(𝑖).

Из условия (6) и из [16] следует, что 𝛿 > 0. Покажем, что существует 𝑇 > 0 такое, что для
любой допустимой функции 𝑣(·) найдётся 𝑙∈ 𝐼, для которого

𝐸1/𝛼(𝑎𝑙𝑞(𝑙)𝑇
𝛼, 1)−

𝑇̂

0

(𝑇 −𝑠)𝛼−1𝐸1/𝛼(𝑎𝑙𝑞(𝑙)(𝑇 −𝑠)𝛼, 𝛼)𝜆(𝑧0𝑙𝑞(𝑙), 𝑣(𝑠)) 𝑑𝑠⩽ 0. (7)
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Рассмотрим функции

ℎ𝑖(𝑡, 𝑣(·))=𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡
𝛼, 1)−

𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑡−𝑠)𝛼, 𝛼)𝜆(𝑧0𝑖𝑞(𝑖), 𝑣(𝑠)) 𝑑𝑠.

Из [17] следует, что для всех 𝑡⩾ 0, 𝜏 ∈ [0, 𝑡], 𝑖∈ 𝐼 имеют место неравенства

𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑡−𝜏)𝛼, 𝛼)⩾𝐸1/𝛼(𝑎(𝑡−𝜏)𝛼, 𝛼).

Из теоремы 4.1.1 работы [18] вытекает, что для всех 𝑡⩾ 0, 𝜏 ∈ [0, 𝑡] справедливо неравенство
𝐸1/𝛼(𝑎(𝑡−𝜏)𝛼, 𝛼)⩾ 0. Из последних двух неравенств получаем

𝑛∑︁
𝑖=1

𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑡−𝑠)𝛼, 𝛼)𝜆(𝑧𝑖𝑞(𝑖), 𝑣(𝑠)) 𝑑𝑠⩾

⩾
𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼)max
𝑖∈𝐼

𝜆(𝑧𝑖𝑞(𝑖), 𝑣(𝑠)) 𝑑𝑠⩾

⩾ 𝛿

𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠= 𝛿𝑡𝛼𝐸1/𝛼(𝑎𝑡
𝛼, 𝛼+1),

значит

𝐹 (𝑡)=
𝑛∑︁

𝑖=1

ℎ𝑖(𝑡, 𝑣(·))⩽
𝑛∑︁

𝑖=1

𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡
𝛼, 1)−𝛿𝑡𝛼𝐸1/𝛼(𝑎𝑡

𝛼, 𝛼+1).

Так как 𝑎𝑖𝑞(𝑖)< 0 для всех 𝑖∈ 𝐼, то из [18] следует, что при 𝑡→+∞ справедливо асимпто-
тическое представление

𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡
𝛼, 1)=− 1

𝑎𝑖𝑞(𝑖)𝑡𝛼Γ(𝛼+1)
+𝑂

(︂
1

𝑡2𝛼

)︂
, 𝐸1/𝛼(𝑎𝑡

𝛼, 𝛼+1)=− 1

𝑎𝑡𝛼
+𝑂

(︂
1

𝑡2𝛼

)︂
,

𝐹 (𝑡)=−
𝑛∑︁

𝑖=1

1

𝑎𝑖𝑞(𝑖)𝑡𝛼Γ(𝛼+1)
+

1

𝑎
+𝑂

(︂
1

𝑡𝛼

)︂
,

поэтому lim𝑡→+∞ 𝐹 (𝑡)< 0. Значит lim𝑡→+∞
∑︀𝑛

𝑖=1 ℎ𝑖(𝑡, 𝑣(·))< 0. Так как
∑︀𝑛

𝑖=1 ℎ𝑖(0, 𝑣(·))> 0, то
существует 𝑇 >0, для которого при любой допустимой функции 𝑣(·) справедливо неравенство∑︀𝑛

𝑖=1 ℎ𝑖(𝑇, 𝑣(·))< 0. Тем самым неравенство (7) доказано.
Пусть

𝑇0=min

{︃
𝑡 : inf

𝑣(·)
min
𝑖∈𝐼

(︃
𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑡

𝛼, 1)−
𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑡−𝑠)𝛼, 𝛼)𝜆(𝑧0𝑖𝑞(𝑖), 𝑣(𝑠)) 𝑑𝑠

)︃
⩽ 0

}︃
.

Из неравенства (7) следует, что 𝑇0<+∞. Пусть 𝑣(·) — допустимое управление убегающих.
Рассмотрим множества

𝑇𝑖(𝑣(·))=

{︃
𝑡⩾ 0: 𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑇

𝛼
0 , 1)−

𝑡ˆ

0

(𝑇0−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑇0−𝑠)𝛼, 𝛼)𝜆(𝑧0𝑖𝑞(𝑖), 𝑣(𝑠)) 𝑑𝑠⩽ 0

}︃
.
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Пусть далее

𝑡𝑖(𝑣(·))=

{︃
inf{𝑡 : 𝑡∈𝑇𝑖(𝑣(·))}, если 𝑇𝑖(𝑣(·)) ̸=∅,

+∞, если 𝑇𝑖(𝑣(·))=∅,

𝛽𝑖(𝑡, 𝑣(·))=

{︃
𝜆(𝑧𝑖𝑞(𝑖), 𝑣(𝑡)), 𝑡∈ [0, 𝑡𝑖(𝑣(·))),

0, 𝑡∈ [𝑡𝑖(𝑣(·)), 𝑇0].

Зададим управления преследователей 𝑃𝑖, 𝑖∈ 𝐼, полагая

𝑢𝑖(𝑡)= 𝑣(𝑡)−𝛽𝑖(𝑡, 𝑣(·))𝑧0𝑖𝑞(𝑖).

Решение задачи Коши системы (1) представимо в виде [19]

𝑧𝑖𝑞(𝑖)(𝑇0)=𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑇
𝛼
0 , 1)𝑧

0
𝑖𝑞(𝑖)+

𝑇0ˆ

0

(𝑇0−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑇0−𝑠)𝛼, 𝛼)(𝑢𝑖(𝑠)−𝑣(𝑠)) 𝑑𝑠=

=

(︃
𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑇

𝛼
0 , 1)−

𝑇0ˆ

0

(𝑇0−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑇0−𝑠)𝛼, 𝛼)𝛽𝑖(𝑠, 𝑣(𝑠)) 𝑑𝑠

)︃
𝑧0𝑖𝑞(𝑖)=

=

(︃
𝐸1/𝛼(𝑎𝑖𝑞(𝑖)𝑇

𝛼
0 , 1)−

𝑡𝑖(𝑣(·))ˆ

0

(𝑇0−𝑠)𝛼−1𝐸1/𝛼(𝑎𝑖𝑞(𝑖)(𝑇0−𝑠)𝛼, 𝛼)𝛽𝑖(𝑠, 𝑣(𝑠)) 𝑑𝑠

)︃
𝑧0𝑖𝑞(𝑖).

Из ранее доказанного следует, что существует номер 𝑙∈𝐼, для которого 𝑧𝑙𝑞(𝑙)(𝑇0)=0. Теорема
доказана.

Пример 3. Пусть 𝑘=2, 𝐼={1,2,3,4}, 𝐽={1,2}, 𝐴𝑖𝑗(𝑡)=𝑎𝑖𝑗𝐸
0, 𝑎𝑖𝑗<0, 𝑈𝑖=𝑉 ={𝑣 : ‖𝑣‖⩽1},

𝑧011 = (1, 3), 𝑧021 = (−1, 3), 𝑧031 = (−1, 1), 𝑧041 = (1, 1), 𝑧012 = (0,−1), 𝑧022 = (−2,−1), 𝑧032 = (−2,−3),
𝑧042=(0,−3). Зададим отображение 𝑞 : 𝐼→𝐽 следующим образом: 𝑞(1)=2, 𝑞(2)=𝑞(3)=𝑞(4)=1.
Условия теоремы 3 выполнены, и поэтому в игре 𝐺(4, 2, 𝑧0) происходит поимка хотя бы одного
убегающего. Отметим, что 0 /∈ Int co{𝑧0𝑖1, 𝑖∈ 𝐼} и 0 /∈ Int co{𝑧0𝑖2, 𝑖∈ 𝐼}.

Покажем, что если 𝑎𝑖𝑞(𝑖)> 0, то условие (6) в теореме 3 не гарантирует поимку.
Пример 4. Пусть 𝑘 = 2, 𝑛= 3, 𝑚= 1, 𝐼 = {1, 2, 3}, 𝑀*

𝑖1 = {0}, 𝑡0 = 0, 𝑧011 = (0, 1), 𝑧021 =
=(1/2,−

√
3/2), 𝑧031=(−1/2,−

√
3/2), 𝑈𝑖=𝑉 = {𝑣 : ‖𝑣‖⩽ 1}. Система (1) имеет вид(︀

𝐷(1/2)
)︀
𝑧𝑖1= 𝑧𝑖1+𝑢𝑖−𝑣.

