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PERSONALITIES OF THE SCIENCE

TO THE EIGHTY-FIFTH ANNIVERSARY 
OF NIKOLAI ALEKSEEVICH IZOBOV

January 23, 2025 is the 85th anniversary of Nikolai A. Izobov, an outstanding scientist, world-known 
expert in the field of ordinary differential equations, academician of the National Academy of Sciences of 
the Republic of Belarus, professor, doctor of physical and mathematical sciences, member of the editorial 
board of the journal “Differential Equations”, a major organizer of science and education.

Nikolai Alekseevich was born in the village of Krasyni, Liozna district, Vitebsk region. He graduated 
from high school with honors in 1958, and in 1965, completed his studies at the Mathematics Department 
of the Belarusian State University, specializing in differential equations – a field to which he dedicated his 
entire subsequent scientific career.. In 1966, N. A. Izobov entered the postgraduate program; and in 1967 
he brilliantly defended his Ph.D. thesis under the supervision of Prof. Y. S. Bogdanov. In 1979, he defended 
his doctoral dissertation at Leningrad University, the abstract of that (as one of the best dissertations) was 
published in the journal “Mathematical Notes”. In 1980, Nikolai Alekseevich was elected a corresponding 
member of the Academy of Sciences of the BSSR, and in 1994 – a full member of the National Academy 
of Sciences of Belarus for 10 years.

Since November 1980, N.A. Izobov has been working at the Institute of Mathematics of the National 
Academy of Sciences of Belarus at the following positions: senior researcher (1980–1986), head of the 
stability theory laboratory (1986–1993), head of the differential equations department (1993–2010), and 
chief researcher (since 2010 up to the present time). In addition, during 1996–1999, he was Head of the 
Department of Higher Mathematics, Faculty of Applied Mathematics, Belarusian State University. Since 

BRIEF REPORTS
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1994, he headed the Expert Council on Mathematics of the Higher Attestation Commission of the Higher 
Attestation Commission of the Republic of Belarus.

At present, Nikolai is a member of the editorial boards of the scientific journals “Differential 
Equations” (in 1969–1990 he was deputy editor-in-chief of this journal), “Memoirs on Differential 
Equations and Mathematical Physics”, “Vesci Natsiyanalnaia Akademi nauk Belarusi. Series of Physics 
and Mathematics”, “Proceedings of the Institute of Mathematics”.

The main topics of Nikolai Alekseevich’s research activities are: the theory of Lyapunov characteristic 
indices, the theory of stability by linear approximation, linear Koppel–Conti systems, Emden–Fowler 
equations and linear Pfaff systems. He introduced the notions of exponential exponents and sigma 
exponents of a linear system, which are nowadays called Izobov exponents.

N. A. Izobov published about 250 scientific papers, including 3 monographs, one of which was 
published in Cambridge. More than 20 candidate and doctoral theses were prepared and defended under 
his supervision.

Nikolai Alekseevich was awarded the Order of Francysk Skaryna (2000), the Diploma of the Council 
of Ministers of the Republic of Belarus (2000), the V. M. Ignatovsky Medal of Honor of the National 
Academy of Sciences of Belarus (2020), the State Prize of the Republic of Belarus for the series of 
works “Investigation of asymptotic properties of differential and discrete systems” (2000), the Prize of 
the International Academic Publishing Company “Nauka/Interperiodica” for the best publication in its 
journals (diploma signed by the President of the Russian Academy of Sciences Y.S. Osipov (2009)), and 
also the prize of the National Academy of Sciences of Belarus for the series of works “Modern development 
of the first Lyapunov method: theory and applications” (2013).

We wish dear Nikolai Alekseevich good health, vigor, long active years of life and success in all his 
endeavors.

Editorial Board

TO THE EIGHTY-FIFTH ANNIVERSARY OF N. A. IZOBOV
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MODEL PROBLEM IN A STRIP FOR THE HYPERBOLIC
DIFFERENTIAL-DIFFERENCE EQUATION

© 2025 N. V. Zaitseva∗

Lomonosov Moscow State University, Russia
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Abstract. The paper investigates the question of the existence of a classical solution to the initial value problem
with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation. The
equation contains a superposition of a differential operator and a translation operator with respect to a spatial
variable that varies along the entire real axis. Using the Gelfand–Shilov operational scheme, a solution to the
problem was obtained in explicit form.

Keywords: hyperbolic equation, differential-difference equation, translation operator, initial problem, operational
scheme, Fourier transform

DOI: 10.31857/S03740641250101e7

1. INTRODUCTION. PROBLEM STATEMENT

The interest in the study of functional-differential and, in particular, differential-difference equations and prob-
lems for them is due to two reasons. First, for such generalizations of differential equations somemethods “working
well” for classical equations are inapplicable, and also there appear qualitatively new effects in the solutions, that
have no place in classical cases. Secondly, such equations are encountered in a variety of applications (mechan-
ics of a deformable solid body, processes of vortex formation and formation of complex coherent spots, modeling
of crystal lattice vibrations, nonlinear optics, neural networks, etc.), including those that cannot be described by
classical models of mathematical physics. Significant results in the study of problems for functional- differential
equations of various classes were obtained by A. L. Skubachevskii [1, 2], V. V. Vlasov [3, 4], A. B. Muravnik [5],
A. V. Razgulin [6], L. E. Rossovskii [7], V. Zh. Sakbaev [8] and other authors.

We will call according to [1] a differential-difference equation containing both differential operators and shift
operators.

To date, problems for elliptic (both in bounded and unbounded domains) and parabolic differential-difference
equations have been studied in detail. Hyperbolic differential-difference equations have been studied to a much
lesser extent. In [9, 10], two-dimensional hyperbolic equations with a shift operator in the senior derivative acting
on a spatial variable are considered for the first time. The purpose of this paper is to construct explicitly, using the
known operational scheme [11], the solution of the model initial problem in the strip for such an equation.

Let us denote byD = {(x, t) : x ∈ R, 0 < t < T} the area of the coordinate planeOxt, where T > 0 is a given
real number, letD = {(x, t) : x ∈ R, 0 ≤ t ≤ T}.

We need to find the function u(x, t) ∈ C1(D) ∩ C2(D), satisfying the equation

∂2u(x, t)

∂t2
= a2

∂2u(x− h, t)

∂x2
, (x, t) ∈ D, (1)

where a > 0, h ̸= 0 are given real numbers, and the initial condition

u(x, 0) = 0, x ∈ R. (2)

1
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1) f(ξ) is positively defined and continuous on the set [0,+∞);

2) for any number ϵ > 0 there are the following equations

lim
ξ→+∞

f(ξ)eatξ sin(hξ/2)ξϵ = 0, lim
ξ→+∞

f(ξ)e−atξ sin(hξ/2)ξϵ = 0; (6)

3) the integrals converge at any value of t ∈ [0, T ]

∫ +∞

0

f(ξ)eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)e−atξ sin(hξ/2)dξ; (7)

4) the integrals converge at any value of t ∈ (0, T ]

∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)ξe−atξ sinh ξ/2dξ. (8)

An example of such a function satisfying conditions 1)–4) is, for example, the function f(ξ) = ξβe(−CTξ),
where β ≥ 0 and C > a > 0 are any real constants.

Remark 2. The fulfillment of the equations (6) entails [13, p. 102] the convergence of the integral integrals
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)

ξ
e−atξ sin(hξ/2)dξ. (9)

3. KEY FINDINGS

Lemma. If conditions 1)–4) are satisfied, the function

G(x, t) :=

∫ +∞

0

[
f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) +
f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)

]
dξ (10)

satisfies equation (1) in the classical sense.
Proof. The integrand in (10) is continuous on the set [0,+∞) as a composition of continuous functions (there

is no singularity at the point ξ = 0 due to the limit relation sinα/α → 0 at α → 0).
Let’s investigate the convergence of the integral

∫ +∞

0

F (x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) dξ. (11)

In view of condition 1) ∣∣∣∣
∫ +∞

0

F (x, t; ξ)dξ

∣∣∣∣ ⩽
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

then by virtue of the fulfillment of condition 2) and, as a consequence, of Remark 2, the integral (11) converges.
Let us now check that function (11) satisfies equation (1). For this purpose, we differentiate (11) formally under

the sign of the integral over the variables t and x up to the second order:
∫ +∞

0

Fx(x, t; ξ)dξ =

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ; (12)
∫ +∞

0

Fxx(x, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ,

then ∫ +∞

0

Fxx(x− h, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (13)

Definition. We will call the classical solution of the problem (1), (2) a function u(x, t), continuous and
continuously differentiable on the variables x and t in the setD; twice continuously differentiable on x and t inD;
satisfying at each point of the region D the relation (1); such that for each point x0 ∈ R the limit of the function
u(x0, t) at t → +0 exists and is equal to zero.

2. CONSTRUCTING A SOLUTION TO THE PROBLEM

To find the solution of the problem (1), (2) according to the operational scheme [11] we apply, to equation (1)
and initial condition (2) (formally), the Fourier transform on the variable x, acting according to the rule

û(ξ, t) := Fx[u(x, t)] =

∫ +∞

−∞
u(x, t)eiξxdx.

As a result, we obtain the problem in Fourier images

d2û(ξ, t)

dt2
+ a2ξ2eihξû(ξ, t) = 0, (3)

û(ξ, 0) = 0, ξ ∈ R. (4)
The characteristic roots of the equation corresponding to equation (3) are determined by the formula

k1,2 = ±iaξe(ihξ/2),

then the general solution of equation (3) has the form

û(ξ, t) = C1(ξ) cos(aξe(ihξ/2)t) + C2(ξ) sin(aξe(ihξ/2)t),

where C1(ξ) and C2(ξ) are arbitrary constants depending on the parameter ξ ∈ R. Substituting this function into
the initial condition (4), we obtain C1(ξ) = 0. Since problem (3), (4) is a problem with incomplete initial data, let
us assume that

C2(ξ) = (aξe(ihξ/2))−1

and write down the final form of its solution:

û(ξ, t) =
sin(aξe(ihξ/2)t)

aξe(ihξ/2)
, ξ ∈ R.

Applying now the inverse Fourier transform to the found function (formally), we obtain by analogy with [12]
the following relations:

F−1
ξ [û(ξ, t)] =

1

2π

∫ +∞

−∞
û(ξ, t)e−ixξdξ =

=
1

2πa

∫ +∞

−∞

sin(aξte(ihξ/2))
ξe(ihξ/2)

e−ixξdξ =

=
1

2πa

[∫ +∞

0

sin(aξe(−ihξ/2)t)

ξ
ei(x+h/2)ξdξ +

+

∫ +∞

0

sin(aξe(ihξ/2)t)
ξ

e−i(x+h/2)ξdξ

]
=

=
1

2πa

∫ +∞

0

[
sin((at cos(hξ/2) + x+ h/2)ξ)

ξe(−atξ sin(hξ/2)) +

+
sin((at cos(hξ/2)− x− h/2)ξ)

ξe(atξ sin(hξ/2))

]
dξ. (5)

Remark 1. If we put h = 0 in (5), then we obtain θ(at − |x|)/(2a) – the fundamental solution of the wave
operator ∂2/∂t2 − a2∂2/∂x2, where θ is the Heaviside function.

Since the obtained improper integral in (5) diverges, we introduce, according to [11], the regularizer f(ξ) for
expression (5) – a function satisfying the conditions:

ZAITSEVA
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1) f(ξ) is positively defined and continuous on the set [0,+∞);

2) for any number ϵ > 0 there are the following equations

lim
ξ→+∞

f(ξ)eatξ sin(hξ/2)ξϵ = 0, lim
ξ→+∞

f(ξ)e−atξ sin(hξ/2)ξϵ = 0; (6)

3) the integrals converge at any value of t ∈ [0, T ]

∫ +∞

0

f(ξ)eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)e−atξ sin(hξ/2)dξ; (7)

4) the integrals converge at any value of t ∈ (0, T ]

∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)ξe−atξ sinh ξ/2dξ. (8)

An example of such a function satisfying conditions 1)–4) is, for example, the function f(ξ) = ξβe(−CTξ),
where β ≥ 0 and C > a > 0 are any real constants.

Remark 2. The fulfillment of the equations (6) entails [13, p. 102] the convergence of the integral integrals
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)

ξ
e−atξ sin(hξ/2)dξ. (9)

3. KEY FINDINGS

Lemma. If conditions 1)–4) are satisfied, the function

G(x, t) :=

∫ +∞

0

[
f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) +
f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)

]
dξ (10)

satisfies equation (1) in the classical sense.
Proof. The integrand in (10) is continuous on the set [0,+∞) as a composition of continuous functions (there

is no singularity at the point ξ = 0 due to the limit relation sinα/α → 0 at α → 0).
Let’s investigate the convergence of the integral

∫ +∞

0

F (x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) dξ. (11)

In view of condition 1) ∣∣∣∣
∫ +∞

0

F (x, t; ξ)dξ

∣∣∣∣ ⩽
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

then by virtue of the fulfillment of condition 2) and, as a consequence, of Remark 2, the integral (11) converges.
Let us now check that function (11) satisfies equation (1). For this purpose, we differentiate (11) formally under

the sign of the integral over the variables t and x up to the second order:
∫ +∞

0

Fx(x, t; ξ)dξ =

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ; (12)
∫ +∞

0

Fxx(x, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ,

then ∫ +∞

0

Fxx(x− h, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (13)

MODEL PROBLEM IN A STRIP
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and that function (16) satisfies equation (1), differentiating directly (16) under the sign of integral on variables x
and t up to the second order inclusive and substituting the found derivativesHtt(x, t; ξ) andHxx(x − h, t; ξ) into
(1). In this case, by virtue of conditions 3) and 4), the integralsHx(x, t; ξ) andHxx(x, t; ξ) converge uniformly on
the variable x at any segment [x1, x2] ⊂ R and the integralsHt(x, t; ξ) and Htt(x, t; ξ) converge uniformly at any
segment [t1, t2] of the sets [0, T ] and (0, T ], respectively.

Thus, it is shown that function (10) exists at every point of the domain D and satisfies equation (1) in the
classical sense. The lemma is proved.

On the basis of the lemma the following is true.
Theorem. If conditions 1)–4) are satisfied, the function

u(x, t) =
1

2πa

∫ +∞

−∞
G(x− τ, t)u0(τ)dτ, (17)

where G(x, t) is defined by equality (10), u0(x) is any integrable function on the whole number line, satisfies equation
(1) in the classical sense and the limit relation

lim
t→+0

u(x0, t) = 0

for any value of x0 ∈ R.
Proof. Function (17) has the form

u(x, t) =
1

2πa

∫ +∞

−∞
u0(τ)

∫ +∞

0

[
sin((at cos(hξ/2) + x− τ + h/2)ξ)

ξe−atξ sin(hξ/2) +

+
sin((at cos(hξ/2)− x+ τ − h/2)ξ)

ξeatξ sin(hξ/2)

]
dξdτ.

Since u0(x) ∈ L1(R), it is sufficient to show that |G(x−, t)| ⩽ const, that is true, due to condition 2) and
Remark 2, for the existence of the function (17) in the domain D. In view of the proved lemma, function (17) is
a classical solution of equation (1). Note also that, by virtue of the same lemma, the function (17) belongs to the
classC1(D)∩C2(D) (the integrand in (17) is continuous), the integrals ux(x, t) and uxx(x, t) converge uniformly
on the variable x at any finite segment [x1, x2] ⊂ R, the integrals ut(x, t) and utt(x, t) converge uniformly on t at
any finite segment [t1, t2] of the sets [0, T ] and (0, T ], respectively (the integral ut(x, t) converges on the boundary
t = 0).

Let x0 ∈ R. In (17) we substitute the variable by the formula (x0 − τ)/t = η and get

u(x0, t) =
t

2πa

∫ +∞

−∞
G(tη, t)u0(x0 − tη)dη,

whence at t → +0 follows the evaluation of |u(x0, t)| < ε for any arbitrarily small number ε > 0. The theorem is
proved.
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Next,
∫ +∞

0

Ft(x, t; ξ)dξ = a

∫ +∞

0

f(ξ)
[
cos(hξ/2) cos((at cos(hξ/2) + x+ h/2)ξ) +

+ sin(hξ/2) sin((at cos(hξ/2) + x+ h/2)ξ)
]
eatξ sin(hξ/2)dξ =

= a

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x)ξ)eatξ sin(hξ/2)dξ; (14)
∫ +∞

0

Ftt(x, t; ξ)dξ = −a2
∫ +∞

0

f(ξ)ξ
[
cos(hξ/2) sin((at cos(hξ/2) + x)ξ) −

− sin(hξ/2) cos((at cos(hξ/2) + x)ξ)
]
eatξ sin(hξ/2)dξ =

= −a2
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (15)

Substituting the found derivatives (13) and (15) into the relation (1), we are convinced of its validity.
Let us examine the integral (12) for uniform convergence. We have

∫ +∞

0

|Fx(x, t; ξ)|dξ ≤
∫ +∞

0

f(ξ)e(atξ sin(hξ/2))dξ.