Возьмём 𝑣(𝑡)= 0 для всех 𝑡⩾ 0. Тогда будем иметь

𝑧𝑖1(𝑡)=𝐸2(
√
𝑡, 1)𝑧0𝑖1+

𝑡ˆ

0

(𝑡−𝑠)−1/2𝐸2

(︀
(𝑡−𝑠)1/2, 1/2

)︀
𝑢𝑖(𝑠) 𝑑𝑠.

Предположим, что существуют 𝑇 > 0, функция 𝑢𝑙(·), 𝑙∈{1, 2, 3}, для которых 𝑧𝑙1(𝑇 )=0.
Тогда [20, c. 120, формула (1.15)]

𝐸2(
√
𝑇 , 1)= ‖𝐸2(

√
𝑇 , 1)𝑧0𝑙1‖=

⃦⃦⃦⃦
⃦

𝑇̂

0

(𝑇 −𝑠)−1/2𝐸2

(︀
(𝑇 −𝑠)1/2, 1/2

)︀
𝑢𝑙(𝑠) 𝑑𝑠

⃦⃦⃦⃦
⃦⩽

⩽
𝑇̂

0

(𝑇 −𝑠)−1/2𝐸2

(︀
(𝑇 −𝑠)1/2, 1/2

)︀
𝑑𝑠=

√
𝑇𝐸2(

√
𝑇 , 3/2).
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В силу [20, c. 118, формула (1.4)]

𝐸2(
√
𝑇 , 3/2)=

1√
𝑇
(𝐸2(

√
𝑇 , 1)−1).

Из (7) вытекает неравенство
𝐸2(

√
𝑇 , 1)⩽𝐸2(

√
𝑇 , 1)−1,

которое невозможно. Следовательно, в данной игре 𝐺(3, 1, 𝑧0) поимка не происходит.

4. ПОИМКА ВСЕХ УБЕГАЮЩИХ

В пространстве R𝑘 (𝑘 ⩾ 2) рассматривается дифференциальная игра 𝐺(1,𝑚, 𝑧0) с уча-
стием 1+𝑚 лиц: одного преследователя 𝑃1 и 𝑚 убегающих 𝐸1, . . . , 𝐸𝑚. Закон движения
преследователя 𝑃1 имеет вид(︀

𝐷(𝛼)
)︀
𝑥1= 𝑎𝑥1+𝑢, 𝑥1(0)=𝑥01, 𝑢∈𝑉 ;

закон движения каждого из убегающих 𝐸𝑗 — вид(︀
𝐷(𝛼)

)︀
𝑦𝑗 = 𝑎𝑦𝑗+𝑣𝑗 , 𝑦𝑗(0)= 𝑦0𝑗 , 𝑣𝑗 ∈𝑉.

Здесь 𝑉 ={𝑣 : ‖𝑣‖⩽1}, 𝛼∈(0, 1), 𝑎∈R1, 𝐷(𝛼)𝑓 — производная по Капуто функции 𝑓 порядка 𝛼,
𝑗 ∈ 𝐽 = {1, . . . ,𝑚}. Считаем, что 𝑥01 ̸= 𝑦0𝑗 для всех 𝑗 ∈ 𝐽 .

Обозначим

𝑓(𝑡)=𝐸1/𝛼(𝑎𝑡
𝛼, 1), 𝐹 (𝑡)= 𝑡𝛼𝐸1/𝛼(𝑎𝑡

𝛼, 𝛼+1), 𝑧0𝑗 = 𝑦0𝑗 −𝑥01.

Лемма 2. Пусть 𝑎< 0, 𝑇2>𝑇1⩾ 0,

ℎ(𝑡)=

𝑇2ˆ

𝑇1

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠.

Тогда lim𝑡→+∞ 𝑡𝛼ℎ(𝑡)= 0.
Доказательство. Сделав замену 𝑡−𝑠= 𝜏 , получим

ℎ(𝑡)=

𝑡−𝑇1ˆ

𝑡−𝑇2

𝜏𝛼−1𝐸1/𝛼(𝑎𝜏
𝛼, 𝛼) 𝑑𝜏.

В силу формулы (2.32) из [20, с. 136] для всех 𝑡>𝑇2 справедливо неравенство

|𝐸1/𝛼(𝑎𝜏
𝛼, 𝛼)|⩽𝑀

𝜏𝛼
, 𝑀 > 0,

поэтому

|ℎ(𝑡)|=

⃒⃒⃒⃒
⃒

𝑡−𝑇1ˆ

𝑡−𝑇2

𝜏𝛼−1𝐸1/𝛼(𝑎𝜏
𝛼, 𝛼) 𝑑𝜏

⃒⃒⃒⃒
⃒⩽

𝑡−𝑇1ˆ

𝑡−𝑇2

𝑀𝜏𝛼−1

𝜏𝛼
𝑑𝜏 =𝑀(ln(𝑡−𝑇1)− ln(𝑡−𝑇2)).

Тогда

|𝑡𝛼ℎ(𝑡)|⩽𝑀𝑡𝛼(ln(𝑡−𝑇1)− ln(𝑡−𝑇2))=𝑀𝑡𝛼 ln

(︂
1+

𝑇2−𝑇1
𝑡−𝑇2

)︂
⩽
𝑀𝑡𝛼(𝑇2−𝑇1)

𝑡−𝑇2
.

Так как lim𝑡→+∞ 𝑡𝛼/(𝑡−𝑇2)= 0, то lim𝑡→+∞ 𝑡𝛼ℎ(𝑡)= 0. Лемма доказана.
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Теорема 4. Пусть 𝑎< 0, 𝑀*
1𝑗 = {0} для всех 𝑗 ∈ 𝐽, существует 𝑣0 ∈𝑉, ‖𝑣0‖=1, такой,

что (𝑦0𝑗 −𝑥01, 𝑣0)< 0 для всех 𝑗 ∈ 𝐽. Все убегающие используют постоянное управление 𝑣0,
преследователь 𝑃1 знает 𝑣0. Тогда в игре 𝐺(1,𝑚, 𝑧0) происходит поимка всех убегающих.

Доказательство. 1. Покажем, что существуют момент 𝑇𝑚 и вектор 𝑢𝑚, ‖𝑢𝑚‖=1, для
которых будет выполнено равенство 𝑥1(𝑇𝑚) = 𝑦𝑚(𝑇𝑚), где 𝑥1(𝑡) — траектория преследова-
теля 𝑃1, использующего постоянное управление 𝑢𝑚.

Пусть преследователь 𝑃1 использует постоянное управление 𝑢 на отрезке [0, 𝑇𝑚]. Тогда,
в силу формулы Коши [19] и формулы (1.15) из [20, с. 120], имеем

𝑥1(𝑡)= 𝑓(𝑡)𝑥01+

𝑡ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠 ·𝑢= 𝑓(𝑡)𝑥01+𝐹 (𝑡)𝑢,

𝑦𝑚(𝑡)= 𝑓(𝑡)𝑦0𝑚+𝐹 (𝑡)𝑣0.

Равенство 𝑥1(𝑡)= 𝑦𝑚(𝑡) представимо в виде

𝐹 (𝑡)𝑢= 𝑓(𝑡)𝑧0𝑚+𝐹 (𝑡)𝑣0.

Потребуем, чтобы ‖𝑢‖=1. Для этого рассмотрим функцию

𝑔𝑚(𝑡)= ‖𝑓(𝑡)𝑧0𝑚+𝐹 (𝑡)𝑣0‖2−𝐹 2(𝑡)= 𝑓2(𝑡)‖𝑧0𝑚‖2+2𝑓(𝑡)𝐹 (𝑡)(𝑧0𝑚, 𝑣0),

где (𝑎, 𝑏) — скалярное произведение векторов 𝑎 и 𝑏. Из теоремы 4.1.1 [18] следует, что
𝑓(𝑡)> 0, 𝐹 (𝑡)> 0 для всех 𝑡> 0. Поэтому уравнение 𝑔𝑚(𝑡)= 0 равносильно уравнению

𝑓(𝑡)

𝐹 (𝑡)
=−2(𝑧0𝑚, 𝑣0)

‖𝑧𝑚‖2
. (8)

Отметим, что lim𝑡→+0 𝑓(𝑡)/𝐹 (𝑡) =+∞. В силу теоремы 1.2.1 из [18] справедливы асимпто-
тические оценки

𝑓(𝑡)=− 1

𝑎𝑡𝛼Γ(1−𝛼)
+𝑂

(︂
1

𝑡2𝛼

)︂
, 𝐹 (𝑡)=−1

𝑎
+𝑂

(︂
1

𝑡𝛼

)︂
, (9)

поэтому lim𝑡→+∞ 𝑓(𝑡)/𝐹 (𝑡) = 0. Следовательно, уравнение (8) имеет хотя бы один поло-
жительный корень 𝑇𝑚. Полагаем теперь управление преследователя 𝑃1 на отрезке [0, 𝑇𝑚]
равным

𝑢𝑚=
𝑓(𝑇𝑚)

𝐹 (𝑇𝑚)
𝑧0𝑚+𝑣0.

Получим, что в момент 𝑇𝑚 преследователь 𝑃1 осуществит поимку убегающего 𝐸𝑚.
2. Построим далее управление преследователя 𝑃1, гарантирующее поимку 𝐸𝑚−1. Пусть

на [𝑇𝑚, 𝑇𝑚−1] преследователь 𝑃1 использует постоянное управление 𝑢 (момент 𝑇𝑚−1 будет
определён ниже). Тогда, в силу формулы Коши [19] (𝑡>𝑇𝑚),

𝑥1(𝑡)= 𝑓(𝑡)𝑥01+

𝑇𝑚ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠 ·𝑢𝑚+

𝑡ˆ

𝑇𝑚

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠 ·𝑢,

𝑦𝑚−1(𝑡)= 𝑓(𝑡)𝑦0𝑚−1+𝐹 (𝑡)𝑣0.

Обозначим

𝐻𝑚(𝑡)=

𝑡ˆ

𝑇𝑚

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠, ℎ𝑚(𝑡)=

𝑇𝑚ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠.
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Отметим, что 𝐻𝑚(𝑡)+ℎ𝑚(𝑡)=𝐹 (𝑡). Тогда равенство 𝑥1(𝑡)= 𝑦𝑚−1(𝑡) представимо в виде

𝑓(𝑡)𝑥01+ℎ𝑚(𝑡)𝑢𝑚+𝐻𝑚(𝑡)𝑢= 𝑓(𝑡)𝑦0𝑚−1+𝐹 (𝑡)𝑣0
или

𝐻𝑚(𝑡)𝑢= 𝑓(𝑡)𝑧0𝑚−1+𝐹 (𝑡)𝑣0−ℎ𝑚(𝑡)𝑢𝑚.

Рассмотрим функцию

𝑔𝑚−1(𝑡)= ‖𝑓(𝑡)𝑧0𝑚−1+𝐹 (𝑡)𝑣0−ℎ𝑚(𝑡)𝑢𝑚‖2−𝐻2
𝑚(𝑡).

Тогда
𝑔𝑚−1(𝑇𝑚)= ‖𝑓(𝑇𝑚)𝑧0𝑚−1+𝐹 (𝑇𝑚)𝑣0−ℎ𝑚(𝑇𝑚)𝑢𝑚‖2.

Так как 𝐹 (𝑇𝑚)=ℎ𝑚(𝑇𝑚) и 𝐹 (𝑇𝑚)(𝑣0−𝑢𝑚)=−𝑓(𝑇𝑚)𝑧0𝑚, то

𝑔𝑚−1(𝑇𝑚)= ‖𝑓(𝑇𝑚)𝑧0𝑚−1−𝑓(𝑇𝑚)𝑧0𝑚‖2= 𝑓2(𝑇𝑚)‖𝑧0𝑚−1−𝑧0𝑚‖2> 0.

Функцию 𝑡𝛼𝑔𝑚−1(𝑡) можно записать как

𝑡𝛼𝑔𝑚−1(𝑡)= 𝑡𝛼𝑓2(𝑡)‖𝑧0𝑚−1‖2+2𝑡𝛼𝑓(𝑡)𝐹 (𝑡)(𝑧0𝑚−1, 𝑣0)−

−2𝑡𝛼𝑓(𝑡)ℎ𝑚(𝑡)(𝑧0𝑚−1, 𝑢𝑚)−2𝑡𝛼𝐹 (𝑡)ℎ𝑚(𝑡)(𝑣0, 𝑢𝑚)+2𝑡𝛼𝐹 (𝑡)ℎ𝑚(𝑡).

В силу асимптотических оценок (9) и леммы 2 получаем, что справедливы соотношения

lim
𝑡→+∞

𝑡𝛼𝑓(𝑡)𝐹 (𝑡)=
1

𝑎2Γ(1−𝛼)
, lim

𝑡→+∞
𝑡𝛼𝑓2(𝑡)= 0,

lim
𝑡→+∞

𝑡𝛼𝑓(𝑡)ℎ𝑚(𝑡)= 0, lim
𝑡→+∞

𝑡𝛼𝐹 (𝑡)ℎ𝑚(𝑡)= 0,

поэтому из неравенства (𝑧0𝑚−1, 𝑣0)< 0 следует, что lim𝑡→+∞ 𝑡𝛼𝑔𝑚−1(𝑡)=−∞, а значит, суще-
ствует момент 𝑇𝑚−1>𝑇𝑚, для которого 𝑔𝑚−1(𝑇𝑚−1)= 0.

Выбирая теперь на отрезке [𝑇𝑚, 𝑇𝑚−1] управление 𝑢𝑚−1 вида

𝑢𝑚−1=
(︀
𝑓(𝑇𝑚−1)𝑧

0
𝑚−1+𝐹 (𝑇𝑚−1)𝑣0−ℎ𝑚(𝑇𝑚−1)𝑢𝑚

)︀
/𝐻𝑚(𝑇𝑚−1),

преследователь 𝑃1 в момент 𝑇𝑚−1 осуществит поимку убегающего 𝐸𝑚−1.
3. Обозначим

ℎ𝑙(𝑡)=

𝑇𝑙ˆ

𝑇𝑙+1

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠, 𝐻𝑘+1(𝑡)=

𝑡ˆ

𝑇𝑘+1

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠,

𝑠𝑙(𝑡)=ℎ𝑚(𝑡)𝑢𝑚+ . . .+ℎ𝑙(𝑡)𝑢𝑙, 𝑠𝑙(𝑡)=ℎ𝑚(𝑡)+ . . .+ℎ𝑙(𝑡), 𝑙=𝑚−1, . . . , 𝑘+1.

Предположим, что определены векторы 𝑢𝑚, . . . , 𝑢𝑘+1 и моменты времени 𝑇𝑚<𝑇𝑚−1<. . .
. . .<𝑇𝑘+1, гарантирующие преследователю 𝑃1 поимку убегающих 𝐸𝑚, . . . , 𝐸𝑘+1, причём на
отрезке [𝑇𝑘+2, 𝑇𝑘+1] вектор 𝑢𝑘+1 равен

𝑢𝑘+1=
(︀
𝑓(𝑇𝑘+1)𝑧

0
𝑘+1+𝐹 (𝑇𝑘+1)𝑣0−𝑠𝑘+2(𝑇𝑘+1)

)︀
/𝐻𝑘+2(𝑇𝑘+1). (10)
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Построим далее управление преследователя 𝑃1, гарантирующее ему поимку убегающе-
го 𝐸𝑘. Пусть на [𝑇𝑘+1, 𝑇𝑘] преследователь 𝑃1 использует постоянное управление 𝑢 (момент 𝑇𝑘
будет определён ниже). Тогда для 𝑡>𝑇𝑘+1, в силу формулы Коши [19], имеем

𝑥1(𝑡)=𝑓(𝑡)𝑥
0
1+

𝑇𝑚ˆ

0

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼,𝛼) 𝑑𝑠·𝑢𝑚+

𝑇𝑚−1ˆ

𝑇𝑚

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼,𝛼) 𝑑𝑠·𝑢𝑚−1+.. .

. . .+

𝑇𝑘+1ˆ

𝑇𝑘+2

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠 ·𝑢𝑘+1+

𝑡ˆ

𝑇𝑘+1

(𝑡−𝑠)𝛼−1𝐸1/𝛼(𝑎(𝑡−𝑠)𝛼, 𝛼) 𝑑𝑠 ·𝑢,

𝑦𝑘(𝑡)= 𝑓(𝑡)𝑦0𝑘+𝐹 (𝑡)𝑣0.

Равенство 𝑥1(𝑡)= 𝑦𝑘(𝑡) представимо в виде

𝑓(𝑡)𝑥01+𝑠𝑘+1(𝑡)+𝐻𝑘+1(𝑡)𝑢= 𝑓(𝑡)𝑦0𝑘+𝐹 (𝑡)𝑣0 или 𝐻𝑘+1(𝑡)𝑢= 𝑓(𝑡)𝑧0𝑘−𝑠𝑘+1(𝑡)+𝐹 (𝑡)𝑣0.

Рассмотрим функцию

𝑔𝑘(𝑡)= ‖𝑓(𝑡)𝑧0𝑘−𝑠𝑘+1(𝑡)+𝐹 (𝑡)𝑣0‖2−𝐻2
𝑘+1(𝑡),

тогда

𝑔𝑘(𝑇𝑘+1)= ‖𝑓(𝑇𝑘+1)𝑧
0
𝑘−𝑠𝑘+1(𝑇𝑘+1)+𝐹 (𝑇𝑘+1)𝑣0‖2.

Из определения функций 𝐻𝑘+2(·) и ℎ𝑘+2(·) следует, что 𝐻𝑘+2(𝑇𝑘+1) = ℎ𝑘+1(𝑇𝑘+1). Так как
𝑠𝑘+1(𝑇𝑘+1)= 𝑠𝑘+2(𝑇𝑘+1)+ℎ𝑘+1(𝑇𝑘+1)𝑢𝑘+1, то

𝑠𝑘+1(𝑇𝑘+1)= 𝑠𝑘+2(𝑇𝑘+1)+𝐻𝑘+2(𝑇𝑘+1)𝑢𝑘+1. (11)

Используя формулу (10), запишем равенство (11) как

𝑠𝑘+1(𝑇𝑘+1)= 𝑓(𝑇𝑘+1)𝑧
0
𝑘+1+𝐹 (𝑇𝑘+1)𝑣0.