Since the integral in the right-hand side of the inequality converges due to condition 3), and the integrand in it
does not depend on the variable x, then by virtue of the Weierstrass sign the integral (12) converges uniformly on
the variable x at any finite interval [x1, x2] ⊂ R.

Similarly, from the estimation
∫ +∞

0

|Fxx(x− h, t; ξ)|dξ ≤
∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

condition 4) and the independence of the integrand from x in the right-hand side of the last inequality results in
the uniform convergence of the integral (13) on the variable x on any interval [x1, x2] ⊂ R. This means that the
differentiation under the sign of the integral in (11) on the variable x up to and including the second order was
legitimate.

Let us now evaluate the integral (14):

+∞∫

0

|Ft(x, t; ξ)| dξ ≤ a

+∞∫

0

f(ξ)eatξ sin (hξ/2) dξ ≤




a
+∞∫
0

f(ξ)eat2ξ sin (hξ/2) dξ, sin (hξ/2) ≥ 0,

a
+∞∫
0

f(ξ)eat1ξ sin (hξ/2) dξ, sin (hξ/2) < 0.

The integrals in the right-hand side of the relations converge according to condition 3), and the integrand expres-
sions in them do not depend on t, hence, the integral (14) converges uniformly on any interval [t1, t2] ⊂ [0, T ].

From the assessment

+∞∫

0

|Ftt(x, t; ξ)| dξ ≤





a2
+∞∫
0

f(ξ)ξeat2ξ sin (hξ/2) dξ, sin (hξ/2) ≥ 0,

a2
+∞∫
0

f(ξ)ξeat1ξ sin (hξ/2) dξ, sin (hξ/2) < 0

and condition 4) it follows that the integral (15) converges uniformly on any segment [t1, t2] ⊂ (0, T ]. Thus, the
differentiation (15) under the sign of the integral over the variable t up to and including the second order is valid.

Similarly it can be shown, in view of conditions 1) and 2), that the non-singular integral converges
∫ +∞

0

H(x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)
dξ (16)

ZAITSEVA
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and that function (16) satisfies equation (1), differentiating directly (16) under the sign of integral on variables x
and t up to the second order inclusive and substituting the found derivativesHtt(x, t; ξ) andHxx(x − h, t; ξ) into
(1). In this case, by virtue of conditions 3) and 4), the integralsHx(x, t; ξ) andHxx(x, t; ξ) converge uniformly on
the variable x at any segment [x1, x2] ⊂ R and the integralsHt(x, t; ξ) and Htt(x, t; ξ) converge uniformly at any
segment [t1, t2] of the sets [0, T ] and (0, T ], respectively.

Thus, it is shown that function (10) exists at every point of the domain D and satisfies equation (1) in the
classical sense. The lemma is proved.

On the basis of the lemma the following is true.
Theorem. If conditions 1)–4) are satisfied, the function

u(x, t) =
1

2πa

∫ +∞

−∞
G(x− τ, t)u0(τ)dτ, (17)

where G(x, t) is defined by equality (10), u0(x) is any integrable function on the whole number line, satisfies equation
(1) in the classical sense and the limit relation

lim
t→+0

u(x0, t) = 0

for any value of x0 ∈ R.
Proof. Function (17) has the form

u(x, t) =
1

2πa

∫ +∞

−∞
u0(τ)

∫ +∞

0

[
sin((at cos(hξ/2) + x− τ + h/2)ξ)

ξe−atξ sin(hξ/2) +

+
sin((at cos(hξ/2)− x+ τ − h/2)ξ)

ξeatξ sin(hξ/2)

]
dξdτ.

Since u0(x) ∈ L1(R), it is sufficient to show that |G(x−, t)| ⩽ const, that is true, due to condition 2) and
Remark 2, for the existence of the function (17) in the domain D. In view of the proved lemma, function (17) is
a classical solution of equation (1). Note also that, by virtue of the same lemma, the function (17) belongs to the
classC1(D)∩C2(D) (the integrand in (17) is continuous), the integrals ux(x, t) and uxx(x, t) converge uniformly
on the variable x at any finite segment [x1, x2] ⊂ R, the integrals ut(x, t) and utt(x, t) converge uniformly on t at
any finite segment [t1, t2] of the sets [0, T ] and (0, T ], respectively (the integral ut(x, t) converges on the boundary
t = 0).

Let x0 ∈ R. In (17) we substitute the variable by the formula (x0 − τ)/t = η and get

u(x0, t) =
t

2πa

∫ +∞

−∞
G(tη, t)u0(x0 − tη)dη,

whence at t → +0 follows the evaluation of |u(x0, t)| < ε for any arbitrarily small number ε > 0. The theorem is
proved.
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Abstract. The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic
liquid are investigated. It is shown that for certain values of the parameters included in the equations of the
system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is
solved based on the feedback principle.
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1. INTRODUCTION. PROBLEM STATEMENT

Let D ⊂ Rn be a bounded region with boundary ∂D of class C∞. Let’s consider the following model of
viscoelastic incompressible fliud flow inD × R:

(λ−∇2)ut = ν∇2u−∇p, ∇u = 0; (1)

u(x, t) = 0, (x, t) ∈ ∂D × R; u(x, 0) = u0, x ∈ D,

where u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)) and p are the velocity and pressure vectors, respectively. System
(1) is a linearization of the system

(λ−∇2)ut = ν∇2u− (u∇)u−∇p, ∇u = 0,

obtained by A.P. Oskolkov [1] to describe the flow of viscous liquids possessing elasticity property. Redefining∇p
by p, we write the system (1) in the following form

(λ−∇2)ut = ν∇2u− p, ∇(∇)u = 0. (2)

Here, the parameter λ characterizes elastic properties, and ν characterizes viscous properties. In [2], it was
shown that the parameter λ can take negative values. In [3], a physical model of fluid flow with negative viscosity
was constructed, so we will assume further that ν ∈ R.

It has been experimentally shown that the flow of polymer solutions and melts has the property of instability
(see the review [4] and the bibliography therein). This instability can have a significant impact on the material
processing technologies and the quality of final products. One of the causes of this instability is inlet pulsations
(“inlet instability”). Note that polymer solution and melts are viscoelastic fluids. We will investigate the instability
and stability of the flow of an incompressible viscoelastic fluid described by system (2) with stochastic initial data.
As an initial condition, we choose a random variable

η(0) = η0, (3)

and we will consider the system (2) as a stochastic equation of the Sobolev type

Lη̊ = Mη. (4)

1
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The solution of the stochastic equation is a stochastic process that is not differentiable at any point. Therefore,
as the derivative of the stochastic process η we will consider the Nelson–Glicklich derivative η̊ [5]. At present, a
large number of works devoted to the study of stochastic equations of Sobolev type are known. Let us note some of
them. The solvability of the Cauchy problem for equation (4) is studied in [6] (in the case of a relatively bounded
operator), [7] (in the case of a relatively sectorial operator) and [8] (in the case of a relatively radial operator). In
[9], stochastic linear equations of Sobolev type of high order are considered; in [10, 11], the “initial-finite” problem
for equation (4) is investigated; in [12], the stability of equation (4) is studied. In [13–15], numerical experiments
on finding stable and unstable solutions of stochastic nonclassical equations that can be represented in the form (4)
were carried out.

The deterministic system (2) has been studied in various aspects. The study of its solvability was started in [1]
under the condition that the parameters λ, ν ∈ R+. In [16], the question of existence of solutions was solved using
the phase space method at λ ∈ R\{0} and ν ∈ R+; the existence of an exponential dichotomy of solutions was
shown. In [17], the initial-final problem for a linear system of Oskolkov equations was studied.

The purpose of this paper is to study the instability and stability of solutions of the stochastic system (2) in the
case when the parameters λ, ν ∈ R\{0}, and to solve the problem of stabilization of unstable solutions. In Section
2, we give abstract results on the existence of solutions of equation (4) and their stability. In Section 3, the system
(2) in spaces of randomK-values is considered, and the solvability of the stochastic system (2) is shown. In Section
4, the existence of stable and unstable invariant spaces is proved, the problem of stabilization of unstable solutions
by the feedback principle is solved.

2. INVARIANT SPACES OF THE STOCHASTIC EQUATION OF SOBOLEV TYPE

ByL2 we denote the space of random variables ξ with zeromathematical expectation and finite variance, and by
CL2 we denote the space of continuous stochastic processes η. We fix η ∈ CL2 and t ∈ I, where I is some interval,
and through N η

t we denote the σ-algebra generated by η and Eη
t = E(·|N η

t ). Let us define the Nelson–Glicklich
derivative of the stochastic process η at the point t ∈ I as the limit

η̊( · , ω) = 1

2

[
lim

∆t→+0
Eη
t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→+0
Eη
t

(
η(t, ·)− η(t−∆t, ·)

∆t

)]
,

if it converges in the uniform metric on R. By ClL2 we denote the space of stochastic processes whose Nelson–
Glicklich derivatives are a.s. (almost surely) continuous on I up to order l inclusive.

Let U and F be real separable Hilbert spaces, and let {φk} and {ψk} denote bases in U and F, respectively.
Choose a sequence of random variables {ξk} ⊂ L2 ({ζk} ⊂ L2), such that ∥ξk∥L2 ≤ const (∥ζk∥L2 ≤ const). The
elements of the space UKL2 (FKL2) of (U-valued (F-valued)) random K-variables are vectors ξ =

∑∞
k=1 λkξkφk

(ζ =
∑∞

k=1 λkζkψk), where the sequence K = {λk} ⊂ R+ satisfies
∑∞

k=1 λ
2
k < +∞. The following holds:

Lemma 1 [18]. The operator A ∈ L(U;F) (linear and continuous) if and only if the operator A ∈ L(UKK2;FKL2).
Let the operators L ∈ L(UKL2;FKL2),M ∈ Cl(UKL2;FKL2). Denote by

ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)}

the L-resolvent set, and by σL(M) = C \ ρL(M) the L-spectrum of the operator M . If the operator M is (L, σ)-
bounded, i.e., its L-spectrum is bounded, then there exist projectors

P =
1

2πi

∫

γ

(µL−M)−1Ldµ ∈ L(UKL2), Q =
1

2πi

∫

γ

L(µL−M)−1 dµ ∈ L(FKL2). (1)

Here, the contour γ ⊂ C bounds a region containing σL(M).
The projectors (5) split the spaces UK L2 = U0

K L2 ⊕ U1
K L2 and FKL2 = F0

KL2 ⊕ F1
KL2, where

U0
KL2 (U1

KL2) = kerP (imP ), F0
KL2 (F1

KL2) = kerQ (imQ). Let Lk (Mk) denote the restriction of the operator
L (M) to Uk

KL2, k = 0, 1. The operators Lk(Mk) ∈ L(Uk
KL2,Fk

KL2), k = 0, 1; there exist operators M−1
0 ∈

L(F0
KL2,U0

KL2), L−1
1 ∈ L(F1

KL2,U1
KL2). Consider the operators H = L−1

0 M0 and S = L−1
1 M1. If the operator

M is (L, p)-bounded andH ≡ O, p = 0 orHp ̸= O,Hp+1 ≡ O, then it is called an (L, p)-bounded operator.
We call a stochastic K-process η ∈ C1(J ;UKL2) is called a solution of equation (4) if a.s. all its trajectories

satisfy equation (4) at all t ∈ J . A solution η = η(t) of equation (4) a solution of the Cauchy problem (3), (4) if
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equality (3) holds for some random L-variable η0 ∈ ULL2. The set P ⊂ ULL2 is called the stochastic phase space
of equation (4) if a.s. any trajectory of the solution η = η(t) lies in P pointwise, i.e., η(t) ∈ P for all t ∈ J , and for
a.e. η0 ∈ P there exists a solution to the problem (3), (4).

Theorem 1 [7]. Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N. Then the group

U t =
1

2πi

∫

γ

RL
µ (M)eµt dµ

is the holomorphic resolving group of equation (4); the subspace U1
KL2 is the phase space of equation(4).

Definition. An invariant subspace 1Is(u) ⊂ P is called the stable (unstable) invariant space of equation (4) if the
condition

∥ηs(u)(t)∥UKL2
≤ Ne−ν(s−t)∥ηs(u)(s)∥UKL2

holds for s ≥ t (t ≥ s), ηs(u) = ηs(u)(t) ∈ I1, and some N,α ∈ R+. If the phase space splits into a direct sum
P = I1 ⊕ I2, then the solutions η = η(t) of equation (4) have an exponential dichotomy.

Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N and the relative spectrum has the form

σL(M) = σL
s (M)⊕ σL

u (M), (6)

where
σL
s (M) = {µ ∈ σL(M) : Reµ < 0} ̸= ∅, σL

u (M) = {µ ∈ σL(M) : Reµ > 0} ̸= ∅.

Then there are projectors

Pl(r) =
1

2πi

∫

γl(r)

RL
µ (M) dµ ∈ L(UKL2),

where the contour γl(r) lies in the left (right) half-plane of the complex plane and bounds a part of the L-spectrum
of the operatorM σL

s(u)(M). Let us denote by I(s(u)) = imPl(r).
Let the operatorM be (L, p)-bounded and condition (6) be satisfied, then U1

KL2 = Is ⊕ Iu. Equation (4) will
be considered as a system

Hη̊0 = η0, (7)
Lsη̊

s = Msη
s, (8)

Luη̊
u = Muη

u. (9)

Remark 1. The operator M is (L, p)-bounded, so the operator H is nilpotent of degree p. Then the solution
of equation (7) η0 = 0 and the stochastic process η = ηs + ηu is a solution of equation (4), where ηs and ηu

are solutions of equations (8) and (9), respectively. Thus, the question of stability and instability of solutions of
equation (4) is reduced to the study of stability and instability of solutions of ηs and ηu.

Theorem 2. Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N and condition (6) be satisfied, then the solutions
η = η(t) of equation (4) have an exponential dichotomy.

Proof. The solving groups of equations (8) and (9) have the form

U t
l =

1

2πi

∫

γl

(µLs −Ms)
−1Lse

µt dµ, U t
r =

1

2πi

∫

γr

(µLu −Mu)
−1Lue

µt dµ.

Let’s denote α = −maxµ∈σL
l (M)Reµ and β = minµ∈σL

r (M)Reµ. Then

∥U t
l ∥L(UKL2) ≤ e−αt

∫

γl

∥(µLs −Ms)
−1Ls∥L(UKL2) |dµ| ≤ Nle

−αt, (10)

∥U t
r∥L(UKL2) ≤ eβt

∫

γr

∥(µLr −Mr)
−1Lr∥L(UKL2) |dµ| ≤ Nre

βt. (11)
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Let s ≥ t. Then the solution ηs of equation (8) can be written as ηs(t) = Us−t
l ηs(s). By virtue of (10) we have

the relations
∥ηs(t)∥UKL2

= ∥Us−t
l ηs(s)∥UKL2

≤ Nle
−α(s−t)∥ηs(s)∥UKL2

.

Further, let t ≥ s. Then the solution ηu of equation (9) is: ηu(t) = U t−s
r ηu(s). By virtue of (11) we have

∥ηu(t)∥UKL2
= ∥U t−s

r ηu(s)∥UKL2
≤ Nre

β(t−s)∥ηu(s)∥UKL2
= Nre

−β(s−t)∥ηs(s)∥UKL2
.

The theorem is proved.
Corollary 1. By the conditions of Theorem 2, any trajectory of the solution ηs(u) = ηs(u)(t) of equation (8) (equation

(9)) a.c. lies in the stable (unstable) invariant space Is(u) pointwise, i.e., ηs(u)(t) ∈ Is(u) at all t ∈ R.
Remark 2. If σL

s(u)(M) = ∅, то Is(u) = {0}.

3. STOCHASTIC SYSTEMTYPE

We will consider the system (2) in the spaces of random K-values. For this purpose we denote by
H2 = (W 2

2 (D))n, H̊1 = (W̊ 2
2 (D))n, L2 = (L2(D))n. The closure {u ∈ C∞ : ∇u = 0} of the lineal L2 is denoted

byHσ, and there exists a splittingL2 = Hσ⊕Hπ, whereHπ is an orthogonal complement toHσ, andΠ: L2 → Hπ

is an otroprojector corresponding to this complement. The contraction of the projectorΠ ontoH2 ∩ H̊1 ⊂ L2 is a
continuous operatorΠ: H2 ∩ H̊1 → H2 ∩ H̊1. Let us represent the spaceH2 ∩ H̊1 = H2

σ ⊕H2
π, where kerΠ = H2

σ,
imΠ = H2

π. Let us denoteΣ = I−Π. Let us put U = H2
σ ×H2

π ×Hπ and F = Hσ ×Hπ ×Hπ. The element u ∈ U
has the form u = (uσ, uπ, p).