Тогда
𝑔𝑘(𝑇𝑘+1)= ‖𝑓(𝑇𝑘+1)𝑧

0
𝑘−𝑓(𝑇𝑘+1)𝑧

0
𝑘+1‖2= 𝑓2(𝑇𝑘+1)‖𝑧0𝑘−𝑧0𝑘+1‖2> 0.

Так как 𝐻𝑘+1(𝑡)=𝐹 (𝑡)−𝑠𝑘+1(𝑡), то функция 𝑡𝛼𝑔𝑘(𝑡) представима в виде

𝑡𝛼𝑔𝑘(𝑡)= 𝑡𝛼𝑓2(𝑡)‖𝑧0𝑘‖2+2𝑡𝛼𝑓(𝑡)𝐹 (𝑡)(𝑧0𝑘, 𝑣0)+ 𝑡
𝛼‖𝑠𝑘+1(𝑡)‖2−

−2𝑡𝛼𝐹 (𝑡)(𝑠𝑘+1(𝑡), 𝑣0)−2𝑡𝛼𝑓(𝑡)(𝑠𝑘+1(𝑡), 𝑧
0
𝑘)+2𝑡𝛼𝐹 (𝑡)𝑠𝑘+1(𝑡)− 𝑡𝛼𝑠2𝑘+1(𝑡).

Из леммы 2 следует, что для любых 𝑙 и 𝑝

lim
𝑡→+∞

𝑡𝛼ℎ𝑙(𝑡)ℎ𝑝(𝑡)= 0,

поэтому
lim

𝑡→+∞
𝑡𝛼‖𝑠𝑘+1(𝑡)‖2= lim

𝑡→+∞
𝑡𝛼𝑠2𝑘+1(𝑡)= lim

𝑡→+∞
𝑡𝛼𝑓2(𝑡)= 0,

а значит, lim𝑡→+∞ 𝑡𝛼𝑔𝑘(𝑡)=−∞. Поэтому существует момент 𝑇𝑘>𝑇𝑘+1, для которого 𝑔𝑘(𝑇𝑘)=0.
Выбирая своё управление 𝑢𝑘 на отрезке [𝑇𝑘+1, 𝑇𝑘] в виде

𝑢𝑘 =
(︀
𝑓(𝑇𝑘)𝑧

0
𝑘+𝐹 (𝑇𝑘)𝑣0−𝑠𝑘+1(𝑇𝑘)

)︀
/𝐻𝑘+1(𝑇𝑘),

преследователь 𝑃1 в момент 𝑇𝑘 осуществит поимку убегающего 𝐸𝑘. Теорема доказана.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



130 Н. Н. ПЕТРОВ, А. И. МАЧТАКОВА

Следствие. Пусть 𝑎< 0, существует гиперплоскость 𝐻 такая, что 𝑦0𝑗 ∈𝐻 для всех
𝑗 ∈𝐽, 𝑥01 /∈𝐻, 𝑣0 — единичный вектор нормали гиперплоскости 𝐻, направленный в полупро-
странство, содержащее 𝑥01. Убегающие используют постоянное управление 𝑣0. Тогда в игре
𝐺(1,𝑚, 𝑧0) происходит поимка всех убегающих.

Справедливость данного утверждения непосредственно следует из теоремы 4, так как
(𝑦0𝑗 −𝑥01, 𝑣0)< 0 для всех 𝑗 ∈ 𝐽.

Замечание 3. Пусть выполнены условия следствия и законы движения каждого участ-
ника имеют вид

𝑥̇1= 𝑎𝑥1+𝑢, 𝑦̇𝑗 = 𝑎𝑦𝑗+𝑣𝑗 , 𝑢, 𝑣𝑗 ∈𝑉, 𝑗 ∈ 𝐽. (12)

В работе [2] рассматривалась задача уклонения группы убегающих от группы преследовате-
лей, описываемая системой (12), где было показано, что в игре 𝐺(1,𝑚, 𝑧0) преследователь 𝑃1

осуществит поимку не более одного убегающего [2, следствие 6.3.3, с. 333].
Тем самым приведённая теорема 4 показывает, что дифференциальные игры, описывае-

мые уравнениями с дробными производными, обладают свойствами, которыми не обладают
дифференциальные игры, описываемые обыкновенными дифференциальными уравнениями.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Из математической теории управления известны формулы Аккермана и Басса–Гура
[1, с. 360], применяемые для решения задачи о назначении желаемого характеристического
полинома линейной стационарной системы с одним входом и обратной связью по состоянию,
поведение которой описывается уравнениями

𝑥̇=𝐴𝑥+𝑏𝑢, 𝑢=−𝑓т𝑥, (1)

где 𝑥∈R𝑛 — вектор состояния, 𝑢∈R — скалярное управление, 𝐴∈R𝑛×𝑛, 𝑏∈R𝑛, 𝑓 ∈R𝑛.
Характеристический полином системы (1) есть характеристический полином матрицы

замкнутой системы 𝐴−𝑏𝑓т. Обозначим через

𝑎(𝜆)=𝜆𝑛+𝑎1𝜆
𝑛−1+ . . .+𝑎𝑛, 𝑑(𝜆)=𝜆𝑛+𝑑1𝜆

𝑛−1+ . . .+𝑑𝑛

характеристический полином матрицы 𝐴 и желаемый характеристический полином матрицы
𝐴−𝑏𝑓т. Предположим, что матрица

𝑋(𝐴, 𝑏)=
[︀
𝑏 𝐴𝑏 . . . 𝐴𝑛−1𝑏

]︀
невырождена, что соответствует условию управляемости системы (1).

Согласно формуле Аккермана искомый вектор 𝑓 равен

𝑓т =
[︀
0 . . . 0 1

]︀
𝑋(𝐴, 𝑏)−1𝑑(𝐴).

По формуле Басса–Гура
𝑓т =(𝑑− 𝑎̄)т𝐻−1𝑋(𝐴, 𝑏)−1,
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где

𝐻 =

⎡⎢⎢⎢⎣
𝑎𝑛−1 𝑎𝑛−2 . . . 1
𝑎𝑛−2 𝑎𝑛−3 . . . 0

...
...

. . . 0
1 0 . . . 0

⎤⎥⎥⎥⎦, 𝑎̄=

⎡⎢⎢⎢⎣
𝑎𝑛
𝑎𝑛−1

...
𝑎1

⎤⎥⎥⎥⎦, 𝑑=

⎡⎢⎢⎢⎣
𝑑𝑛
𝑑𝑛−1

...
𝑑1

⎤⎥⎥⎥⎦.
В статьях [2, 3] формула Аккермана и формула Басса–Гура были обобщены для систем с

несколькими входами и обратной связью по состоянию. Цель настоящей работы — получить
обобщение формулы Басса–Гура для системы с динамической обратной связью по выходу
в виде динамического компенсатора первого порядка.

Известно [4], что динамическая обратная связь существенно расширяет возможности об-
ратной связи по выходу по сравнению со статической обратной связью. К динамической
обратной связи по выходу можно отнести наблюдатели состояния, а также динамические
компенсаторы общего вида. Согласно основополагающей работе [5] для полностью управ-
ляемой и полностью наблюдаемой системы можно построить динамический компенсатор
порядка min{𝑝c, 𝑝o}, где 𝑝c и 𝑝o — соответственно индексы управляемости и наблюдаемо-
сти системы. В случае системы с одним входом минимальный порядок компенсатора равен
индексу наблюдаемости 𝑝o.

Будем рассматривать линейную стационарную систему с одним входом

𝑥̇=𝐴𝑥+𝑏𝑢, 𝑦=𝐶𝑥,

где 𝑥∈R𝑛 — вектор состояния, 𝑦 ∈R𝑙 — вектор измерений, 𝑢∈R — скалярное управление,
𝐴∈R𝑛×𝑛, 𝑏∈R𝑛, 𝐶 ∈R𝑙×𝑛, 𝑙 <𝑛.

Управление будем искать в виде динамического компенсатора первого порядка

𝑢=−𝑓т𝑦−𝑧, 𝑧̇+𝑝𝑧= 𝑞т𝑦,

где 𝑓 ∈R𝑙, 𝑝∈R, 𝑞 ∈R𝑙 — параметры компенсатора. Система с компенсатором описывается
уравнениями

𝑥̇=(𝐴−𝑏𝑓т𝐶)𝑥−𝑏𝑧, 𝑧̇= 𝑞т𝐶𝑥−𝑝𝑧. (2)

Характеристический полином системы (2) есть характеристический полином матрицы
замкнутой системы

𝐷=

[︂
𝐴−𝑏𝑓т𝐶 −𝑏
𝑞т𝐶 −𝑝

]︂
.