Lemma 2 [2]. The formulaA = (−∇2)n : H2∩H̊1 → L2 defines a linear continuous operator with positive discrete
spectrum σ(A), condensing to the point +∞, and the mapping A : H2

σ(π) → H2
σ(π) is bĳective.

The formulaB : u → −∇(∇u) defines a linear continuous surjective operatorB : H2∩H̊1 → H2
π,with kerB = H2

σ.

The spacesW 2
2 (D), L2(D) are separable Hilbert spaces, so the spaces U, F are separable Hilbert spaces as their

finite products. Let us construct the spacesUKL2 and FKL2. The operators L,M ∈ L(UKK2;FKL2) are defined as

L =



Σ(λI+A) O O

O Π(λI+A) O
O O O


, M =



−νΣA O O

O −νΠA −Π
O ΠB O


.

Then the stochastic system of equations (2) can be viewed as a stochastic linear equation (4). The following is true
Lemma 3. Operators L,M ∈ L(UKK2;FKL2).
Proof. Clearly, the operators L,M ∈ L(U;F), with imL = H2

σ × H2
π × {0}, kerL = {0} × {0} × H2

π, so by
virtue of lemma 1, L,M ∈ L(UKK2;FKL2).

Lemma 4. For any λ ∈ R \ σ(A), ν ∈ R the operator M is (L, 1)-limited.
Proof. In [2] it is shown that the operatorM is (L, 1)-bounded if the operators L,M : U → F, so by virtue of

lemma 1, the statement of this lemma follows.
Theorem 3. For any λ ∈ R \ σ(A), ν ∈ R and for any random variable η0 ∈ U1

KL2 there exists a solution to
problem (3), (4) which is of the form η(t) = U tη0, t ∈ J .

Proof. By virtue of lemmas 3 and 4„ the stochastic system of equations (2) satisfies all the requirements of
Theorem 1. The phase space has the form

U1
KL2 =

{
UKL2, if λ ̸= νk for k ∈ N;
η ∈ UKL2 : ⟨ · , φk⟩φk = 0, if λ = νk,

where νk is the spectrum of the operator Ã : H2
π → H2

π, that is the contraction of the operator A onto H2
π. The

resolving group can be represented as

U t =




∑
νk ̸=λ

exp
{

ννk
νk − λ

}
⟨·, φk⟩φk O O

O O O
O O O


.
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4. EXPONENTIAL DICHOTOMIES AND STABILIZATION OF SOLUTIONS OF A
STOCHASTIC SYSTEMOF EQUATIONS

The relative spectrum has the form σL(M) =
{

ννk

(νk−λ)

}
. Note that the spectrum σ(Ã) = {νk} is positive

discrete finite and condensed to the point+∞ (Solonnikov–Vorovich–Yudovich theorem). The following holds
Theorem 4. For any λ ∈ R\σ(A), λ > ν1 and ν ∈ R\{0}, solutions η = η(t) of the stochastic system of equations

(2) have an exponential dichotomy.
Proof. Letλ ∈ R\σ(A) andλ > ν1, thenσL(M) = σL

1 (M)∪σL
2 (M), whereσL

1 (M) = {µ ∈ σL(M) : νk < λ},
σL
2 (M) = {µ ∈ σL(M) : νk > λ}. This spectral decomposition is accompanied by invariant spaces

I1 = {η ∈ U1
KL2 : ⟨ · , φk⟩φk = 0, νk < λ}, I2 = {η ∈ U1

KL2 : ⟨ · , φk⟩φk = 0, νk > λ}.

The space I1 is finite-dimensional, dim I1 = max{k : νk < λ}, , and the space I2 is infinite-dimensional,
codim I2 = dim I1 + dimkerL.

If ν > 0 (ν < 0), then σL
1(2)(M) lies in the left half-plane and σL

2(1)(M) lies in the right half-plane of the
complex plane. By virtue of Theorem 2, I1(2) is a stable invariant space, I2(1) is an unstable invariant space, and
the solutions of the stochastic system of equations (2) have exponential dichotomy. The theorem is proved.

Corollary 2. If λ < ν1 and ν < 0, then the phase space of the stochastic system of equations (2) coincides with the
stable invariant space. If λ < ν1 and ν > 0, then the phase space of the stochastic system of equations (2) coincides
with the unstable invariant space.

Let us proceed to the problem of stabilization of unstable solutions. For this purpose, we will consider equation
(4) in the form of the system (7)–(9). For definiteness, let us assume ν > 0 and λ > ν1. It follows from Theorem
4 that Is = I1 and Iu = I2. The space Is is a stable invariant space, so for the solutions ηl = ηl(t) of equation (8)
the following is true

lim
t→+∞

∥ηl(t)∥UKL2
= 0.

By virtue of Remark 1, consider the following stabilization problem. It is required to find such a stochastic
process χ, so that for the solutions of Eq.

Lrη̊r = Mrηr + χ (12)

the following condition was satisfied

lim
t→+∞

∥ηr(t)∥UKL2
= 0. (13)

We will find χ using the inverse of χ = Bηr, whereB is some linear bounded operator. Equation (12) will take
the form

Lrηr = Mrηr +Bηr = (Mr +B)ηr.

Let’s findm = maxµk ∈ σL
2 (M){µk} and the number n of the obtained maximum value. Let’s put

B = −ν(ε+ νn)I,

where ε can be chosen as small as desired. Then the relative spectrum

σLu(Mu +B) =

{
ννk − ν(ε+ νn)

λ− νk

}

lies in the left half-plane, of the complex plane and by virtue of Theorem 2, equality (13) is satisfied for the solution
of ηr = ηr(t).
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CONCLUSION

It is planned to continue studies on stability and instability of solutions for stochastic semilinear equations of
Sobolev type with a relatively spectral operator. It is planned to carry out numerical experiments on finding stable
and unstable solutions of the stochastic system (2) and stabilization of unstable solutions.

The author expresses her sincere gratitude to Prof. G. A. Sviridyuk for his interest in the work and useful
discussions.
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Abstract. In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variablesmethod, the considered BVP is reduced to the investigation
of the existence conditions of solutions of initial value problems for differential equation with piecewise constant
arguments. Existence conditions of infinitely many solutions or emptiness for considered differential equation
are established, and explicit formulas for these solutions are obtained. Several examples are given to illustrate
the obtained results.
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1. INTRODUCTION. PROBLEM STATEMENT

Differential equations with piecewise constant arguments are encountered in the study of hybrid systems and
can model certain harmonic oscillators with almost periodic effects [1, 2]. A wide review of studies devoted to
ordinary equations and partial differential equations with piecewise constant arguments is given in [3, 4].

In articles [5, 6], differential equations of special kind with piecewise constant argument are studied. Periodic
(solvable) problems are reduced to a system of linear algebraic equations, all conditions for the existence of its
n-periodic solutions are described, by means of which explicit formulas for solutions of differential equations are
found.

Partial derivative equations with piecewise constant temporal argument arise naturally in the process of approx-
imation [7].

In [8], the existence, oscillation and asymptotic bounds of solutions of initial problems with piecewise constant
lags are studied for a partial derivative equation with piecewise constant argument.

Boundary and initial problems for the diffusion equation with piecewise constant arguments were studied in
[9] and [10], respectively. The equation with piecewise constant mixed arguments of the form

ut(x, t) = a2uxx(x, t) + buxx(x, [t− 1]) + cu(x, [t]) + du(x, [t+ 1])

was considered in [11], where the questions of existence of solutions, convergence of solutions to zero, unbound-
edness of solutions and their oscillations were investigated.

In the paper [12], the asymptotic behavior of the solution of the diffusion equation with piecewise constant
argument of generalized form is found.

1

PARTIAL DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS, 2025, Vol. 61, No. 1, pp. 18–28
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In this paper, we consider a boundary value problem for the diffusion equation with piecewise constant argu-
ments of the form [10, 13]

ut(x, t) = a2uxx(x, t)− buxx(x, [t])− cuxx(x, [t+ 1]), 0 < x < 1, t > 0, (1)

u(0, t) = u(1, t) = 0, (2)

u(x, 0) = v(x). (3)

Adapting the method of [10, 14], we first obtain the formal solution of the problem (1)–(3) in the form of a
series. For this purpose, after the separation of variables, we study the first order differential equationwith piecewise
constant time argument, obtain the existence condition and the explicit formula for its solution. Then, applying the
method of [5, 6, 15, 16], we will findN-periodic solutions and their explicit formulas of this differential equation.
In a special case, we prove the existence of an infinite number of solutions of the differential equationwith piecewise
constant argument, which shows the incorrectness of the result about the uniqueness given in [13].

2. DIFFERENTIAL EQUATIONWITH PIECEWISE CONSTANT ARGUMENT

Let vj be the coefficients of the sinusoidal Fourier series for the function v(x), i.e.,

v(x) =

+∞∑
j=1

vj sin(jπx), vj = 2

∫ 1

0

v(x) sin(jπx)dx.

The solution of the problem (1)–(3) is found in the form

u(x, t) =
+∞∑
j=1

Tj(t) sin(jπx). (4)

Substituting the function (4) into equation (1) and initial conditions from (3), we obtain
∞∑
j=1

(
T ′
j(t) + a2π2j2Tj(t) + bπ2j2Tj([t]) + cπ2j2Tj([t+ 1])

)
sin(jπx) = 0,

u(x, 0) =

∞∑
j=1

Tj(0) sin(jπx) = v(x), Tj(0) = vj .

Hence, taking into account orthogonality of functions sin(nπx), we have an infinite sequence of ordinary dif-
ferential equations with piecewise constant argument

T ′
j(t) + a2π2j2Tj(t) + bπ2j2Tj([t]) + cπ2j2Tj([t+ 1]) = 0, t > 0, j ∈ N, (5)

with the initial condition
Tj(0) = vj . (6)

Definition 1. The function T (t) is called a solution to the problem (5), (6), if it satisfies the following conditions:
(i) T (t) is continuous with R+;
(ii) the derivative of T ′(t) exists and is continuous withR+, except for points [t] ∈ R+ where one-sided deriva-

tives exist;
(iii) T (t) satisfies (5) and (6) at R+ with a possible exception at [t] ∈ R+.
Let’s denote

Ej(t) = e−a2π2j2t − b

a2
(1− e−a2π2j2t), Dj(t) =

c

a2
(1− e−a2π2j2t), j ∈ N.

Theorem 1. Let a, b, c be real numbers. If Dj(1) ̸= −1, then the equation (5) has a single solution represented at
the intervals t ∈ [n, n+ 1), n = 0, 1, 2, . . ., in the form of

Tj(t) =

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj . (7)
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Theorem 2. 1. IfDj(1) = −1 andEj(1) = 0 for j > 0, then the problem (5), (6) has infinitely many solutions. In
particular, this problem has a single one-periodic and infinitely manyN-periodic solutions,N = 2, 3, . . .

2. Let Dj(1) = −1 and Ej(1) ̸= 0. Then if vj ̸= 0, then problems (5), (6) have no solution. If vj = 0, then this
problem has a trivial solution.

Example 1. Let j = 1, a ∈ R, c = a2/(e−a2π2j2 − 1), b = −a2e−a2π2j2/(e−a2π2j2 − 1), v1 = 1. In this case,
Dj(1) = −1, Ej(1) = 0. Functions

F2(t) =




(
1

1−ea2π2 + ea
2π2

ea2π2−1
e−a2π2t

)
v1 − 1−e−a2π2t

e−a2π2−1
T11(1), t ∈ [0, 1),(

1
1−ea2π2 + ea

2π2

ea2π2−1
e−a2π2(t−1)

)
T11(1)− 1−e−a2π2(t−1)

e−a2π2−1
v1, t ∈ [1, 2],

and

F3(t) =





(
− b

a2 (1− e−a2π2t) + e−a2π2t
)
v1 − c

a2 (1− e−a2π2t)T11(1), t ∈ [0, 1),(
− b

a2 (1− e−a2π2(t−1)) + e−a2π2(t−1)
)
T11(1)− c

a2 (1− e−a2π2(t−1))T21(2), t ∈ [1, 2),(
− b

a2 (1− e−a2π2(t−2)) + e−a2π2(t−2)
)
T21(2)− c

a2 (1− e−a2π2(t−2))v1, t ∈ [2, 3),

are two- and three-periodic solutions of the problem (5), (6) at j = 1, respectively, where T11(1), T21(2) are
arbitrary numbers. Having chosen these constants, we give the solutions and their graphs.

The function F2(t) at T11(1) = 3 and a = 1
π has the following form (Fig. 1, a)

F2(t) =




1
1−e + e1−t

e−1 − 3(1−e−t)
e−1−1 , t ∈ [0, 1),

1−e1−t

1−e−1 + 3
(

1
1−e + e2−t

e−1

)
, t ∈ [1, 2].

(8)

Fig. 1. Graphs of the function F2(t)

and at T11(1) = −2 and a = 1
π (Fig. 1, b)

F2(t) =




1
1−e + e1−t

e−1 + 2(1−e−t)
e−1−1 , t ∈ [0, 1),

e1−t−1
e−1−1 − 2

(
1

1−e + e2−t

e−1

)
, t ∈ [1, 2].

(9)

The function F3(t) at T11(1) = 2, T21(2) =
3
2 and a = 1

π is represented as (Fig. 2, a)

F3(t) =





1
1−e + e(2−e−t)

e−1 , t ∈ [0, 1),
2

1−e + e(3+e1−t)
2(e−1) , t ∈ [1, 2),

3
2(1−e) +

e(2+e2−t)
2(e−1) , t ∈ [2, 3],

(10)
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at T11(1) = −2, T21(2) = − 3
2 and a = 1

π (Fig. 2, b)

F3(t) =




1
1−e + e(3e−t−2)

e−1 , t ∈ [0, 1),
2

e−1 − e(3+e1−t)
2(e−1) , t ∈ [1, 2),

3
2(e−1) −

e(5e2−t−2)
2(e−1) , t ∈ [2, 3],

(11)

and at T11(1) = 3, T21(2) = −4 and a = 1
π (Fig. 2, c)

F3(t) =





1
1−e + e(3−2e−t)

e−1 , t ∈ [0, 1),
3

1−e + e(7e1−t−4)
e−1 , t ∈ [1, 2),

4
e−1 − e(5e2−t−1)

e−1 , t ∈ [2, 3].

(12)

Fig. 2. Graphs of the function F3(t)

Remark 1. In Example 1, the parameters of the equation satisfy the conditions of the singularity theorem from
[13]. It shows the incorrectness of the results of Theorem 2 of [11], which asserts the uniqueness of the solution of
the problem (5), (6).

3. PROBLEM SOLVING

Definition 2. The function u(x, t) is called a solution of the problem (1)–(3), if the following conditions are
satisfied:

(i) u(x, t) is continuous on the set Ω = [0, 1]× R+, R+ = [0,∞);
(ii) the partial derivatives ofut anduxx exist and are continuous atΩwith a possible exception at points (x, [t]) ∈

Ω, where one-sided derivatives exist on the second argument;
(iii) u(x, t) satisfies (1)–(3) at Ω with a possible exception at (x, [t]) ∈ Ω.
Assumption. Let the function v(·) have continuous derivatives up to and including third order at the segment [0, 1]

and satisfy the conditions v(0) = v(1) = v′′(0) = v′′(1) = 0.
Theorem 3. Let the assumption c ̸= −a2 andDj(1) ̸= −1 at j ∈ N be satisfied. Then the problem (1)–(3) has a

single solution represented as a series

u(x, t) =
+∞∑
j=1

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj sin(jπx), t ∈ [n, n+ 1), n = 0, 1, 2, . . .

Theorem 4. 1. Let the assumption be satisfied, Dj0(1) = −1 and Ej0(1) = 0. Then the problem (1)–(3) has an
infinite number of solutions represented by t ∈ [n, n+ 1), n = 0, 1, 2, . . ., as

u(x, t) =
+∞∑
j=1
j ̸=j0

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj sin(jπx) + Tj0(t) sin(jπx), (12)
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where Tj0(t) is an arbitrary solution of the problem (5), (6) (see point 2 in Theorem 2).
2. IfDj0(1) = −1, Ej0(1) ̸= 0 and vj0 ̸= 0 at j = j0, then the problem (1)–(3) has no solution.
Example 2. Let a = 1/π, c = 2, b = 3 in equation (1) and u(x, 0) =

∑5
j=1

sin(jπx)
j in condition (3). Then the

solution of the problem (1)–(3) has the following form (Fig. 3)

u(x, t) =
5∑

j=1

[(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj

]
sin(jπx), t ∈ [n, n+ 1), n = 0, 1, 2, . . .