Параметры компенсатора будем искать с учётом свойств заданного характеристического
полинома матрицы 𝐷. Для этого необходимо получить явную формулу для параметров
обратной связи, аналогичную формуле Басса–Гура.

2. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Обозначим через
𝑎(𝜆)=det(𝜆𝐸−𝐴)=𝜆𝑛+𝑎1𝜆

𝑛−1+ . . .+𝑎𝑛

характеристический полином матрицы 𝐴. Введём вектор-столбец 𝑔(𝜆) = 𝐶(𝜆𝐸−𝐴)*𝑏, где
(𝜆𝐸−𝐴)* — присоединённая к 𝜆𝐸−𝐴 матрица.

Лемма. Характеристический полином матрицы 𝐷 равен

det(𝜆𝐸−𝐷)= (𝜆+𝑝)𝑎(𝜆)+
(︀
𝑓т(𝜆+𝑝)+𝑞т

)︀
𝑔(𝜆). (3)
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Доказательство. Выполнив несложные преобразования в определителе матрицы 𝜆𝐸−𝐷,
получим

det(𝜆𝐸−𝐷)=det

[︂
𝜆𝐸−𝐴+𝑏𝑓т𝐶 𝑏

−𝑞т𝐶 𝜆+𝑝

]︂
=det

[︂
𝜆𝐸−𝐴+𝑏

(︀
𝑓т+(𝜆+𝑝)−1𝑞т

)︀
𝐶 𝑏

0 𝜆+𝑝

]︂
=

=(𝜆+𝑝)𝑎(𝜆)+
(︀
𝑓т(𝜆+𝑝)+𝑞т

)︀
𝐶(𝜆𝐸−𝐴)*𝑏=(𝜆+𝑝)𝑎(𝜆)+

(︀
𝑓т(𝜆+𝑝)+𝑞т

)︀
𝑔(𝜆).

Здесь применено равенство det(𝐴+𝑏𝑐т)=det𝐴+𝑐т𝐴*𝑏, где 𝐴 — квадратная матрица, 𝐴* —
присоединённая к 𝐴 матрица, 𝑏 — вектор-столбец, 𝑐т — вектор-строка [6, c. 133]. Лемма
доказана.

В следующей теореме формулируются необходимые и достаточные условия существования
решения задачи и одновременно описывается алгоритм расчёта параметров компенсатора.

Теорема. Характеристический полином матрицы 𝐷 можно произвольно задать, вы-
бирая параметры компенсатора 𝑓, 𝑝, 𝑞, тогда и только тогда, когда

rank𝑋(𝐴, 𝑏)=𝑛, rank𝑌 (𝐴,𝐶)=𝑛,

где
𝑋(𝐴, 𝑏)=

[︀
𝑏 𝐴𝑏 . . . 𝐴𝑛−1𝑏

]︀
, 𝑌 (𝐴,𝐶)=

[︀
𝐶 𝐶𝐴

]︀т
.

Доказательство. Обозначим через

𝑑(𝜆)=𝜆𝑛+1+𝑑1𝜆
𝑛+ . . .+𝑑𝑛+1 (4)

желаемый характеристический полином матрицы 𝐷. Параметры компенсатора будем искать
из условия совпадения полиномов (3) и (4).

Обозначим

𝜋𝑘(𝜆)=
[︀
𝜆𝑘 𝜆𝑘−1 . . . 𝜆 1

]︀т
, 𝑎̄=

[︀
𝑎2 𝑎3 . . . 𝑎𝑛

]︀
, 𝑑=

[︀
𝑑2 𝑑3 . . . 𝑑𝑛+1

]︀
.

Тогда

𝑎(𝜆)=𝜆𝑛+
[︀
𝑎1 𝑎̄

]︀
𝜋𝑛−1(𝜆), 𝜆𝑎(𝜆)=𝜆𝑛+1+𝑎1𝜆

𝑛+
[︀
𝑎̄ 0

]︀
𝜋𝑛−1(𝜆),

𝑑(𝜆)=𝜆𝑛+1+𝑑1𝜆
𝑛+𝑑𝜋𝑛−1(𝜆).

Матрицу (𝜆𝐸−𝐴)* запишем в виде матричного полинома [7, с. 91]

(𝜆𝐸−𝐴)*=𝐸𝜆𝑛−1+𝐴1𝜆
𝑛−2+ . . .+𝐴𝑛−1,

где

𝐴1=𝐴+𝑎1𝐸, 𝐴2=𝐴2+𝑎1𝐴+𝑎2𝐸=𝐴𝐴1+𝑎2𝐸, . . .

. . . , 𝐴𝑛−1=𝐴𝑛−1+𝑎1𝐴
𝑛−2+ . . .+𝑎𝑛−1𝐸=𝐴𝐴𝑛−2+𝑎𝑛−1𝐸.

Заметим, что по теореме Кэли–Гамильтона

𝐴𝑛=𝐴𝑛+𝑎1𝐴
𝑛−1+ . . .+𝑎𝑛𝐸=𝐴𝐴𝑛−1+𝑎𝑛𝐸=0.

Введём матрицу

𝐺=

⎡⎢⎢⎢⎣
1 𝑎1 . . . 𝑎𝑛−1

0 1 . . . 𝑎𝑛−2
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦.
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Векторы 𝑔(𝜆) и 𝜆𝑔(𝜆) можно записать в виде

𝑔(𝜆)=𝐶(𝜆𝐸−𝐴)*𝑏=𝐶
[︀
𝑏 𝐴1𝑏 . . . 𝐴𝑛−1𝑏

]︀
𝜋𝑛−1(𝜆)=𝐶𝑋(𝐴, 𝑏)𝐺𝜋𝑛−1(𝜆),

𝜆𝑔(𝜆)=𝐶𝑏𝜆𝑛+𝐶
[︀
𝐴1𝑏 𝐴2𝑏 . . . 𝐴𝑛𝑏

]︀
𝜋𝑛−1(𝜆)=

=𝐶𝑏𝜆𝑛+𝐶𝐴𝑋(𝑎, 𝑏)𝐺𝜋𝑛−1(𝜆)+𝐶𝑏
[︀
𝑎1 𝑎̄

]︀
𝜋𝑛−1(𝜆).

Характеристический полином (3) матрицы 𝐷 равен

det(𝜆𝐸−𝐷)=𝜆𝑛+1+𝑎1𝜆
𝑛+
[︀
𝑎̄ 0

]︀
𝜋𝑛−1(𝜆)+𝑝𝜆

𝑛+𝑝
[︀
𝑎1 𝑎̄

]︀
𝜋𝑛−1(𝜆)+

+𝑓т𝐶𝑏𝜆𝑛+𝑓т𝐶𝐴𝑋(𝐴, 𝑏)𝐺𝜋𝑛−1(𝜆)+𝑓
т𝐶𝑏

[︀
𝑎1 𝑎̄

]︀
𝜋𝑛−1+(𝑓𝑝+𝑞)т𝐶𝑋(𝐴, 𝑏)𝐺𝜋𝑛−1(𝜆). (5)

Заданный полином (4) и полином (5) совпадают тогда и только тогда, когда

𝑎1+𝑝+𝑓
т𝐶𝑏= 𝑑1, (6)[︀

𝑎̄ 0
]︀
+𝑝
[︀
𝑎1 𝑎̄

]︀
+𝑓т𝐶𝐴𝑋(𝐴, 𝑏)𝐺+𝑓т𝐶𝑏

[︀
𝑎1 𝑎̄

]︀
+(𝑓𝑝+𝑞)т𝐶𝑋(𝐴, 𝑏)𝐺= 𝑑. (7)

Обозначим 𝑟= 𝑓𝑝+𝑞. Из уравнения (6) выразим 𝑝 и подставим в (7). Тогда (7) примет
вид [︀

𝑟т 𝑓т]︀𝑌 (𝐴,𝐶)𝑋(𝐴, 𝑏)𝐺= 𝑑−
[︀
𝑎̄ 0

]︀
−(𝑑1−𝑎1)

[︀
𝑎1 𝑎̄

]︀
. (8)

Пусть 𝑓 и 𝑟 — решение уравнения (8). Тогда из соотношения (6) получим 𝑝=𝑑1−𝑎1−𝑓𝐶𝑏,
при этом 𝑞= 𝑟−𝑓𝑝.

Уравнение (8) имеет решение относительно неизвестных 𝑓 и 𝑟 при любом векторе 𝑑
тогда и только тогда, когда rank𝑌 (𝐴,𝐶)𝑋(𝐴, 𝑏)𝐺 = 𝑛. Матрица 𝐺 невырожденная. Мат-
рицы 𝑋(𝐴, 𝑏) и 𝑌 (𝐴,𝐶) имеют соответственно размерности 𝑛×𝑛 и 2𝑙×𝑛. Следовательно,
rank𝑌 (𝐴,𝐶)𝑋(𝐴, 𝑏)𝐺 = 𝑛 тогда и только тогда, когда rank𝑋(𝐴, 𝑏) = 𝑛 и rank𝑌 (𝐴,𝐶) = 𝑛.
Теорема доказана.