Fig. 3. Graph of the function u(x, t)

Example 3. Let a ∈ R, c = a2

e−a2π2j2−1
, b = −a2e−a2π2j2/(e−a2π2j2 − 1), v(x) = sin(πx) + 2 sin(2πx). Then

the solution of the problem (1)–(3) is defined by the formula

u(x, t) = T1(t) sin(πx) + 2T2(t) sin(2πx).

Note that D1(1) = −1, E1(1) = 0 and D2(1) = −1, i.e., the numbers a, b and c satisfy the conditions of point 1
of Theorem 2 and Theorem 1. Therefore, according to Theorem 1, the function T2(t) has the form

T2(t) = 2(E2(t− n)−D2(t− n)), t ∈ [n, n+ 1),

and the function T1(t) can be defined in many ways.
Here are the graphs of u(x, t) for Example 1. In the case when T1(t) = F2(t) and F2(t) are defined by the

equality (8), the graph of the function u(x, t) is shown in Fig. 4, a; if F2(t) is defined by expression (9), then in
Fig. 4, b. When T1(t) = F3(t), where F3(t) is defined by equality (10), the graph of the function u(x, t) is shown
in Fig. 5, a; and if F3(t) is defined by equality (11), then in Fig. 5, b.

Remark 2. In Example 3, the parameters of the equation do not satisfy the conditions of Corollary 1 in [13],
i.e., a2 + b + c = 0. The solution of u is periodic on t. This means that the null solution of the problem (1)–
(3) is not asymptotically stable. Therefore, the conditions of Corollary 1 are sufficient for the null solution to be
asymptotically stable.

4. EVIDENCE FOR KEY FINDINGS

Proof of theorem 1. Let us denote by Tnj(t) the solution of equation (5) on the interval [n, n+ 1), i.e.

Tj(t) = Tnj(t), t ∈ [n, n+ 1), n = 0, 1, 2, . . .
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Fig. 4. Graph of the function u(x, t)

Then
T ′
nj(t) + a2π2j2Tnj(t) = −bπ2j2Tnj(n)− cπ2j2Tnj(n+ 1), t ∈ [n, n+ 1). (13)

The solution of the equation (13) is determined by the formula

Tnj(t) = −bTnj(n)

a2
(1− e−a2π2j2(t−n)) + Tnj(n)e

−a2π2j2(t−n) − cTnj(n+ 1)

a2
(1− e−a2π2j2(t−n))

or
Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Tnj(n+ 1), t ∈ [n, n+ 1). (14)

Putting t = n+ 1 in (14) for all n = 0, 1, 2, . . ., we get

Tnj(n+ 1) = Ej(1)Tnj(n)−Dj(1)Tnj(n+ 1).

Hence, taking into accountDj(1) ̸= −1 we have

Tnj(n+ 1) =
Ej(1)Tnj(n)

1 +Dj(1)
. (15)
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Fig. 5. Graph of the function u(x, t)

Then we write (14) as

Tnj(t) = Ej(t− n)Tnj(n)−
Dj(t− n)

1 +Dj(1)
Ej(1)Tnj(n). (16)

From the continuity of the function Tj(t) over t > 0 the following equations follow

T(n+1)j(n+ 1) = Tj(n+ 1) = lim
t→n+1−0

Tj(t) = Tnj(n+ 1).

Consequently, formula (15) can be rewritten in the form

T(n+1)j(n+ 1) =
Ej(1)Tnj(n)

1 +Dj(1)
,

from where

Tnj(n) =
Ej(1)

1 +Dj(1)
T(n−1)j(n− 1) =

E2
j (1)

(1 +Dj(1))2
T(n−2)j(n− 2) = · · · =

En
j (1)

(1 +Dj(1))n
T0j(0),
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or

Tnj(n) =
En

j (1)

(1 +Dj(1))n
T0j(0).

Thus, the solution Tnj(t), defined by the formula (16), is represented only via T0j(0):

Tnj(t) =

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
T0j(0).

The equality T0j(0) = vj completes the proof of the theorem.
Proof of theorem 2. 1. Let Dj(1) = −1, Ej(1) = 0. Construct the function Tj(t) = Tnj(t), t ∈ [n, n + 1),

n = 0, 1, 2, . . ., as follows. Function

T0j(t) = Ej(t)T0j(0)−Dj(t)C0j , t ∈ [0, 1),

satisfies the equation (5), where T0j(0) = vj and C0j are arbitrary numbers. Since Dj(1) = −1 and Ej(1) = 0,
there is an equality T0j(1) = limt→1 T0j(t) = C0j . It is easy to check that the function

T1j(t) = Ej(t− 1)T1j(1)−Dj(t− 1)C1j , t ∈ [1, 2),

satisfies equation (5), where C1j is an arbitrary number.
By virtue of continuity of the function Tj(t) we have

Tj(1) = T1j(1) = lim
t→1−0

T0j(t) = T0j(1).

The equalitiesDj(1) = −1 and Ej(1) = 0 give T1j(2) = limt→2 T1j(t) = C1j .
Function

Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Cnj , at (n, n+ 1), n ∈ N,
satisfies the equation (5), where Cnj is an arbitrary number. Clearly,

Tj(n) = Tnj(n) = lim
t→n−0

T(n−1)j(t) = T(n−1)j(n).

Similarly, from the equalitiesDj(1) = −1 and Ej(1) = 0, we obtain Tnj(n) = limt→n+1 Tnj(t) = Cnj . After
the construction of the function

Tj(t) = Tnj(t), t ∈ [n, n+ 1), n = 0, 1, 2, . . . ,

appears the solution of the problem (5), (6). Since the constants C0j , C1j , . . . , Cnj , . . . are arbitrary, the problem
has an infinite number of solutions.

Let Tj(t) be a one-periodic solution of the problem (5), (6), then it can be represented as

Tj(t) = T0j(t) = Ej(t)T0j(0)−Dj(t)C0j, t ∈ [0, 1].

Since the function Tj(t) is one-periodic and T0j(1) = C0j, then T0j(0) = T0j(1), C0j(1) = T0j(0) = vj . This
shows the uniqueness of the one-periodic solution (5), (6).

Let Tj(t) be a two-periodic solution of the problem (5), (6). Then the function Tj(t) on [0, 2] has the form

Tj(t) =

{
Ej(t)T0j(0)−Dj(t)T1j(1), t ∈ [0, 1),

Ej(t− 1)T1j(1)−Dj(t− 1)C1j, t ∈ [1, 2),

where T0j(0) = vj, T1j(1) is an arbitrary number. From the periodicity of Tj(t) it follows that Tj(0) = T0j(0) =
Tj(2) = C1j. This shows that the problem (5), (6) has infinitely many two-periodic solutions.

Let Tj(t) be theN-periodic solution of the problem (5), (6). The function Tj(t) on the interval [0, N ] has the
form

Tj(t) =




Ej(t)vj −Dj(t)T1j(1), t ∈ [0, 1),

Ej(t− 1)T1j(1)−Dj(t− 1)T2j(2), t ∈ [1, 2),
...
Ej(t−N + 2)T(N−1,j)(N − 2)−Dj(t−N + 2)T(N−1,j)(N − 1), t ∈ [N − 2, N − 1),

Ej(t−N + 1)T(N−1,j)(N − 1)−Dj(t−N + 1)vj , t ∈ [N − 1, N),
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where T1j(1), T2j(2), . . . , T(N−1,j)(N − 1) are arbitrary numbers.
2. Suppose that the function Tj(t) is a solution of the problem (5), (6). Then, according to (14), the following

equality holds
Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Tnj(n+ 1), t ∈ [n, n+ 1).

Hence at t = n + 1 taking into account Dj(1) = −1, we have Ej(1)Tnj(n) = 0 for all n = 0, 1, 2, . . . Therefore,
Tnj(n) = 0 for all n = 0, 1, 2, . . ., since Ej(1) ̸= 0, i.e., the equation has only a trivial solution. Hence, if
Tj(0) = vj = T0j(0) ̸= 0, then the problem (5), (6) has no solution.

Proof of Theorem 3. First, prove uniform convergence in any closed set Λ ⊂ [0, 1]×R+ of the following series:
+∞∑
j=1

Tj(t) sin(jπx), (17)

+∞∑
j=1

T ′
j(t) sin(jπx), (18)

+∞∑
j=1

π2j2Tj(t) sin(jπx), (19)

where Tj(t) is the solution of the problem (5), (6), and at [n, n+ 1), n = 0, 1, 2, . . ., the functions Tj(t), T ′
j(t) are

represented, respectively, as (7) and

T ′
j(t) = −

(
a2 + b+ c

Ej(1)

1 +Dj(1)

)
π2j2e−a2π2j2(t−n)

En
j (1)

(1 +Dj(1))n
vj .

According to the assumption there is equality

vj = −
2v′′′j
π3j3

, v′′′j =

∫ 1

0

v′′′(x) cos(jπx)dx, j = 1, 2, . . .

The continuity of the function v′′′(x) implies the convergence of the series
∑+∞

j=1(v
′′′
j )2. Hence, taking into account

the Cauchy-Bunyakovsky inequality, we have
∣∣∣∣∣∣
+∞∑
j=1

j2vj

∣∣∣∣∣∣
=

2

π3

∣∣∣∣∣∣
+∞∑
j=1

v′′′j
j

∣∣∣∣∣∣
< +∞. (20)

Since 0 ≤ 1− e−a2π2j2t ≤ 1, the inequalities are true for all t ∈ [0,∞) and j ∈ N:

|Ej(t)| ≤ 1 +
|b|
a2

, |Dj(t)| <
|c|
a2

. (21)

Note that limj→∞ Dj(1) = c/a2, so givenDj(1) ̸= −1 and c ̸= −a2 there exists a number ρ > 0 such that

|1 +Dj(1)| ≥ ρ, j ∈ N. (22)

Using inequalities (21) and (22), we obtain uniform estimates for Tj(t) and T ′
j(t):

|Tj(t)| ≤ C1

(
1 + |b|

a2

ρ

)n

|vj |, t ∈ [n, n+ 1), (23)

|T ′
j(t)| ≤ C2

(
1 + |b|

a2

ρ

)n

π2j2|vj |, t ∈ [n, n+ 1), (24)

where

C1 = 1 +
|b|
a2

+
|c|
a2

1 + |b|
a2

ρ
,

C2 = a2 + |b|+ |c|
1 + |b|

a2

ρ
.
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Letm = 1 + sup(x,t)∈Λ t. Then from (23) and (24) for all (x, t) ∈ Λ, the series (17)–(19) are evaluated as follows:
∣∣∣∣∣∣
+∞∑
j=1

Tj(t) sin(jπx)

∣∣∣∣∣∣
≤ C1

(
1 + |b|

a2

ρ

)m +∞∑
j=1

|vj |,

∣∣∣∣∣∣
+∞∑
j=1

T ′
j(t) sin(jπx)

∣∣∣∣∣∣
≤ C2

(
1 + |b|

a2

ρ

)m

π2
+∞∑
j=1

j2|vj |,

∣∣∣∣∣∣
+∞∑
j=1

π2j2Tj(t) sin(jπx)

∣∣∣∣∣∣
≤ C1

(
1 + |b|

a2

ρ

)m

π2
+∞∑
j=1

j2|vj |.

Hence and from (20), we obtain uniform convergence of series (17)–(19) in any closed set Λ ⊂ [0, 1]× R+.
Thus, the function u(x, t) =

∑+∞
j=1 Tj(t) sin(jπx) is continuous on the set Ω = [0, 1] × R+; and the partial

derivatives ut =
∑+∞

j=1 T
′
j(t) sin(jπx), uxx =

∑+∞
j=1 π

2j2Tj(t) sin(jπx) exist and are continuous on Ω with a
possible exception at points (x, [t]) ∈ Ω, where one-sided derivatives exist on the second argument.

SinceDj(1) ̸= −1 for each j ∈ N, then by Theorem 1 the problem (5), (6) has a single solution Tj(t) for each
j ∈ N. Hence, the function u(x, t), defined by the formula (4), satisfies the equalities (5), (6) in Ω with possible
exceptions at the points (x, [t]) ∈ Ω and is the only solution of the problem (1)–(3).

Proof of Theorem 4. 1. Let Dj0(1) = −1 and Ej0(1) = 0 for some j = j0. Then Dj(1) > −1 at j < j0 and
Dj(1) < −1 at j > j0. Hence we have

|1 +Dj(1)| ≥ ρ1

for some number ρ1 > 0 and for all j ∈ N\{j0}.
By Theorem 1, the problem (5), (6) is solvable for j ̸= j0 and the solution of Tj(t) at j ̸= j0 is of the form

(7). SinceDj0(1) = −1; and Ej0(1) = 0, then by point 1 of Theorem 2, the problem (5), (6) has infinitely many
solutions. Let us denote by Tj0(·) the solution of the problem (5), (6) for j = j0. Then from (4) the solution of
the boundary value, problem (1)–(3) has the form (12). The uniform convergence of this series to a continuous
function u(x, t) in any closed set Λ ⊂ [0, 1]×R+ and the existence of continuous partial derivatives of ut and uxx

onΩwith a possible exception at the points (x, [t]) ∈ Ω, where one-sided derivatives exist on the second argument,
are proved similarly as in the proof of Theorem 3.

2. IfDj0(1) = −1, Ej0(1) ̸= 0 and vj0 ̸= 0, then by Theorem 2 the problem (5), (6) has no solution at j = j0.
Hence, according to (4), the boundary value problem (1)–(3) has no solution.
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1. INTRODUCTION. PROBLEM STATEMENT

In this paper, we consider the initial boundary value problem for the singularly perturbed parabolic equa-
tion, that differs from the classical singularly perturbed reaction–diffusion–advection equation (see [1, 2]) by
the presence of an additional nonlinear term containing the square of the gradient of the desired function (KPZ-
nonlinearities [3, 4]):

ε2
∂2u

∂x2
− ε

∂u

∂t
− ε2A(u, x)

(
∂u

∂x

)2

− f(u, x, ε) = 0, x ∈ (−1, 1), t ∈ (0, T ],

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, t ∈ [0, T ],

u(x, 0, ε) = uinit(x, ε), x ∈ [−1, 1], (1)

where ε ∈ (0, ε0] is the small parameter, ε > 0 is a given constant.
Traveling wave type solutions for quasilinear parabolic reaction–diffusion–advection equations are the subject

of intensive study (see extensive monographs [5, 6]). Attention to nonlinearities of the form A(u, x)
(
∂u
∂x

)2 is due
to both theoretical interest – the square is the limit of degree at which the Bernstein conditions on the growth of
the nonlinearity are satisfied (see, e.g., [7–9]), and important applications where such nonlinearities are used in
mathematical models, in particular, population dynamics models [10], in modeling free surface growth in polymer
theory [3, 4, 11], and many others. We note the work [12], in which exact solutions of the KPZ equation are con-
structed for several physically justified nonlinearities. However, it is assumed there that (u, x) = const f = f(x, t).
The principal difference of problem (1) is that we consider an equation, where the nonlinear terms depend ex-
plicitly on the coordinate and the desired function. In this paper, we propose an algorithm for constructing an
asymptotic approximation of the solution of the front view, with the velocity of motion being a function of the
coordinate.

Stationary solutions of problem (1) with boundary and inner layers are studied in [13, 14]. The boundary-layer
solutions of the Tikhonov-type system with KPZ-nonlinearities are studied in [15].

The paper is structured as follows. In (2), we construct an asymptotic approximation of the moving front
solution using the method of A. B. Vasilieva [16]. Note that since problem (1) is singularly perturbed, at ε = 0 the

1
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equation of problem (1) changes its type from parabolic to algebraic with three roots (see condition 2), two of them
describe stable equilibrium positions of the system and represent the regular part of the asymptotic approximation
of zero order of accuracy. However, the regular approximation does not allow us to describe a narrow region
with a large gradient, in which the solution passes from one stable level to another. To describe the solution in
this region and to harmonize the stable equilibrium positions among themselves, the so-called transition layer
functions are constructed. In this way, a formal asymptotic approximation of the solution in the whole region
under consideration is constructed. In (3), an algorithm for finding an asymptotic approximation of the front
position is given. In (4), we give a justification of the formal asymptotics and prove the existence and uniqueness
theorem using the asymptotic method of differential inequalities of N. N. Nefedov, that has shown its efficiency in
many singularly perturbed problems [16]. The obtained results are illustrated in Section 5 by an example, that can
be used to develop and verify new numerical methods for the considered class of problems (see [17]).

The results obtained in this paper develop the studies [1, 2], inwhich the frontmotion in the reaction–diffusion–
advection equation with weak advection and smooth or modular (discontinuous at some value of the desired func-
tion nonlinearities) sources was considered, and transfer them to a new class of singularly perturbed problems with
KPZ-nonlinearities. At the same time, as in [1, 2], the existence and uniqueness theorem of the solution having
in both cases the same form of the contrast structure of the step type [16] is proved.

In the problemdiscussed below, it is assumed that at the initialmoment of time the front is already formed. This
means that the function uinit(x, ε) has an internal transition layer in the neighborhood of some point x00 ∈ (−1, 1),
i.e., it is close to some root φ(−)(x) of the degenerate equation f(u, x, 0) = 0 to the left of the point x00 and to
the root φ(+)(x) to the right of this point. In the neighborhood of x00 there is a sharp transition from φ(−)(x) to
φ(+)(x).

We will assume that the following conditions are satisfied.
Condition 1. The functions A(u, x), f(u, x, ε) are sufficiently smooth in their areas of definition.
Condition 2. The derived equation f(u, x, 0) = 0 has exactly three solutions u = φ(±,0)(x), with φ(−)(x) <

φ(0)(x) < φ(+)(x), x ∈ [−1, 1], while the following inequalities are also valid

fu(φ
(±)(x), x, 0) > 0, fu(φ

(0)(x), x, 0) < 0, x ∈ [−1, 1].

2. CONSTRUCTION OF FORMAL ASYMPTOTICS OF THE SOLUTION

The asymptotics of the solution of problem (1) is constructed by the method of boundary functions separately
in each of the regions [−1, x̂]×[0, T ] and [x̂, 1]×[0, T ]with amoving boundary (see [16]) using the effectivemethod
developed in the scientific school of Professors A. B. Vasilieva, V. F. Butuzov, and N. N. Nefedov for constructing
the asymptotics of localization of the inner layer in the form of

U(x, ε) =

{
U (−)(x, t, ε), (x, t, ε) ∈ [−1, x̂]× [0, T ]× (0, ε0],

U (+)(x, t, ε), (x, t, ε) ∈ [x̂, 1]× [0, T ]× (0, ε0].

We will represent each of the functions U (±)(x, ε) as a sum of three summands:

U (±)(x, t, ε) = ū(±)(x, ε) +Q(±)(ξ, t, ε) +R(±)(η(±), ε),

where ū(±)(x, ε) = ū
(±)
0 (x) + εū

(±)
1 (x) + · · · is the regular part of the decomposition, functions Q(±)(ξ, t, ε) =

Q
(±)
0 (ξ, t, ε) + εQ

(±)
1 (ξ, t, ε) + · · · describe the behavior of the solution in the vicinity of the transition point

x̂(t, ε), ξ = x−x̂(t,ε)
ε is the transition layer variable: ξ ≤ 0 for functions with index (−) and ξ ≥ 0 for functions

with index (+); functions R(±)(η(±), ε) = R
(±)
0 (η(±)) + εR

(±)
1 (η(±)) + · · · describe the behavior of the solution

in the vicinity of the boundary points of the segment [−1, 1]; η(±) = x∓1
ε are stretched variables near the points

x = ±1, respectively. Since the functions R(±)
i (η(±)) are defined in a standard way (see, for example, [16]), we

omit the procedure of their construction. Note that these functions do not depend on the variable t and thus do
not participate in the description of the moving transition layer, and the functionsR(±)

0 (η(±)) = 0 by virtue of the
Neumann boundary conditions.
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The position of the inner transition layer is determined from the condition C1-combining the asymptotic rep-
resentations U (−)(x, t, ε) and U (+)(x, t, ε) at the transition point x̂(t, ε):

U (−)(x̂(t, ε), t, ε) = U (+)(x̂(t, ε), t, ε) = ϕ(0)(x̂(t, ε)), (2)

ε
∂

∂x
U (−)(x̂(t, ε), t, ε) = ε

∂

∂x
U (+)(x̂(t, ε), t, ε). (3)

We will look for the transition point x = x̂(t, ε) in the form of expansion by powers of the small parameter ε:

x̂(t, ε) = x0(t) + εx1(t) + · · · (4)

The coefficients of this expansion will be determined in the process of asymptotics construction.
The regular part of the asymptotics is determined after substituting the representation for the functions ū(±)(x, ε)

into the equation.

ε2
∂2ū(±)

∂x2
− ε2A(ū(±), x)

(
∂ū(±)

∂x

)2

− f(ū(±), x, ε) = 0.

In the standardway [16], we obtain the algebraic equations for determining the functions of the regular part ū(±)
k (x),

k = 0, 1, . . .
Taking into account condition 2, the regular zero-order functions are defined as

ū
(±)
0 (x) = ϕ(±)(x).

To shorten the record, we introduce the notations

f̄ (±)
u (x) := fu(ϕ

(±)(x), x, 0).

Functions ū(±)
k (x) at k = 1, 2, . . . are defined from equations

f̄ (±)
u (x)ū

(±)
k (x) = h̄

(±)
k (x),

where the functions h̄(±)
k (x) are known at each k-step and are expressed recurrently through the functions ū(±)

k (x)
with indices 0, 1, . . . , k − 1. The solvability of these equations follows from condition 2.

In order to obtain the equations satisfied by the transition layer functionsQ(±)
k (ξ, t, ε), let us rewrite the differen-

tial operator of the problem in the variables (ξ, t). Then the equations for the functionsQ(±)
k (ξ, t, ε), k = 0, 1, . . .,

are determined in the standard way [16] by equating the coefficients at the same degrees ε in both parts of the
equations:

∂2Q(±)

∂ξ2
+

∂x̂(t, ε)

∂t

∂Q(±)

∂ξ
+A

(
ū(±)

(
εξ + x̂(t, ε), ε

)
, εξ + x̂(t, ε)

)(∂ū(±)

∂ξ

)2
−

−A
(
ū(±)

(
εξ + x̂(t, ε), ε

)
+Q(±)(ξ, t, ε), εξ + x̂(t, ε)

)(∂Q(±)

∂ξ
+

∂ū(±)

∂ξ

)2
− ε

∂Q(±)

∂t
=

= f
(
ū(±)

(
εξ + x̂(t, ε), ε

)
+Q(±)(ξ, t, ε), εξ + x̂(t, ε), ε

)
− f

(
ū(±)

(
εξ + x̂(t, ε), ε

)
, εξ + x̂(t, ε), ε

)
. (5)

In contrast to the approach in [2], we will not decompose by powers of ε the transition point x̂(t, ε). This
will simplify the algorithm for constructing the asymptotics. Note that the equations from which the functions
Q

(±)
k (ξ, t, ε) are found contain functions depending on x̂(t, ε), ∂x̂(t,ε)

∂t , and that explains the presence of the argu-
ment ε atQ(±)

k (ξ, t, ε).
We require that the transition layer functions Q(±)

k (ξ, t, ε), k = 0, 1, . . ., satisfy the conditions of equality to
zero at infinity: Q(−)

k (ξ, t, ε) → 0 at ξ → −∞,Q(+)
k (ξ, t, ε) → 0 at ξ → +∞, k = 0, 1, . . ., t ∈ [0, T ].

Equating the coefficients at ε0 in the right and left parts of equations (5), we obtain equations for the function
Q

(−)
0 (ξ, t, ε) at ξ ≤ 0 and the functionQ

(+)
0 (ξ, t, ε) at ξ ≥ 0:

∂2Q
(±)
0

∂ξ2
+

∂x̂(t, ε)

∂t

∂Q
(±)
0

∂ξ
−A

(
φ(±)(x̂(t, ε)) +Q

(±)
0 (ξ, t, ε), x̂(t, ε)

)(∂Q
(±)
0

∂ξ

)2
=

= f
(
φ(±)(x̂(t, ε)) +Q

(±)
0 (ξ, t, ε), x̂(t, ε), 0

)
. (6)
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We obtain the additional conditions at ξ = 0 from the continuous cross-linking condition (2) written in zero
order at ε:

Q
(−)
0 (0, t, ε) + ϕ(−)(x̂(t, ε)) = Q

(+)
0 (0, t, ε) + ϕ(+)(x̂(t, ε)) = ϕ(0)(x̂(t, ε)).

We also add conditions at infinity: Q(−)
0 (ξ, t, ε) → 0 at ξ → −∞,Q(+)

0 (ξ, t, ε) → 0 at ξ → +∞, t ∈ [0, T ].
Let’s introduce the operatorD, acting by the rule

Dx̂ :=
∂x̂(t, ε)

∂t
, (7)

and functions

ũ(±)(ξ, t, ε) = ϕ(±)(x̂(t, ε)) +Q
(±)
0 (ξ, t, ε), (8)

ũ(ξ, t, ε) =

{
ϕ(−)(x̂(t, ε)) +Q

(−)
0 (ξ, t, ε), if ξ ≤ 0,

ϕ(+)(x̂(t, ε)) +Q
(+)
0 (ξ, t, ε), if ξ ≥ 0,

ṽ(−)(ξ, t, ε) =
∂ũ

∂ξ
(ξ, t, ε), ξ ≤ 0,

ṽ(+)(ξ, t, ε) =
∂ũ

∂ξ
(ξ, t, ε), ξ ≥ 0.

Remark. It follows from the form of equations (6), that in the functions Q(±)
0 (ξ, t, ε), ũ(ξ, t, ε), ũ(±)(ξ, t, ε),

ṽ(±)(ξ, t, ε), we can switch to another set of arguments – (ξ, x̂). In the future, we will use both sets, choosing the
most convenient for each particular case.

Let us rewrite equations (6), as well as the additional conditions, using (8):

∂2ũ(±)

∂ξ2
+Dx̂

∂ũ(±)

∂ξ
−A(ũ(±), x̂)

(
∂ũ(±)

∂ξ

)2

= f(ũ(±), x̂, 0),

ũ(±)(0, x̂) = ϕ(0)(x̂), ũ(±)(±∞, x̂) = ϕ(±)(x̂). (9)

Along with the problems (9), let us consider the problem

∂2û

∂ξ2
+W

∂û

∂ξ
−A(û, x̂)

(
∂û

∂ξ

)2

= f(û, x̂, 0), û(0, x̂) = ϕ(0)(x̂), û(±∞, x̂) = ϕ(±)(x̂). (10)

Let us formulate and prove the existence result of the solution of problem (10) in the form of a lemma.
Lemma. For each x̂ ∈ (−1, 1), there exists a single value W such that the problem (10) has a single smooth

monotone solution û(ξ, x̂), satisfying the estimation

|û(ξ, x̂)− ϕ(±)(x̂)| < C exp{−κ|ξ|},

where C and κ are some positive constants. In this case, the dependenceW (x̂) is defined as

W (x̂) =

∫ ϕ(+)(x̂)

ϕ(−)(x̂)

f(u, x̂, 0) exp

{
−2

∫ u

ϕ(−)(x̂)

A(y, x̂)dy

}
du ×

×

[∫ +∞

−∞

(
∂û

∂ξ
(ξ, x̂)

)2

exp

{
−2

∫ ũ(ξ,x̂)

ϕ(−)(x̂)

A(y, x̂)dy

}
dξ

]−1

.

The smoothness of the functionW (x̂) coincides with the smoothness of the functions f(u, x̂, 0) and A(u, x̂).
Proof. In order to use the known result from [18], wemake amonotonic transformation proposed by A. V. Bitsadze

in [19]:

z(ξ, x̂) := z(û(ξ, x̂), x̂) =

∫ û(ξ,x̂)

ϕ(−)(x̂)

exp

{
−
∫ y

ϕ(−)(x̂)

A(r, x̂)dr

}
dy, (û, x̂) ∈ [ϕ(−)(x̂), ϕ(+)(x̂)]× [−1, 1].
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Let’s introduce the notations

z(±,0)(x̂) =

∫ ϕ(±,0)(x̂)

ϕ(−)(x̂)

exp

{
−
∫ y

ϕ(−)(x̂)

A(r, x̂)dr

}
dy.

Due to the monotonicity of the transformation z(û, x̂) by û we can define the inverse function

û(ξ, x̂) = h(z(ξ, x̂), x̂), (z, x̂) ∈ [0, z(+)(x̂)]× [−1, 1].

Thus, the problem (10) transforms into the problem

∂2z

∂ξ2
+W

∂z

∂ξ
− f(h(z, x̂), x̂, 0) exp

{
−
∫ h(z,x̂)

ϕ(−)(x̂)

A(r, x̂)dr

}
= 0,

z(−∞, x̂) = 0, z(0, x̂) = z(0)(x̂), z(+∞, x̂) = z(+)(x̂), (11)

for which, by virtue of conditions 1 and 2, the following statements are true [18].
1. For each x̂ ∈ (−1, 1), there exists a single valueW , such that the problem (11) has a single smoothmonotone

solution ẑ(ξ, x̂), satisfying the estimation

|z(ξ, x̂)− z(±)(x̂)| < C exp{−κ|ξ|},

where C and κ are some positive constants.
2. The dependenceW (x̂) is defined as

W (x̂) =

∫ z(+)(x̂)

0

f(h(z, x̂), x̂, 0) exp

{
−
∫ h(z,x̂)

ϕ(−)(x̂)

A(r, x̂)dr

}
dz

[∫ +∞

−∞

(
∂ẑ

∂ξ
(ξ, x̂)

)2

dξ

]−1

. (12)

The smoothness of the functionW (x̂) coincides with the smoothness of the functions f(u, x̂, 0) and A(u, x̂).
Finally, returning to the function û(ξ, x̂) using the transformation û(ξ, x̂) = h(z(ξ, x̂), x̂) and recalculating the

integrals in expression (13), we have the statement of the lemma. The lemma is proved.
Let’s condition.
Condition 3. Task

dx

dt
= W (x), x(0) = x00 (13)

has a solution x = x0(t), such that x0(t) ∈ (−1, 1) at t ∈ [0, T ];W (x) > 0 for all x ∈ [−1, 1].
The inequality W (x) > 0 in condition 3 guarantees the absence of stationary solutions for problem (13). Let

us denote by (9a) the problems (9) in which we replace x̂ by x0(t), or, otherwise, in which we put ε = 0.
It follows from the lemma and condition 3, that problems (9a) are singularly solvable, since the condition

Dx̂0 = W (x0) is satisfied. Thus

∂ũ(+)

∂ξ
(0, x0(t))−

∂ũ(−)

∂ξ
(0, x0(t)) = 0.

By virtue of the assumed smoothness of the functions f(u, x̂, 0), A(u, x̂) (see condition 1), problems (9) are
regular perturbations of problems (9a), so they are also uniquely solvable. Note that by virtue of the representa-
tion (4)

∂ũ(+)

∂ξ
(0, x̂(t, ε))− ∂ũ(−)

∂ξ
(0, x̂(t, ε)) = O(ε).

Thus, the construction of the zero-order transition layer functions is completed.
The first-order transition layer functions are found from the following problems:

∂2Q
(±)
1

∂ξ2
+Dx̂

∂Q
(±)
1

∂ξ
− 2Ã(ξ, t)ṽ(±)(ξ, x̂)

∂Q
(±)
1

∂ξ
−
(
Ãu(ξ, t)(ṽ

(±)(ξ, x̂))2 + f̃u(ξ, t)
)
Q

(±)
1 = r

(±)
1 (ξ, t, ε),

Q
(±)
1 (0, t, ε) + ū

(±)
1 (x̂) = 0, Q

(±)
1 (±∞, t, ε) = 0, (14)
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where the notations are defined

f̃u(ξ, t) = fu(ũ(ξ, x̂), x̂, 0), Ã(ξ, t) = Au(ũ(ξ, x̂), x̂), Ãu(ξ, t) = Au(ũ(ξ, x̂), x̂) (15)
and

r
(±)
1 (ξ, t, ε) =

∂Q
(±)
0

∂t
(ξ, t, ε) + 2Ã(ξ, t)ṽ(±)(ξ, x̂)

dφ(±)

dx
(x̂) +

+

(
ū
(±)
1 (x̂) + ξ

dφ(±)

dx
(x̂)

)(
f̃u(ξ, t) + Ãu(ξ, t)

(
ṽ(±)(ξ, x̂)

)2)
+ ξ

(
f̃x(ξ, t) + Ãx(ξ, t)

(
ṽ(±)(ξ, x̂)

)2)
+ f̃ε(ξ, t).