Замечание. Из теоремы вытекает, что необходимым условием существования решения
задачи является условие 2𝑙⩾𝑛. Следовательно, задача имеет решение при достаточно боль-
шом числе переменных выхода. Например, при 𝑛=5 число переменных выхода должно быть
не меньше 3. Это существенное ограничение рассматриваемой обратной связи по выходу.

Если условия теоремы выполняются и 2𝑙=𝑛, то решение уравнения (8) является един-
ственным. Если 2𝑙 >𝑛, то уравнение (8) имеет бесконечно много решений.

В случае единственного решения

[︀
𝑟т 𝑓т]︀= (︀𝑑−[︀𝑎̄ 0

]︀
−(𝑑1−𝑎1)

[︀
𝑎1 𝑎̄

]︀)︀
𝐺−1𝑋(𝐴, 𝑏)−1𝑌 (𝐴,𝐶)−1. (9)

Формулу (9) можно рассматривать как аналог формулы Басса–Гура для системы с обратной
связью по состоянию.

Пусть условия теоремы выполняются и 2𝑙 > 𝑛. Тогда можно найти частное решение
уравнения (8):

[︀
𝑟т 𝑓т]︀= (︀𝑑−[︀𝑎̄ 0

]︀
−(𝑑1−𝑎1)

[︀
𝑎1 𝑎̄

]︀)︀
𝐺−1𝑋(𝐴, 𝑏)−1 (𝑌 (𝐴,𝐶)т𝑌 (𝐴,𝐶))−1 𝑌 (𝐴,𝐶)т.
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3. ЧИСЛЕННЫЙ ПРИМЕР

Пусть 𝑛=6, 𝑙=3,

𝐴=

⎡⎢⎢⎢⎢⎢⎢⎣

−1,68 0,64 1,53 −1,5 −1,45 −0,22
0,89 1,48 2,35 0,78 −2,21 −0,08

−0,74 0,96 1,28 −2,04 1,61 1,6
0,35 −1,78 0,74 −1,54 −0,16 −0,06
0,15 −1,05 −1,19 0,65 −0,22 −0,54

−0,53 0,37 0,7 −0,09 0,15 −0,41

⎤⎥⎥⎥⎥⎥⎥⎦,

𝑏=

⎡⎢⎢⎢⎢⎢⎢⎣

−0,47
−0,53
1,87
0,79

−0,56
0,46

⎤⎥⎥⎥⎥⎥⎥⎦, 𝐶 =

⎡⎣1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎦.

Зададим желаемый характеристический полином системы (2):

𝑑(𝜆)= (𝜆+0,3)(𝜆+0,4)(𝜆+0,5)(𝜆+0,2+0,7𝑖)(𝜆+0,2−0,7𝑖)(𝜆+0,1+0,3𝑖)(𝜆+0,1−0,3𝑖)=

=𝜆7+1,8𝜆6+1,9𝜆5+1,34𝜆4+0,5979𝜆3+0,17482𝜆2+0,03367𝜆+0,00318.

Условия теоремы выполняются. Параметры компенсатора определяются однозначно:

𝑓т =
[︀
0,0891861 −1,5061263 14,434942

]︀
,

𝑞т =
[︀
7,3744718 −10,250088 53,52229

]︀
, 𝑝=−3, 0716998.

Проверка показывает, что характеристический полином матрицы 𝐷 совпадает с заданным.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

В субримановой геометрии [1, § 9.2] хорошо известна плоскость Грушина, представ-
ляющая простейший пример почти риманова многообразия (такое многообразие риманово
в дополнении к особому подмногообразию коразмерности один). Естественным обобщени-
ем этого примера является 𝛼-плоскость Грушина, когда вырождение на особом множестве
имеет порядок 𝛼⩾ 1. Экстремальные траектории для такого случая были параметризова-
ны в статье [2], и на основе этого исследована их оптимальность в [3]. В данной работе
проведено независимое исследование оптимальности экстремальных траекторий с помощью
качественного подхода, не использующего параметризацию этих траекторий.

Задача оптимального управления для классической плоскости Грушина ставится следу-
ющим образом [1, § 9.2]:

𝑞=𝑢1𝑋1+𝑢2𝑋2, 𝑞=(𝑥, 𝑦)∈𝑀 =R2, 𝑢=(𝑢1, 𝑢2)∈R2, (1)

𝑞(0)= 𝑞0, 𝑞(𝑡1)= 𝑞1, 𝑙=

𝑡1ˆ

0

(𝑢21+𝑢
2
2)

1/2𝑑𝑡→min, (2)

где 𝑋1= 𝜕/𝜕𝑥, 𝑋2=𝑥𝜕/𝜕𝑦.
Естественное обобщение этой задачи (𝛼-плоскость Грушина) [2, 3] ставится аналогично,

но для векторных полей:

𝑋1=
𝜕

𝜕𝑥
, 𝑋2= |𝑥|𝛼 𝜕

𝜕𝑦
, 𝛼∈R, 𝛼⩾ 1. (3)

Задача (1)–(3) называется почти римановой задачей на 𝛼-плоскости Грушина.
Обозначим функцию цены в этой задаче — почти риманово расстояние — как 𝑑(𝑞0, 𝑞1)=

= inf{𝑙(𝑞(·)) : 𝑞(·) траектория системы (1), (2)}. Особым множеством называется множество
точек 𝑞 ∈𝑀 , в которых множество допустимых скоростей {𝑞=𝑢1𝑋1+𝑢2𝑋2} неполномерно:
𝑍 = {𝑞 = (𝑥, 𝑦)∈𝑀 : 𝑥= 0}. Если 𝑞0 ∈𝑀 ∖𝑍, то задача локально превращается в риманову,
поэтому особый интерес представляет случай 𝑞0 ∈𝑍, который и рассматривается в данной
работе.
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2. ОСНОВНЫЕ ПОНЯТИЯ И СВОЙСТВА
2.1. СИММЕТРИИ

Задача (1)–(3) имеет очевидные симметрии — отражения

(𝑥, 𝑦) ↦→ (−𝑥, 𝑦), (𝑥, 𝑦) ↦→ (𝑥,−𝑦), (𝑥, 𝑦) ↦→ (−𝑥,−𝑦). (4)

Векторные поля 𝑋1, 𝑋2 не зависят от 𝑦, поэтому симметриями являются также параллельные
переносы

(𝑥, 𝑦) ↦→ (𝑥, 𝑦+𝑎), 𝑎∈R. (5)

Другая однопараметрическая группа симметрий даётся потоком векторного поля

𝑉 =𝑥
𝜕

𝜕𝑥
+(1+𝛼)𝑦

𝜕

𝜕𝑦
, (𝑥, 𝑦) ↦→ 𝑒𝑡𝑉 (𝑥, 𝑦)= (𝑒𝑡𝑥, 𝑒(1+𝛼)𝑡𝑦), 𝑡∈R, (6)

так как [𝑉,𝑋1] =−𝑋1, [𝑉,𝑋2] =−𝑋2. Значит оптимальный синтез и, в частности, расстоя-
ние 𝑑 инвариантны относительно симметрий (4), (5) и однородны порядка 1 относительно
симметрии (6): 𝑑(𝑒𝑡𝑉 (𝑞0), 𝑒𝑡𝑉 (𝑞1))= 𝑒𝑡𝑑(𝑞0, 𝑞1), 𝑞𝑖 ∈𝑀 , 𝑡∈R. Учитывая симметрию (5), будем
далее полагать 𝑞0=(0, 0).

2.2. СУЩЕСТВОВАНИЕ РЕШЕНИЙ

Система (1) вполне управляема в каждой из римановых полуплоскостей {𝑞∈𝑀 : sign𝑥=±1},
так как в них множество допустимых скоростей полномерно. Переместиться между этими
полуплоскостями можно вдоль полей ±𝑋1, поэтому система (1) вполне управляема. Отметим,
что в точках 𝑞∈𝑍 условие теоремы Рашевского–Чжоу [4, § 5.3; 5, § 2.2.4] выполнено только
при 𝛼 ∈ 2N. Все условия теоремы Филиппова [4, § 10.3; 5, § 3.1.2] выполнены, поэтому
оптимальные траектории существуют.

2.3. ЭКСТРЕМАЛЬНЫЕ ТРАЕКТОРИИ

Как обычно в субримановой геометрии, перейдём от минимизации длины (2) к мини-
мизации энергии 𝐽 =0,5

´ 𝑡1
0 (𝑢21+𝑢

2
2) 𝑑𝑡. Применим к полученной задаче принцип максимума

Понтрягина [4, § 3; 5, § 5.2; 6, § 12.4; 7, § 3.2.2]. Анормальные траектории постоянны и
нестрого анормальны. Для параметризации нормальных экстремальных траекторий поло-
жим 𝑋3=𝜕/𝜕𝑦 и обозначим линейные на слоях кокасательного расслоения 𝑇 *𝑀 гамильто-
нианы: ℎ𝑖(𝜆)= ⟨𝜆,𝑋𝑖⟩, 𝑖=1, 3, 𝜆∈𝑇 *𝑀 . Тогда максимизированный гамильтониан принципа
максимума Понтрягина равен 𝐻 =ℎ21+ |𝑥|2𝛼ℎ23≡ 1 и гамильтонова система для нормальных
экстремалей имеет вид

ℎ̇1=−𝛼 sign𝑥 |𝑥|2𝛼−1ℎ23, ℎ̇3=0, 𝑥̇=ℎ1, 𝑦̇= |𝑥|2𝛼ℎ3. (7)

Гамильтониан 𝐻 есть первый интеграл, поэтому при каждом ℎ3 ̸=0 независимая подсистема
уравнений (7) для переменных ℎ1 и 𝑥 имеет фазовый портрет типа центр.

Если ℎ3=0, то ℎ1≡const ̸=0, 𝑥=ℎ1𝑡, 𝑦=0. Пусть ℎ3 ̸=0. При интегрировании системы (7)
методом разделения переменных получаем уравнение

𝑑𝑥√︀
𝐻−ℎ23|𝑥|2𝛼

=±𝑑𝑡,

в котором левая часть интегрируется в общем случае в гипергеометрическую функцию
2𝐹1. С другой стороны, в работе [2] система (7) проинтегрирована в терминах некоторых
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обобщений тригонометрических функций. Однако мы не будем использовать явную парамет-
ризацию экстремальных траекторий и исследуем оптимальность экстремальных траекторий,
опираясь только на качественные методы.

Учитывая симметрию (ℎ3, 𝑦) ↦→ (−ℎ3,−𝑦) системы (7), далее считаем, что ℎ3> 0. После
замены переменных 𝑋 = 𝑥ℎ

1/𝛼
3 , 𝑌 = 𝑦ℎ

1+1/𝛼
3 , 𝐻1 = ℎ1, 𝑠 = 𝑡ℎ

1/𝛼
3 гамильтонова система (7)

примет вид
𝐻 ′

1=−𝛼 sign𝑋 |𝑋|2𝛼−1, 𝑋 ′=𝐻1, 𝑌 ′= |𝑋|2𝛼 (8)

с первым интегралом 𝐻 =𝐻2
1 + |𝑋|2𝛼 ≡ 1. Так как 𝐻 = 1, то имеем 𝐻1(0) =𝐻0

1 =±1. Вос-
пользовавшись симметрией (𝐻1, 𝑋) ↦→ (−𝐻1,−𝑋), получаем 𝐻0

1 =1. Первые два уравнения
системы (8) имеют в плоскости (𝐻1, 𝑋) фазовый портрет типа центр, поэтому для любого
𝛼⩾ 1 существует единственное число 𝑠*= 𝑠*(𝛼)> 0 такое, что

𝑋(𝑠)> 0 при 𝑠∈ (0, 𝑠*), 𝑋(𝑠*)= 0. (9)

Тогда первый положительный корень функции 𝑥(𝑡) равен 𝑡*= 𝑠*ℎ
−1/𝛼
3 .

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Теорема 1. 1. Если ℎ3 =0, то экстремальная траектория 𝑞(𝑡) оптимальна на любом
отрезке [0, 𝑡1], 𝑡1> 0.

2. Если ℎ3 ̸=0, то экстремальная траектория 𝑞(𝑡) оптимальна на любом отрезке [0, 𝑡1],
𝑡1 ∈ (0, 𝑡*], и неоптимальна при 𝑡1>𝑡*, где 𝑡*= 𝑠*|ℎ3|−1/𝛼.

Доказательство. Сначала исследуем случай 2. Пусть ℎ3 ̸= 0. Рассмотрим экспоненци-
альное отображение

Exp: (𝜆, 𝑡) ↦→ 𝑞(𝑡), Exp: 𝑁̃→𝑀, 𝑁̃ =(𝑇 *
𝑞0𝑀 ∩{𝐻 =1})×R+,

𝜆=(ℎ3, ℎ
0
1), ℎ3 ∈R∖{0}, ℎ01=±1.

При любом ℎ3 ̸=0 экстремальные траектории Exp(ℎ3, 1, 𝑡) и Exp(ℎ3,−1, 𝑡) симметричны
относительно оси 𝑦 и пересекаются на этой оси при 𝑡 = 𝑡*. Поэтому точка пересечения
Exp(ℎ3, 1, 𝑡*) является точкой Максвелла [5, § 3.3.5] и эти траектории неоптимальны при
условии 𝑡> 𝑡*.

Докажем теперь, что любая траектория Exp(ℎ3, 1, 𝑡) оптимальна при 𝑡∈ [0, 𝑡1], 𝑡1∈ (0, 𝑡*).
Учитывая симметрии задачи, будем считать, что ℎ01 = 1 и ℎ3 > 0, и будем обозначать
Exp(ℎ3, 𝑡) :=Exp(ℎ3, 1, 𝑡). Пусть 𝑁 = {(ℎ3, 𝑡)∈R2 : ℎ3> 0, 𝑡∈ (0, 𝑡*)}, 𝐷= {(𝑥, 𝑦)∈𝑀 : 𝑥, 𝑦 > 0}.
Покажем, что Exp: 𝑁→𝐷 есть диффеоморфизм, для этого воспользуемся следующей тео-
ремой Адамара о глобальном диффеоморфизме.

Теорема 2 [8; 9, § 6.2]. Пусть 𝐹 : 𝑋→𝑌 — гладкое отображение между гладкими много-
образиями одинаковой размерности такое, что 𝑋, 𝑌 связны, 𝑌 односвязно, 𝐹 невырождено
и собственное. Тогда 𝐹 — диффеоморфизм.

Сначала докажем, что Exp(𝑁) ⊂ 𝐷. Так как ℎ3 > 0 и 𝑡 ∈ (0, 𝑡*), то 𝑥(𝑡) > 0 в силу
неравенства (9). Из обыкновенного дифференциального уравнения (8) следует, что 𝑦(𝑡)> 0.
Поэтому Exp(𝑁)⊂𝐷.

Очевидно, что 𝑁 и 𝐷 связны, а 𝐷 односвязно. Покажем, что Exp |𝑁 невырождено, т.е.
якобиан 𝜕(𝑥, 𝑦)/𝜕(𝑡, ℎ3) отличен от нуля в области 𝑁. Имеем 𝜕𝑥/𝜕𝑡=𝐻1, 𝜕𝑦/𝜕𝑡= ℎ−1

3 𝑋2𝛼,
𝜕𝑥/𝜕ℎ3=−𝛼−1ℎ

−1−1/𝛼
3 𝑋+(𝜕𝑠/𝜕ℎ3)𝐻1ℎ

−1/𝛼
3 , 𝜕𝑦/𝜕ℎ3=−(1+1/𝛼)ℎ

−2−1/𝛼
3 𝑌 +(𝜕𝑠/𝜕ℎ3)𝑋

2𝛼ℎ
−1−1/𝛼
3 ,

откуда 𝐽 = ℎ
−2−1/𝛼
3 𝛼−1𝐽1, 𝐽1 =𝑋2𝛼+1− (𝛼+1)𝑌 𝐻1. Дифференцируя в силу (8), получаем
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𝐽 ′
1 = 𝛼𝑋2𝛼−1𝐽2, 𝐽2 = 𝐻1𝑋 +(𝛼+1)𝑌. Дифференцируя ещё раз, имеем 𝐽 ′

2 = 𝐻2
1 +𝑋2𝛼 > 0,

поэтому 𝐽 |𝑁 > 0, т.е. Exp |𝑁 невырождено.
Теперь покажем, что отображение Exp: 𝑁 →𝐷 собственное. Это равносильно следую-

щему условию: если последовательность {(ℎ𝑛3 , 𝑡𝑛) : 𝑛 ∈ N} ⊂ 𝑁 не содержится ни в каком
компакте в 𝑁, то её образ 𝑞𝑛=Exp(ℎ𝑛3 , 𝑡

𝑛) не содержится ни в каком компакте в 𝐷. Пусть
последовательность {(ℎ𝑛3 , 𝑡𝑛) : 𝑛∈N}⊂𝑁 не содержится ни в каком компакте в 𝑁, обозначим
𝑠𝑛 = (ℎ𝑛3 )

1/𝛼𝑡𝑛 ∈ (0, 𝑠*). Тогда она содержит подпоследовательность, для которой выполнено
одно из следующих условий: 1) ℎ𝑛3 → ℎ̄3 ∈ (0,+∞), 𝑠𝑛 → 0; 2) ℎ𝑛3 → 0, 𝑠𝑛 → 0; 3) ℎ𝑛3 → 0,
𝑠𝑛 → 𝑠 ∈ (0, 𝑠*); 4) ℎ𝑛3 → 0, 𝑠𝑛 → 𝑠*; 5) ℎ𝑛3 → ℎ̄3 ∈ (0,+∞), 𝑠𝑛 → 𝑠*; 6) ℎ𝑛3 → +∞, 𝑠𝑛 → 𝑠*;
7) ℎ𝑛3 →+∞, 𝑠𝑛→ 𝑠∈ (0, 𝑠*); 8) ℎ𝑛3 →+∞, 𝑠𝑛→ 0.