Here, the derivatives of f̃x(ξ, t), f̃ε(ξ, t) are computed at the same point as the derivative of f̃u(ξ, t) in (15).
Similarly, Ãx(ξ, t) is computed at the same point as Ãu(ξ, t). In all the notations introduced here, the argument ε
is implied, but we omit it for brevity. The problem for the functionQ

(−)
1 (ξ, t, ε) will be solved on the semi-straight

ξ ≤ 0, and for the function Q
(+)
1 (ξ, t, ε) – on the semi-straight ξ ≥ 0. The solutions of problems (14) are written

in explicit form:

Q
(±)
1 (ξ, t, ε) = −ū

(±)
1 (x̂)

ṽ(±)(ξ, x̂)

ṽ(±)(0, x̂)
+

+ ṽ(±)(ξ, x̂)

∫ ξ

0

e−(Dx̂)η

(ṽ(±)(η, x̂))2p(±)(η, x̂)

∫ η

±∞
ṽ(±)(σ, x̂)p(±)(σ, x̂)e(Dx̂)σr

(±)
1 (σ, t, ε)dσdη, (16)

where

p(±)(ξ, x̂) = exp

{
−2

∫ ξ

0

A(ũ(±)(y, x̂), x̂)ṽ(±)(y, x̂)dy

}
.

It follows from the expression for the functions r(±)
1 (ξ, t, ε), that they have exponential valuations [16], and

from (16) we deduce in the standard way that similar valuations are true for functionsQ(±)
1 (ξ, t, ε).

Similarly to the first approximation, one can find for any k = 2, 3, . . . transition layer functions Q(±)
k (ξ, t, ε):

they are determined from boundary value problems with the same differential operator as in problems (14).

3. ASYMPTOTIC APPROXIMATION OF FRONT POSITION

Let us describe the algorithm for finding an asymptotic approximation of the front position. The unknown
coefficients xi(t), i ∈ N, of the expansion are determined from the crossing conditions (3) of the derivatives of the
asymptotic approximations. Let us introduce the function

H(ε, t) := ε

(
dU (+)

dx
(x̂, t, ε)− dU (−)

dx
(x̂, t, ε)

)
= H0(ε, t) + εH1(ε, t) + ε2H2(ε, t) + · · · , (17)

where

H0(ε, t) =
∂Q

(+)
0

∂ξ
(0, x̂)− ∂Q

(−)
0

∂ξ
(0, x̂),

H1(ε, t) =
dϕ(+)

dx
(x̂)− dϕ(−)

dx
(x̂) +

(
∂Q

(+)
1

∂ξ
(0, t, ε)− ∂Q

(−)
1

∂ξ
(0, t, ε)

)

etc.
TheC1-linking condition (3) is expressed by the equalityH(ε, t) = 0. By virtue of the lemma and condition 3,

taking into account the decomposition of the transition point (4), this equality is satisfied in the order ε0.
The analysis of problems (9), (10) shows that the functionH0(ε, t) can be represented as

H0(ε, t) = (Dx̂−W (x̂))

[
1

ṽ(±)(0, x̂)

∫ ±∞

0

(ṽ(±)(ξ, x̂))2e(Dx̂)ξp(±)(ξ, x̂)dξ

]+

−
+O(ε2). (18)
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Hereinafter, [ ]+− means the difference between the expressions labeled+ and −.
As follows from the decomposition (17) and the representation (18), the higher order terms xi(t), i ≥ 1, in (4)

can be found from the following Cauchy problems:

dxi

dt
−W ′(x0(t))xi(t) = Gi(t), xi(0) = 0,

whereGi(t) are known functions.

4. JUSTIFICATION OF FORMAL ASYMPTOTICS

Let’s say

Xn(t, ε) =

n+1∑
i=0

εixi(t), ξ =
x−Xn(t, ε)

ε
.

The curveXn(t, ε) divides the areaD : (x, t) ∈ [−1, 1]× [0, T ] into two sub-areas:

D̄(−)
n : (x, t) ∈ [−1, Xn(t, ε)]× [0, T ] and D̄(+)

n : (x, t) ∈ [Xn(t, ε), 1]× [0, T ].

Let’s define the functions

U (−)
n (x, t, ε) =

n∑
i=0

εi
(
ū
(−)
i (x) +Q

(−)
i (ξ, t, ε) +R

(−)
i (η(−))

)
, (x, t) ∈ D̄(−)

n ,

U (+)
n (x, t, ε) =

n∑
i=0

εi
(
ū
(+)
i (x) +Q

(+)
i (ξ, t, ε) +R

(+)
i (η(+))

)
, (x, t) ∈ D̄(+)

n ,

where x̂(t, ε), included in the expressions for the transition layer functions, are replaced byXn(t, ε), and denoted
by

Un(x, t, ε) =

{
U

(−)
n (x, t, ε), (x, t) ∈ D̄

(−)
n ,

U
(+)
n (x, t, ε), (x, t) ∈ D̄

(+)
n .

(19)

To prove the existence and uniqueness of the moving front solution, we use the asymptotic method of differ-
ential inequalities [16]. Let us construct continuous functions α(x, t, ε), β(x, t, ε) in such a way that they satisfy
the following conditions.

1. Ordering condition:

α(x, t, ε) ≤ β(x, t, ε), x ∈ [−1, 1], t ∈ [0, T ], ε ∈ (0, ε0]. (20)

2. Action of the differential operator on upper and lower solutions:

L[β] := ε2
∂2β

∂x2
− ε

∂β

∂t
− ε2A(β, x)

(
∂β

∂x

)2
− f(β, x, ε) ≤ 0 ≤

≤ L[α] := ε2
∂2α

∂x2
− ε

∂α

∂t
− ε2A(α, x)

(
∂α

∂x

)2
− f(α, x, ε) (21)

for all x ∈ (−1, 1) and t ∈ [0, T ], except those x(t), in which the functions α(x, t, ε) and β(x, t, ε) are nonsmooth.
3. Boundary conditions:

∂α

∂x
(−1, t, ε) ≥ 0 ≥ ∂β

∂x
(−1, t, ε),

∂α

∂x
(+1, t, ε) ≤ 0 ≤ ∂β

∂x
(+1, t, ε), t ∈ [0, T ], ε ∈ (0, ε0]. (22)

4. Conditions on the initial function:

α(x, 0, ε) ≤ uinit(x, ε) ≤ β(x, 0, ε), x ∈ [−1, 1], ε ∈ (0, ε0]. (23)
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5. Conditions on the jump of derivatives:

∂β

∂x
(x(t)− 0, t, ε) ≥ ∂β

∂x
(x(t) + 0, t, ε), (24)

where x(t) is the point at which the upper solution is nonsmooth;

∂α

∂x
(x(t)− 0, t, ε) ≤ ∂α

∂x
(x(t) + 0, t, ε), (25)

where x(t) is the point at which the lower solution is nonsmooth.
It is known (see [20]) that if the conditions (20)–(25) are satisfied, there exists a single solution of problem (1)

for which the inequalities are satisfied

α(x, t, ε) ≤ u(x, t, ε) ≤ β(x, t, ε), (x, t) ∈ [−1, 1]× [0, T ].

Let us prove the following existence and uniqueness theorem.
Theorem. When conditions 1–3 are satisfied for any sufficiently smooth initial function uinit(x), lying between upper

and lower solutions
α(x, 0, ε) ≤ uinit(x, ε) ≤ β(x, 0, ε),

there exists a single solution u(x, t, ε) of problem (1), that at any t ∈ [0, T ] is enclosed between these upper and lower
solutions, and for which the function Un(x, t, ε) is a uniform in the domain [−1, 1] × [0, T ] asymptotic approximation
with accuracy O(εn+1).

Proof. The upper and lower solutions of the problem will be constructed as a modification of the asymptotic
series (19). Set the function

xβ(t, ε) = Xn+1(t)− εn+1δ(t),

and the positive function δ(t) > 0 will be defined below. Let us construct the upper solution of the problem in
each of the regionsD(−)

β : (x, t) ∈ [−1, xβ(t, ε)]× [0, T ] andD
(+)

β : (x, t) ∈ [xβ(t, ε), 1]× [0, T ]:

β(x, t, ε) =

{
β(−)(x, t, ε), (x, t) ∈ D

(−)

β ,

β(+)(x, t, ε), (x, t) ∈ D
(+)

β .

Wewill connect the functionsβ(−)(x, t, ε) and β(+)(x, t, ε) at the pointxβ(t, ε) in such away, that the following
equality is satisfied

β(−)(xβ(t, ε), t, ε) = β(+)(xβ(t, ε), t, ε) = ϕ(0)(xβ(t, ε)).

Note that the function β(x, t, ε) is not smooth. Let us introduce a stretched variable

ξβ =
x− xβ(t, ε)

ε
.

Let us construct the functions β(±)(x, t, ε) as modifications of the formal asymptotics (19):

β(−)(x, t, ε) = U
(−)
n+1|ξβ + εn+1(µ+ q

(−)
β (ξβ , t, ε)) + εn+1R

(−)
β (η(−)),

(x, t) ∈ D
(−)
β , ξβ ≤ 0, η(−) ≥ 0;

β(+)(x, t, ε) = U
(+)
n+1|ξβ + εn+1(µ+ q

(+)
β (ξβ , t, ε)) + εn+1R

(+)
β (η(+)),

(x, t) ∈ D
(+)
β , ξβ ≥ 0, η(+) ≤ 0.

Here under the notation U
(±)
n+1|ξβ we understand the functions from (19), where the argument ξ of the transition

layer functions is replaced by ξβ, andXn+1 – by xβ .
The positive value µ is chosen, so that conditions (20) and (21) are satisfied. The functions R(±)

β (η(±)) are
chosen, so that condition (22) is satisfied (their construction is not considered in this paper). The functions
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q
(±)
β (ξβ , t, ε) are needed to eliminate the inconsistencies that arise, when the operator acts on the upper solution.
Let us define them from the following problems:

∂2q
(±)
β

∂ξ2β
+Dxβ

∂q
(±)
β

∂ξβ
− 2Ã(ξβ , t)ṽ

(±)(ξβ , xβ)
∂q

(±)
β

∂ξβ
−

−
(
Ãu(ξβ , t)

(
ṽ(±)(ξβ , xβ)

)2
+ f̃u(ξβ , t)

)
q
(±)
β − qf (±)(ξβ , t, ε) = 0,

q
(±)
β (0, t, ε) + µ = 0, q

(±)
β (±∞, t, ε) = 0, (26)

where qf (±)(ξβ , t, ε) = µ
(
Ãu(ξβ , t)

(
ṽ(±)(ξβ , xβ)

)2
+ f̃u(ξβ , t)− f̄

(±)
u (xβ)

)
.

Explicit expressions for these functions can be obtained

q
(±)
β (ξβ , t, ε) = −µ

ṽ(±)(ξ, xβ)

ṽ(±)(0, xβ)
+

+ ṽ(±)(ξβ , xβ)

ξβ∫

0

e−(Dxβ)η

(ṽ(±)(η, xβ))2p(±)(η, xβ)

η∫

±∞

ṽ(±)(σ, xβ)e
(Dxβ)σp(±)(σ, xβ)qf

(±)(σ, t, ε) dσ dη. (27)

The functions q(±)(ξβ , t, ε) have exponential estimates [16].
We can simplify expressions (27) as follows:

q
(±)
β (ξβ , t, ε) =

= −µ− µf̄ (±)
u (xβ)ṽ

(±)(ξβ , xβ)

ξβ∫

0

e−(Dxβ)η

(ṽ(±)(η, xβ))2p(±)(η, xβ)

η∫

±∞

ṽ(±)(σ, xβ)e
(Dxβ)σp(±)(σ, xβ) dσ dη.

Using a similar algorithm, we construct the lower solution. Set the function

xα(t, ε) = Xn+1(t) + εn+1δ(t),

where δ(t) is the same function as in the construction of the upper solution.
Let’s construct the lower solution of the problem in each of the regions D(−)

α : (x, t) ∈ [−1, xα(t, ε)] × [0, T ]

andD
(+)

α : (x, t) ∈ [xα(t, ε), 1]× [0, T ]:

α(x, t, ε) =

{
α(−)(x, t, ε), (x, t) ∈ D

(−)

α ,

α(+)(x, t, ε), (x, t) ∈ D
(+)

α .

We will merge the functions α(−)(x, t, ε) and α(+)(x, t, ε) at the point xα(t, ε) in such a way that the equality
is satisfied

α(−)(xα(t, ε), t, ε) = α(+)(xα(t, ε), t, ε) = ϕ(0)(xα(t, ε)).

Note that the function α(x, t, ε) is not smooth. Let us introduce a stretched variable

ξα =
x− xα(t, ε)

ε
.

Let us construct the functions α(±)(x, t, ε) as modifications of the formal asymptotics (19):

α(−)(x, t, ε) = U
(−)
n+1|ξα − εn+1(µ+ q(−)

α (ξα, t, ε)) + εn+1R(−)
α (η(−)),

(x, t) ∈ D(−)
α , ξα ≤ 0, η(−) ≥ 0;

α(+)(x, t, ε) = U
(+)
n+1|ξα − εn+1(µ+ q(+)

α (ξα, t, ε)) + εn+1R(+)
α (η(+)),

(x, t) ∈ D(+)
α , ξα ≥ 0, η(+) ≤ 0.
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Here µ > 0 is the same value as in the expression for the upper solution, and q
(±)
α (ξα, t, ε) are determined from

problems (26), in which the stretched variable ξβ is replaced by ξα, and xβ is replaced by xα.
Let usmake sure that the constructed functionsα(x, t, ε) and β(x, t, ε) satisfy the differential inequalities (20)–

(25). The ordering condition (20) can be checked similarly as it was done in [2].
Let us show that inequality (21) holds. From theway of constructing the upper and lower solutions the following

equations follow

L[α(±)] = εn+1f̄ (±)
u (xα)µ+O(εn+2), L[β(±)] = −εn+1f̄ (±)

u (xβ)µ+O(εn+2).

The inequalities near the boundary (22) are fulfilled due to a standard modification of the boundary-layer
functions [16] (their verification is not intended for this paper).

Let’s check the jump condition of the derivative (24)

ε

(
∂β(+)

∂x

∣∣∣∣
x=xβ

− ∂β(−)

∂x

∣∣∣∣
x=xβ

)
= −εn+1 1

ṽ(0, x0)

(
L(x0)

dδ

dt
− L(x0)W

′(x0(t))δ(t) + F (x0)

)
+O(εn+2),

where

F (x0) = µ

[
f̄ (±)
u (x0)

∫ 0

±∞
p(σ, x0)ṽ(σ, x0)e

(Dx0)σdσ

]+

−
,

L(x0) =

∫ +∞

−∞
ṽ2(ξ, x0)e

(Dx0)ξp(ξ, x0)dξ > 0.

Here, the index at the functions ṽ(ξ, x0), p(ξ, x0) is omitted due to their smoothness at ξ = 0.
Let’s define the function δ(t) as a solution to the problem

L(x0)
dδ

dt
− L(x0)W

′(x0(t))δ(t) + F (x0) = σ, δ(0) = δ0,

where σ is a sufficiently large positive value and δ0 > 0. In this case, the solution to the problem δ(t) is a positive
function. Thus,

ε

(
∂β(+)

∂x

∣∣∣∣
x=xβ

− ∂β(−)

∂x

∣∣∣∣
x=xβ

)
= −εn+1 σ

ṽ(0, x0)
+O(εn+2).

The expression in the right-hand side is negative due to σ > 0. With the same choice of function δ(t), the derivative
jump inequality will be satisfied for the lower solution α(x, t, ε). The theorem is proved.

5. EXAMPLE

Consider the initial boundary value problem

ε2
∂2u

∂x2
− ε

∂u

∂t
− ε2

(
∂u

∂x

)2

= eu(1− e−u)

(
1

2
− e−u

)
(1− ϕ(0)(x)− e−u), x ∈ (−1, 1), t ∈ (0, T ],

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, t ∈ [0, T ],

u(x, 0, ε) = uinit(x, ε), x ∈ [−1, 1].

We will assume that for all x ∈ [−1, 1], the inequality 1/4 < ϕ(0)(x) < 1/2 is satisfied. The members of the
regular part of zero order are easily determined:

ū
(−)
0 (x) = 0, ū

(+)
0 (x) = ln 2.

The problem for the function ũ(ξ, x0) has the following form:

∂2ũ

∂ξ2
+W

∂ũ

∂ξ
−
(
∂ũ

∂ξ

)2

= eũ(1− e−ũ)

(
1

2
− e−ũ

)
(1− ϕ(0)(x0)− e−ũ),
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ũ(0, x0) = − ln(1− ϕ(0)(x0)), ũ(−∞, x0) = 0, ũ(∞, x0) = ln 2. (28)

By replacing z(ξ, x0) := z(ũ(ξ, x0)) = 1− e−ũ(ξ,x0) the problem (28) is transformed to the form

∂2z

∂ξ2
+W

∂z

∂ξ
= z

(
z − 1

2

)
(z − ϕ0(x0)), z(−∞, x0) = 0, z(∞, x0) =

1

2
. (29)

The solution of problem (29) is determined by the formula

z =

(
2 +

(
1

ϕ(x0)
− 2

)
exp

{
− ξ

2
√
2

})−1

.