Покажем, что для каждого из них последовательность 𝑞𝑛=(𝑥𝑛, 𝑦𝑛) содержит подпосле-
довательность, на которой выполнено одно из следующих условий: 𝑥𝑛→0, 𝑥𝑛→+∞, 𝑦𝑛→0,
𝑦𝑛→+∞, т.е. 𝑞𝑛 не содержится ни в каком компакте в 𝐷.

При условии 1) имеем 𝑋(𝑠𝑛)→𝑋(0)= 0, поэтому 𝑥𝑛=𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼→ 0.

При выполнении условия 2) последовательность 𝑡𝑛 = 𝑠𝑛/(ℎ𝑛3 )
1/𝛼 > 0 содержит подпосле-

довательность одного из следующих видов: 𝑡𝑛 → 0, 𝑡𝑛 → 𝑡∈ (0,+∞), 𝑡𝑛 →+∞. Если 𝑡𝑛 → 0,
то 𝑥𝑛 = 𝑥(ℎ𝑛3 , 𝑡

𝑛) → 𝑥(0, 0) = 0. Если 𝑡𝑛 → 𝑡 ∈ (0,+∞), то 𝑦𝑛 = 𝑦(ℎ𝑛3 , 𝑡
𝑛) → 𝑦(0, 𝑡) = 0. Пусть

𝑡𝑛 →+∞. При необходимости переходя к подпоследовательности, можно считать, что {𝑠𝑛}
убывает. Существует число 𝐾 ∈N такое, что 𝑠𝐾 <𝑠*/2, поэтому 𝐻1(𝑠)>0 для всех 𝑠∈ [0, 𝑠𝐾 ].
Следовательно, 𝐻1|[0,𝑠𝐾 ]⩾ 𝜀 :=min[0,𝑠𝐾 ]𝐻1> 0 и

𝑋(𝑠𝑛)=

𝑠𝑛ˆ

0

𝐻1(𝑠) 𝑑𝑠⩾ 𝜀𝑠𝑛= 𝜀𝑡𝑛(ℎ𝑛3 )
1/𝛼, 𝑥𝑛=

𝑋(𝑠𝑛)

(ℎ𝑛3 )
1/𝛼

⩾ 𝜀𝑡𝑛→+∞.

Для остальных условий имеем: 3) 𝑋(𝑠𝑛)→𝑋(𝑠) ∈ (0,+∞) и 𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 →+∞;

4) 𝑌 (𝑠𝑛)→𝑌 (𝑠*)=
´ 𝑠*
0 |𝑋(𝑠)|2𝛼𝑑𝑠∈ (0,+∞) и 𝑦𝑛=𝑌 (𝑠𝑛)/(ℎ𝑛3 )

1+1/𝛼→+∞; 5) 𝑋(𝑠𝑛)→𝑋(𝑠*)=0,
откуда 𝑥𝑛 = 𝑋(𝑠𝑛)/(ℎ𝑛3 )

1/𝛼 → +0; 6) 𝑋(𝑠𝑛) → 𝑋(𝑠*) = 0, откуда 𝑥𝑛 = 𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 → +0;

7) 𝑋(𝑠𝑛)→𝑋(𝑠) ∈ (0,+∞), откуда 𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 → +0; 8) 𝑋(𝑠𝑛)→𝑋(0) = 0, откуда

𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 →+0. Поэтому отображение Exp: 𝑁→𝐷 собственное. По теореме 2 это

отображение является диффеоморфизмом. В силу существования оптимальных траекторий
любая траектория Exp(ℎ3, 𝑡), ℎ3 ̸=0, 𝑡∈ [0, 𝑡1], оптимальна для любого 𝑡1 ∈ (0, 𝑡*).

При 𝑡 = 𝑡* в точку Exp(ℎ3, 𝑡*) приходят две траектории, симметричные относительно
оси 𝑦 и с одинаковым значением функционала времени, поэтому обе они оптимальны.

Теперь рассмотрим случай 1. Если ℎ3 = 0, то экстремальная траектория — прямая
𝑞(𝑡)= (ℎ01𝑡, 0). Из доказанного выше включения Exp(𝑁)⊂𝐷 следует, что при ℎ3 ̸=0 и 𝑡 > 0
экстремальные траектории не пересекают координатную ось 𝑦=0, поэтому в каждую точ-
ку этой оси приходит единственная (с точностью до перепараметризации) экстремальная
траектория — прямая 𝑞(𝑡) = (ℎ01𝑡, 0). В силу существования оптимальной траектории она
оптимальна на любом отрезке [0, 𝑡1], 𝑡1> 0. Теорема доказана.

Следствие. 1. Для любой траектории Exp(𝜆, 𝑡), 𝜆 = (ℎ3, ℎ
0
1) ∈ 𝑇 *

𝑞0𝑀 ∩{𝐻 = 1}, время
разреза (время потери оптимальности) равно 𝑡cut= 𝑡*= |ℎ3|−1/𝛼𝑠* ∈ (0,+∞].

2. Множество разреза

Cut= {Exp(𝜆, 𝑡cut(𝜆)) : 𝜆∈𝑇 *
𝑞0𝑀 ∩{𝐻 =1}}= {(𝑥, 𝑦)∈𝑀 : 𝑥=0, 𝑦 ̸=0}.

Замечание. Оптимальность экстремальных траекторий на 𝛼-плоскости Грушина впер-
вые исследована в работе [3] на основе аналогичных рассуждений, но с использованием
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явной параметризации экстремальных траекторий, полученных в работе [2]. Новизна дан-
ного исследования состоит в качественном использовании лишь свойства гамильтоновой
системы (7), но не её явного интегрирования.

Для 2-плоскости Грушина на рис. 1 приведена почти риманова сфера радиуса 2: {𝑞∈𝑀 :
𝑑(𝑞0, 𝑞)=2} и её радиусы (оптимальные траектории, приходящие в точки этой сферы), а на
рис. 2 — волновые фронты {Exp(𝜆,𝑅) : 𝜆∈𝑁} для разных значений 𝑅.

Рис. 1. Сфера радиуса 2 и её радиусы Рис. 2. Волновые фронты

ЗАКЛЮЧЕНИЕ

В работе представлено качественное исследование оптимальных траекторий на 𝛼-плос-
кости Грушина, не использующее явное интегрирование гамильтоновой системы принципа
максимума Понтрягина. Насколько нам известно, это первое такого рода исследование в
теории оптимального управления. Например, даже в субримановой задаче на группе Гей-
зенберга оптимальность исследуется на основе явного интегрирования гамильтоновой систе-
мы [1, § 13.2]. Мы надеемся, что представленный в данной работе качественный подход
к построению оптимального синтеза может быть полезен в других задачах оптимального
управления, где явное интегрирование гамильтоновой системы принципа максимума Понт-
рягина затруднительно или вовсе невозможно. Этот подход может быть применён в задачах
небольшой размерности и с большой группой симметрий.
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Pures Appl. — 1898. — № 4. — P. 27–73.

9. Krantz, S.G. The Implicit Function Theorem: History, Theory, and Applications / S.G. Krantz,
H.R. Parks. — Birkäuser, 2001. — 148 p.

OPTIMAL TRAJECTORIES IN THE GRUSHIN 𝛼-PLANE

© 2025 / Yu. L. Sachkov1, E. F. Sachkova2

1,2Institute of Programm Systems named after A.K. Ailamazyan of RAS, Pereslavl-Zalessky, Russia
1Peoples’ Friendship University of Russia named after Patrice Lumumba, Moscow, Russia

e-mail: 1yusachkov@gmail.com, 2efsachkova@mail.ru

For the Grushin 𝛼-plane, optimal trajectories, cutting time, and cutting set are described.

Keywords: Grushin 𝛼-plane, optimal synthesis

FUNDING

This work was carried out with financial support from the Russian Science Foundation (project no. 22-11-00140).

REFERENCES

1. Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to sub-Riemannian Geometry from
Hamiltonian Viewpoint, Cambridge Univ. Press, 2019.

2. Chang, D.-C. and Li, Y., SubRiemannian geodesics in the Grushin plane, J. Geom. Anal., 2012, vol. 22, no. 3,
pp. 800–826.

3. Borza, S., Distortion coefficients of the 𝛼-Grushin plane, J. Geom. Anal., 2022, vol. 32, no. 78, pp. 1–28.
4. Agrachev, A.A. and Sachkov, Yu.L., Geometricheskaya teoriya upravleniya (Geometric Control Theory), Moscow:

Fizmatlit, 2005.
5. Sachkov, Yu.L., Vvedeniye v geometricheskuyu teoriyu upravleniya (Introduction to Geometric Control Theory),

Moscow: URSS, 2021.
6. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya opti-

mal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1961.
7. Clark, F.H., Optimization and Nonsmooth Analysis, New York: Wiley, 1983.
8. Hadamard, J., Les surfaces a courbures opposees et leurs lignes géodésique, J. Math. Pures Appl., 1898, no. 4,
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