Making the inverse substitution, we obtain the expression for the solution of the original problem (28):

ũ(ξ, x0) = − ln

(
1−

(
2 +

(
1

ϕ(x0)
− 2

)
exp

{
− ξ

2
√
2

})−1
)
.

The initial problem for determining the front position in the zero approximation has the form

dx0

dt
=

√
2

(
ϕ(0)(x0)−

1

4

)
, x0(0) = x00. (30)
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1. INTRODUCTION. PROBLEM STATEMENT

Consider the wave equation
Lu ≡ utt − a2(uxx + uyy)− bu = 0 (1)

in the cylinder Q = {(x, y, t) : (x, y) ∈ D, 0 < t < T}, whereD = {(x, y) : x2 + y2 < l2}; a > 0, b, T > 0 and
l > 0 are given real constants, and we set the first boundary value problem.

It is required to find the function u(x, y, t), satisfying the following conditions:

u(x, y, t) ∈ C1(Q) ∩ C2(Q); (2)

Lu(x, y, t) ≡ 0, (x, y, t) ∈ Q; (3)

u(x, y, t)|x2+y2=l2 = 0, 0 ≤ t ≤ T ; (4)

u(x, y, 0) = τ(x, y), u(x, y, T ) = ψ(x, y), (x, y) ∈ D, (5)

where τ(x, y) and ψ(x, y) are given sufficiently smooth functions satisfying the matching conditions with the
boundary condition (4).

It is known that the Dirichlet problem for hyperbolic type equations is incorrectly posed. S L. Sobolev showed
[1], that the study of unstable oscillations (resonances of oscillations in the liquid inside thin-walled rocket tanks
with natural oscillations) is closely related to the Dirichlet problem for the wave equation. In a better known form,
this connection is shown in the book byV. I. Arnold [2, p. 132]. A rather complete reviewof theworks devoted to the
study of the Dirichlet problem for hyperbolic equations is given in the monograph by B. I. Ptashnik [3, pp. 89–95]
and in the works [4; 5, pp. 112–118] by the author.

The works of R. Denchev [6–8] are devoted to the study of the Dirichlet problem for equation (1) at b = 0,
a = 1 with a non-zero right part and homogeneous conditions on the boundary of the region Ω, when Ω is an
ellipsoid, a cylinder with formations parallel to the axis t, and a parallelepiped. They also establish the criterion of

1

ORLOV

PARTIAL DIFFERENTIAL EQUATIONS
10. Grimson M.J. and Barker G.C. Continuum model for the spatiotemporal growth of bacterial colonies, Phys.

Rev. E, 1996, Vol. 49, No. 2, pp. 1680–1687.

11. Krug J. and Spohn H. Universality classes for deterministic surface growth, Phys. Rev. A., 1988, Vol. 38,
No. 8, pp. 4271–4283.

12. Barna I.F., Bognár G., Mátyás L. et al. Analytic traveling-wave solutions of the Kardar–Parisi–Zhang in-
terface growing equation with different kind of noise terms, in: Differential and Difference Equations with
Applications. ICDDEA 2019, Lisbon, Portugal, July 1–5, S. Pinelas, J.R.Graef, S. Hilger et al. eds., Cham:
Springer, 2020.

13. Vasil’eva A.B. and Davydova M.A. On a contrast steplike structure for a class of second-order nonlinear sin-
gularly perturbed equations, Comput. Math. Math. Phys., 1998, Vol. 38, No. 6, pp. 900–908.

14. NefedovN.N. and Orlov A.O.Existence and stability of solutionswith internal transition layer for the reaction–
diffusion–advection equation with a KPZ-nonlinearity, . Equat., 2023, Vol. 59, No. 6, pp. 1009–1024.

15. Nefedov N.N. and Orlov A.O. Existence and stability of stationary solutions with boundary layers in a system
of fast and slow reaction–diffusion–advection equations with KPZ-nonlinearities, Theor. Math. Phys.,
2024, Vol. 220, No. 1, pp. 1178–1192.

16. Nefedov N.N. Development of methods of asymptotic analysis of transition layers in reaction–diffusion–
advection equations: theory and applications, Comput. Math. Math. Phys., 2021, Vol. 61, No. 12, pp.
2068–2087.

17. Lukyanenko D.V., Volkov V.T., Nefedov N.N. et al. Analytic-numerical approach to solving singularly per-
turbed parabolic equations with the use of dynamic adapted meshes, Model. Anal. Int. Syst., 2016, Vol. 23,
No. 3, pp. 334–341.

18. Fife C.P. and Hsiao L. The generation and propogation of internal layers, Nonlin. Anal. Theory Methods
Appl., 1998, Vol. 12, No. 1, pp. 19–41.

19. Bitsadze A.V.On the theory of a class of nonlinear partial differential equations, Differ. Equat., 1977, Vol. 13,
No. 11, pp. 1993–2008.

20. Fife C.P. and Tang M.M. Comparison principles for reaction–diffusion systems, J. Differ. Equat., 1995,
Vol. 40, pp. 168–185.



41

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

DIRICHLET PROBLEM FOR A TWO-DIMENSIONAL WAVE
EQUATION IN A CYLINDRICAL DOMAIN

© 2025 К. B. Sabitov∗

Samara State Technical University, Russia
Samara Sterlitamak Branch of Ufa University of Science and Technology

∗e-mail: sabitov_fmf@mail.ru

Recieved January 11, 2022
Revised August 10, 2024

Accepted October 03, 2024

Abstract. In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum of
an orthogonal series. When justifying the convergence of a series, the problem of small denominators from
two natural arguments arose for the first time. An estimate for separation from zero with the corresponding
asymptotics was established, which made it possible to prove the convergence of the series in the class of regular
solutions and the stability of the solution.

Keywords: wave equation, Dirichlet problem, uniqueness criterion, existence, stability, series, small denominators

DOI: 10.31857/S03740641250105e8

1. INTRODUCTION. PROBLEM STATEMENT

Consider the wave equation
Lu ≡ utt − a2(uxx + uyy)− bu = 0 (1)

in the cylinder Q = {(x, y, t) : (x, y) ∈ D, 0 < t < T}, whereD = {(x, y) : x2 + y2 < l2}; a > 0, b, T > 0 and
l > 0 are given real constants, and we set the first boundary value problem.

It is required to find the function u(x, y, t), satisfying the following conditions:

u(x, y, t) ∈ C1(Q) ∩ C2(Q); (2)

Lu(x, y, t) ≡ 0, (x, y, t) ∈ Q; (3)

u(x, y, t)|x2+y2=l2 = 0, 0 ≤ t ≤ T ; (4)

u(x, y, 0) = τ(x, y), u(x, y, T ) = ψ(x, y), (x, y) ∈ D, (5)

where τ(x, y) and ψ(x, y) are given sufficiently smooth functions satisfying the matching conditions with the
boundary condition (4).

It is known that the Dirichlet problem for hyperbolic type equations is incorrectly posed. S L. Sobolev showed
[1], that the study of unstable oscillations (resonances of oscillations in the liquid inside thin-walled rocket tanks
with natural oscillations) is closely related to the Dirichlet problem for the wave equation. In a better known form,
this connection is shown in the book byV. I. Arnold [2, p. 132]. A rather complete reviewof theworks devoted to the
study of the Dirichlet problem for hyperbolic equations is given in the monograph by B. I. Ptashnik [3, pp. 89–95]
and in the works [4; 5, pp. 112–118] by the author.

The works of R. Denchev [6–8] are devoted to the study of the Dirichlet problem for equation (1) at b = 0,
a = 1 with a non-zero right part and homogeneous conditions on the boundary of the region Ω, when Ω is an
ellipsoid, a cylinder with formations parallel to the axis t, and a parallelepiped. They also establish the criterion of
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R′′(r) +
1

r
R′(r) +

(
λ2 − p2

r2

)
R(r) = 0, 0 < r < l, (12)

|R(0)| < +∞, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula

Φn(φ) = an cos(nφ) + bn sin(nφ),

where an, bn are arbitrary constants, n = 0, 1, 2, . . . At p = n, the general solution of equation (12) has the form

Rn(r) = cnJn(λr) + dnYn(λr),

here cn and dn are arbitrary constants, Jn(λr) and Yn(λr) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that dn = 0, and the second condition gives the equation

Jn(q) = 0, q = λl,

that, as it is known, has a countable set of positive roots qnm, n = 0, 1, 2, . . ., m = 1, 2, . . ., and eigenvalues
corresponding to them

λnm =
qnm
l

, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

and eigenfunctions
R̃nm(r) = Jn(λnmr) = Jn

(qnm
l

r
)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

Φn(φ) =

{
1√
2π

,
1√
π
cos(nφ),

1√
π
sin(nφ)

}
, (14)

orthonormalized, complete and forming a basis in the space L2(0, 2π), and the spectral problem (12), (13) – a
system of eigenfunctions

Rnm(r) =
Jn(λnmr)

∥Jn(λnmr)∥L2(0,l)
=

√
2

l

Jn(λnmr)

|Jn+1(qnm)|
, (15)

complete and an orthonormalized basis in L2(0, l) with weight r.
Then, the spectral problem (7)–(9) has eigenvalues λ2

nm = b
a2 + µ2

nm =
(
qnm

l

)2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

vnm(r, φ) =

{
1√
2π

R0m(r),
1√
π
Rnm(r) cos(nφ),

1√
π
Rnm(r) sin(nφ)

}
, (16)

that is complete and forms an orthonormalized basis in the space L2(D) with weight r.
Further, we will assume that b ≥ 0, because if b < 0, then, starting from some numbers n > n0 or m > m0,

the right part of λ2
nm = b

a2 + µ2
nm, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, φ, t) be the solution of problem (2)–(5). Based on the system (16) we introduce the functions

A0m(t) =
1√
2π

∫∫

D

u(r, φ, t)R0m(r)r dr dφ, (17)

Anm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ, (18)

Bnm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ. (19)

Differentiating equality (18) by t twice and considering equation (6), we obtain

singularity and existence of the solution of the problem in the Sobolev spaceW 1
2 (Ω) under certain conditions on

the right part related to the convergence of numerical series, while the arising small denominators are not studied.
In [9], for amultidimensional equationwith awave operator in the cylindrical domainD×(0, T ), the conditions√

λkT ̸= mπ, where k,m ∈ N, under which the uniqueness theorem of the solution of the Dirichlet problem takes
place, were found. Here, λk are the eigenvalues of the corresponding spectral problem in the domainD.

In the monograph by B. I. Ptashnik [3, pp. 95–101], the Dirichlet problem in (p + 1)-dimensional paral-
lelepiped Q = [0, T ] × Π, where Π = {x ∈ Rp : 0 ≤ xr ≤ π, r = 1, p}, for a strictly hyperbolic equation of even
order 2n with constant coefficients is also studied. The solution of the problem is determined by p-dimensional
Fourier series. A criterion for the uniqueness of the solution in C2n(Q) is established. For a series of inequalities
expressing the evaluation of small denominators with the corresponding asymptotics, the justification of conver-
gence of the series in the specified class is given. It is not shown for what numbers of the form π/T these estimates
take place, only it is noted that the set of numbers π/T , for which they are not fulfilled, is the set of zero Lebesgue
measure.

In the paper by V. P. Bursky [10], a necessary and sufficient condition for the trivial solvability of the homoge-
neous Dirichlet problem in a unit ballB centered at the origin of coordinates in space C2(B) for an equation with
complex is obtained:

uxx + uyy − a2uzz = 0.

In theworks of S. A. Aldashev [11–14], theDirichlet problem and the problemwithmixed boundary conditions
in the cylindrical domainQ (where l = 1, T = α) for multidimensional hyperbolic equations with a wave operator
are studied; the solutions of the problems are constructed as a sum of Fourier series in the spherical coordinate
system. But because of the arising small denominators, one cannot assume that these series converge in the space
C1(Q) ∩ C2(Q). When proving the singularity theorems, questions also arise about the uniform convergence of
the series used, since they contain small denominators.

In this paper, in the class of regular solutions of equation (1), i.e., satisfying conditions (2) and (3), the criterion
of uniqueness of the solution of problem (2)–(5) is established and the solution itself is constructed in explicit form
– sums of Fourier series. When justifying the convergence of the series, the problem of small denominators arose,
as in the well-known works of V. I. Arnold [15, 16] and V. V. Kozlov [17], but from two natural arguments. In this
connection, we establish estimates of the separability from zero of small denominators, on the basis of which we
prove the convergence of the series in the class of functionsC2(Q) under some conditions concerning the functions
τ(x, y) and ψ(x, y) and also obtain estimates of the stability of the solution.

2. UNIQUENESS CRITERION FOR THE SOLUTION OF THE DIRICHLET
PROBLEM

In the cylindrical coordinate system x = r cosφ, y = r sinφ, t = t, 0 ≤ r < l, 0 ≤ φ ≤ 2π, equation (1) will
take the following form

urr +
1

r
ur +

1

r2
uφφ +

b

a2
u =

1

a2
utt. (6)

Dividing the variables u(r, φ, t) = v(r, φ)T (t) in equation (6), we obtain the following spectral problem with
respect to the function v(r, φ):

vrr +
1

r
vr +

1

r2
vφφ + λ2v = 0, (7)

v(l, φ) = 0, (8)

|v(0, φ)| < +∞, v(r, φ) = v(r, φ+ 2π), (9)

where λ2 = b
a2 + µ2, µ is the variable separation constant.

The solution of the problem (7)–(9) is similar [18, p. 215]: we will look for in the form of v(r, φ) = R(r)Φ(φ)
and obtain two one-dimensional spectral problems:

Φ′′(φ) + p2Φ(φ) = 0, 0 ≤ φ ≤ 2π, (10)

Φ(φ) = Φ(φ+ 2π), Φ′(φ) = Φ′(φ+ 2π); (11)
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R′′(r) +
1

r
R′(r) +

(
λ2 − p2

r2

)
R(r) = 0, 0 < r < l, (12)

|R(0)| < +∞, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula

Φn(φ) = an cos(nφ) + bn sin(nφ),

where an, bn are arbitrary constants, n = 0, 1, 2, . . . At p = n, the general solution of equation (12) has the form

Rn(r) = cnJn(λr) + dnYn(λr),

here cn and dn are arbitrary constants, Jn(λr) and Yn(λr) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that dn = 0, and the second condition gives the equation

Jn(q) = 0, q = λl,

that, as it is known, has a countable set of positive roots qnm, n = 0, 1, 2, . . ., m = 1, 2, . . ., and eigenvalues
corresponding to them

λnm =
qnm
l

, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

and eigenfunctions
R̃nm(r) = Jn(λnmr) = Jn

(qnm
l

r
)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

Φn(φ) =

{
1√
2π

,
1√
π
cos(nφ),

1√
π
sin(nφ)

}
, (14)

orthonormalized, complete and forming a basis in the space L2(0, 2π), and the spectral problem (12), (13) – a
system of eigenfunctions

Rnm(r) =
Jn(λnmr)

∥Jn(λnmr)∥L2(0,l)
=

√
2

l

Jn(λnmr)

|Jn+1(qnm)|
, (15)

complete and an orthonormalized basis in L2(0, l) with weight r.
Then, the spectral problem (7)–(9) has eigenvalues λ2

nm = b
a2 + µ2

nm =
(
qnm

l

)2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

vnm(r, φ) =

{
1√
2π

R0m(r),
1√
π
Rnm(r) cos(nφ),

1√
π
Rnm(r) sin(nφ)

}
, (16)

that is complete and forms an orthonormalized basis in the space L2(D) with weight r.
Further, we will assume that b ≥ 0, because if b < 0, then, starting from some numbers n > n0 or m > m0,

the right part of λ2
nm = b

a2 + µ2
nm, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, φ, t) be the solution of problem (2)–(5). Based on the system (16) we introduce the functions

A0m(t) =
1√
2π

∫∫

D

u(r, φ, t)R0m(r)r dr dφ, (17)

Anm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ, (18)

Bnm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ. (19)

Differentiating equality (18) by t twice and considering equation (6), we obtain



44

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

SABITOV

where
τ̃nm =

1√
π

∫∫

D

τ(r, φ)Rnm(r) sin(nφ)r dr dφ, (30)

ψ̃nm =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) sin(nφ)r dr dφ. (31)

Now let us differentiate equality (17) twice by t and, similarly, on the basis of equation (6) we obtain that the
function A0m(t) is a solution of the differential equation

A′′
0m(t) + a2µ2

0mA0m(t) = 0.

From here (by analogy with the function Anm(t)), we find

A0m(t) = τ0m
sin(aµ0m(T − t))

sin(aµ0mT )
+ ψ0m

sin(aµ0mt)

sin(aµ0mT )
(32)

provided sin(µ0mT ) ̸= 0 for allm ∈ N, where

τ0m =
1√
2π

∫∫

D

τ(r, φ)R0m(r)r dr dφ, (33)

ψnm =
1√
2π

∫∫

D

ψ(r, φ)R0m(r)r dr dφ. (34)

Now let us prove the uniqueness of the solution of problem (2)–(5). Let τ(x, y) = ψ(x, y) ≡ 0 and conditions
(27) be satisfied for all m ∈ N and n ∈ N0 = N ∪ {0}. Then, by virtue of equations (25), (26), (30), (31), (33)
and (34) all τnm = 0, τ̃nm = 0, ψnm = 0, ψ̃nm = 0, at n = 0, 1, 2, . . ., m = 1, 2, . . . Hence and on the basis of
formulas (32), (29), (28) and (17)–(19) we have the following equations

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ = 0,

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ = 0

at all n = 0, 1, 2, . . ., m = 1, 2, . . ., t ∈ [0, T ]. From these equalities, based on the completeness of the system
of functions (16) in the space L2(D) with weight r, it follows that u(r, φ, t) = 0 is almost everywhere in D at any
t ∈ [0, T ]. Since by virtue of (2) the function u(r, φ, t) is continuous inQ, then u(r, φ, t) ≡ 0 inQ.

Suppose for some n = n0 orm = m0 the expression∆n0m(T ) = 0 or∆nm0
(T ) = 0. For definiteness, suppose

that∆n0m(T ) = 0. Then the homogeneous problem (2)–(5) (τ(x, y) = ψ(x, y) ≡ 0) has a nonzero solution

un0m(r, φ, t) = sin(aµn0mt) (a0mR0m(r) + an0mRn0m(r) cos(n0φ) + bn0mRn0m(r) sin(n0φ)) , (35)

where a0m, an0m and bn0m are arbitrary constants.
Consider the zeros of the expression∆nm(T ). Equality

∆nm(T ) = sin(aµnmT ) = 0

only takes place when

T =
πk

aµnm
, k ∈ N. (36)

So,∆nm(T ) goes to zero when T is determined by formula (36).
Thus, the criterion of uniqueness of the solution of problem (2)–(5) is established.
Theorem 1. If there exists a solution of problem (2)–(5), then it is singular if and only if conditions (27) are satisfied

at all n andm.

A′′
nm(t) =

1√
π

∫∫

D

utt(r, φ, t)Rnm(r) cos(nφ)r dr dφ =

=
a2√
π

∫∫

D

(
urr +

1

r
ur +

1

r2
uφφ

)
Rnm(r) cos(nφ)r dr dφ+ bAnm(t) = J1 + J2 + bAnm(t), (20)

where

J1 =
a2√
π

∫∫

D

(
urr +

1

r
ur

)
Rnm(r) cos(nφ)r dr dφ =

a2√
π

∫ 2π

0

cos(nφ)
∫ l

0

(rur)
′
rRnm(r) dr dφ, (21)

J2 =
a2√
π

∫∫

D

1

r
uφφRnm(r) cos(nφ) dr dφ =

a2√
π

∫ l

0

1

r
Rnm(r)

∫ 2π

0

uφφ cos(nφ) dφdr. (22)

Let us calculate the internal integrals in the right-hand sides of the equalities (21) and (22):
∫ l

0

(rur)
′
rRnm(r) dr = rurRnm(r)

∣∣∣
l

0
−
∫ l

0

urrR
′
nm(r) dr = −

∫ l

0

urrR
′
nm(r) dr =

= ruR′
nm(r)

∣∣∣
l

0
+

∫ l

0

u(rR′
nm(r))′ dr = −λ2

nm

∫ l

0

urRnm(r) dr + n2

∫ l

0

u
Rnm(r)

r
dr,

∫ 2π

0

uφφ cos(nφ) dφ = −n2

∫ 2π

0

u cos(nφ) dφ.

Substituting these values in (21) and (22), and then (21) and (22) into equality (20), we obtain

A′′
nm(t) + a2µ2

nmAnm(t) = 0. (23)

The general solution of equation (23) is determined by the formula

Anm(t) = anm cos(aµnmt) + bnm sin(aµnmt), (24)

where anm and bnm are arbitrary constants. For their determination we will use the boundary conditions (5):

Anm(0) =
1√
π

∫∫

D

u(r, φ, 0)Rnm(r) cos(nφ)r dr dφ =
1√
π

∫∫

D

τ(r, φ)Rnm(r) cos(nφ)r dr dφ =: τnm, (25)

Anm(T ) =
1√
π

∫∫

D

u(r, φ, T )Rnm(r) cos(nφ)r dr dφ =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) cos(nφ)r dr dφ =: ψnm.

(26)
Subordinating the general solution (24) to the boundary conditions (25) and (26), we find

anm = τnm, bnm =
1

sin(aµnmT )
(ψnm − τnm cos(aµnmT ))

provided that
∆nm(T ) = sin(aµnmT ) ̸= 0 at all n,m ∈ N. (27)

Then
Anm(t) = τnm

sin(aµnm(T − t))

sin(aµnmT )
+ ψnm

sin(aµnmt)

sin(aµnmT )
. (28)

Having differentiated equality (19) twice by t taking into account equation (6), we obtain

B′′
nm(t) + a2µ2

nmBnm(t) = 0.

From here (by analogy with the function Anm(t)), we will find under condition (27)

Bnm(t) = τ̃nm
sin(aµnm(T − t))

sin(aµnmT )
+ ψ̃nm

sin(aµnmt)

sin(aµnmT )
, (29)
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where
τ̃nm =

1√
π

∫∫

D

τ(r, φ)Rnm(r) sin(nφ)r dr dφ, (30)

ψ̃nm =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) sin(nφ)r dr dφ. (31)

Now let us differentiate equality (17) twice by t and, similarly, on the basis of equation (6) we obtain that the
function A0m(t) is a solution of the differential equation

A′′
0m(t) + a2µ2

0mA0m(t) = 0.

From here (by analogy with the function Anm(t)), we find

A0m(t) = τ0m
sin(aµ0m(T − t))

sin(aµ0mT )
+ ψ0m

sin(aµ0mt)

sin(aµ0mT )
(32)

provided sin(µ0mT ) ̸= 0 for allm ∈ N, where

τ0m =
1√
2π

∫∫

D

τ(r, φ)R0m(r)r dr dφ, (33)

ψnm =
1√
2π

∫∫

D

ψ(r, φ)R0m(r)r dr dφ. (34)

Now let us prove the uniqueness of the solution of problem (2)–(5). Let τ(x, y) = ψ(x, y) ≡ 0 and conditions
(27) be satisfied for all m ∈ N and n ∈ N0 = N ∪ {0}. Then, by virtue of equations (25), (26), (30), (31), (33)
and (34) all τnm = 0, τ̃nm = 0, ψnm = 0, ψ̃nm = 0, at n = 0, 1, 2, . . ., m = 1, 2, . . . Hence and on the basis of
formulas (32), (29), (28) and (17)–(19) we have the following equations

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ = 0,

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ = 0

at all n = 0, 1, 2, . . ., m = 1, 2, . . ., t ∈ [0, T ]. From these equalities, based on the completeness of the system
of functions (16) in the space L2(D) with weight r, it follows that u(r, φ, t) = 0 is almost everywhere in D at any
t ∈ [0, T ]. Since by virtue of (2) the function u(r, φ, t) is continuous inQ, then u(r, φ, t) ≡ 0 inQ.

Suppose for some n = n0 orm = m0 the expression∆n0m(T ) = 0 or∆nm0
(T ) = 0. For definiteness, suppose

that∆n0m(T ) = 0. Then the homogeneous problem (2)–(5) (τ(x, y) = ψ(x, y) ≡ 0) has a nonzero solution

un0m(r, φ, t) = sin(aµn0mt) (a0mR0m(r) + an0mRn0m(r) cos(n0φ) + bn0mRn0m(r) sin(n0φ)) , (35)

where a0m, an0m and bn0m are arbitrary constants.
Consider the zeros of the expression∆nm(T ). Equality

∆nm(T ) = sin(aµnmT ) = 0

only takes place when

T =
πk

aµnm
, k ∈ N. (36)

So,∆nm(T ) goes to zero when T is determined by formula (36).
Thus, the criterion of uniqueness of the solution of problem (2)–(5) is established.
Theorem 1. If there exists a solution of problem (2)–(5), then it is singular if and only if conditions (27) are satisfied

at all n andm.
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If r = 0, then we have case 1) of the lemma. Then 1 ≤ r ≤ q − 1. Hence (since the relation (2r − p)/(2q) is not
an integer) it follows that

|∆nm(ν)| ≥
∣∣∣∣sin

(
π
2r − p

2q

)∣∣∣∣−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ ≥

∣∣∣∣sin
(
π
2r − p

2q

)∣∣∣∣− C1 ≥ C2 − C1 > 0, (43)

where

C2 = min
1≤r≤q−1

| sin(π(2r − p)/2q)|.

Then, from (42) and (43) under the condition C1 < C2, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for allm > m0, n ∈ N0 and any t ∈ [0, T ] the

following estimates are valid

|Anm(t)| ≤ M1

(
|τnm|+ |ψnm|

)
, (44)

|Bnm(t)| ≤ M1

(
|τ̃nm|+ |ψ̃nm|

)
, (45)

|A′
nm(t)| ≤ M2µnm

(
|τnm|+ |ψnm|

)
, |B′

nm(t)| ≤ M2µnm

(
|τ̃nm|+ |ψ̃nm|

)
,

|A′′
nm(t)| ≤ M3µ

2
nm

(
|τnm|+ |ψnm|

)
, |B′′

nm(t)| ≤ M3µ
2
nm

(
|τ̃nm|+ |ψ̃nm|

)
,

hereafterMi are positive constants depending on T , a and l.
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

utt =
1√
2π

∞∑
m=1

A′′
0m(t)R0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
A′′

nm(t) cos(nφ) +B′′
nm(t) sin(nφ)

)
Rnm(r),

uφφ = − 1√
π

∞∑
n=1

∞∑
m=1

n2
(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
Rnm(r),

urr =
1√
2π

∞∑
m=1

A0m(t)R′′
0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
R′′

nm(r),

which at any (r, φ, t) ∈ Q are majorized respectively by numerical series

4M3√
2π

∞∑
m>m0

µ2
0m

(
|τ0m|+ |ψ0m|

)
|R0m(r)|+

+
M3√
π

∞∑
n=1

∞∑
m>m0

µ2
nm

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (46)

M1√
π

∞∑
n=1

∞∑
m>m0

n2
(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (47)

M1√
2π

∞∑
m>m0

(
|τ0m|+ |ψ0m|

)
|R′′

0m(r)|+

+
M1√
π

∞∑
n=1

∞∑
m>m0

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|R′′

nm(r)|. (48)

Lemma 3. Let 0 < r0 ≤ r ≤ l, where r0 is a small positive fixed constant. Then atm > m0 and any fixed n ∈ N0

there are the following estimates

|Rnm(r)| ≤ M4, (49)
|R′

nm(r)| ≤ M5µnm, (50)
|R′′

nm(r)| ≤ M6µ
2
nm. (51)

3. EXISTENCE OF A SOLUTION TO THE PROBLEM

If the conditions (27) are satisfied, the solution of the problem (2)–(5) is defined by the sum of the series

u(r, φ, t) =
1√
2π

∞∑
m=1

A0m(t)R0m(r) +
1√
π

∞∑
n=1

∞∑
m=1

(Anm(t) cos(nφ) +Bnm(t) sin(nφ))Rnm(r), (37)

where the coefficientsA0m(t), Anm(t), andBnm(t) are found by formulas (32), (28) and (29), respectively. Since
∆nm(T ) is the denominator of the coefficients of the series (37) and, as shown above, equation sin(aµnmT ) = 0 has
a countable set of zeros (36), the problem of small denominators arises. In this regard, estimates about separability
from zero should be established. For simplicity, in what follows we assume that b = 0. The expression∆nm(T ) at
b = 0 is represented in the following form:

∆nm(ν) = sin(νqnm), ν =
aT

l
. (38)

Lemma 1. If one of the following conditions is met:
1) the number ν/2 = p is natural and odd;

2) the number ν/2 = p/q is fractional-rational and the relation (2r − p)/(2q) is not an integer where r ∈ N0 and
0 ≤ r < q,

then there exist positive constants C0 andm0 (m0 ∈ N) such that for allm > m0 the evaluation is valid.

|∆nm(ν)| ≥ C0 > 0. (39)

Proof. For zeros qnm of the Bessel function Jn(q) at large values m > m0, where m0 is a sufficiently large
natural number, the asymptotic formula [19, p. 241] is valid.

qnm =
π

2
(2m+ n− 1/2) +O

(
(4m+ 2n− 1)−1

)
. (40)

Substitution (40) into (38) gives

∆nm(ν) = sin
(νπ

2
(2m+ n− 1/2)

)
+O

(
(4m+ 2n− 1)−1

)
, (41)

since

sinO
(
(4m+ 2n− 1)−1

)
≈ O

(
(4m+ 2n− 1)−1

)
, cosO

(
(4m+ 2n− 1)−1

)
≈ 1 +O

(
(4m+ 2n− 1)−1

)

at largem > m0.
Let the number ν/2 = p ∈ N odd. Then, from equality (41) for allm > m0 and n ∈ N0 we obtain

|∆nm(ν)| ≥
∣∣∣sin

(
πp(2m+ n)− pπ

2

)∣∣∣− ∣∣O (
(4m+ 2n− 1)−1

)∣∣ =

=
∣∣∣sin pπ

2

∣∣∣− ∣∣O (
(4m+ 2n− 1)−1

)∣∣ = 1−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ > 1

2
(42)

by virtue of ∣∣O (
(4m+ 2n− 1)−1

)∣∣ < C1 <
1

2

at largem.
Let ν/2 = p/q, p, q ∈ N, (p, q) = 1, p/q /∈ N. In this case, let us divide p(2m + n) by q with remainder:

p(2m+ n) = qs+ r, s, r ∈ N0, 0 ≤ r < q. Then the relation (41) will take the form

∆nm(ν) = sin
(
sπ +

rπ

q
− pπ

2q

)
+O

(
(4m+ 2n− 1)−1

)
= (−1)s sin

(
π
2r − p

2q

)
+O

(
(4m+ 2n− 1)−1

)
.
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If r = 0, then we have case 1) of the lemma. Then 1 ≤ r ≤ q − 1. Hence (since the relation (2r − p)/(2q) is not
an integer) it follows that

|∆nm(ν)| ≥
∣∣∣∣sin

(
π
2r − p

2q

)∣∣∣∣−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ ≥

∣∣∣∣sin
(
π
2r − p

2q

)∣∣∣∣− C1 ≥ C2 − C1 > 0, (43)

where

C2 = min
1≤r≤q−1

| sin(π(2r − p)/2q)|.

Then, from (42) and (43) under the condition C1 < C2, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for allm > m0, n ∈ N0 and any t ∈ [0, T ] the

following estimates are valid

|Anm(t)| ≤ M1

(
|τnm|+ |ψnm|

)
, (44)

|Bnm(t)| ≤ M1

(
|τ̃nm|+ |ψ̃nm|

)
, (45)

|A′
nm(t)| ≤ M2µnm

(
|τnm|+ |ψnm|

)
, |B′

nm(t)| ≤ M2µnm

(
|τ̃nm|+ |ψ̃nm|

)
,

|A′′
nm(t)| ≤ M3µ

2
nm

(
|τnm|+ |ψnm|

)
, |B′′

nm(t)| ≤ M3µ
2
nm

(
|τ̃nm|+ |ψ̃nm|

)
,

hereafterMi are positive constants depending on T , a and l.
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

utt =
1√
2π

∞∑
m=1

A′′
0m(t)R0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
A′′

nm(t) cos(nφ) +B′′
nm(t) sin(nφ)

)
Rnm(r),

uφφ = − 1√
π

∞∑
n=1

∞∑
m=1

n2
(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
Rnm(r),

urr =
1√
2π

∞∑
m=1

A0m(t)R′′
0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
R′′

nm(r),

which at any (r, φ, t) ∈ Q are majorized respectively by numerical series

4M3√
2π

∞∑
m>m0

µ2
0m

(
|τ0m|+ |ψ0m|

)
|R0m(r)|+

+
M3√
π

∞∑
n=1

∞∑
m>m0

µ2
nm

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (46)

M1√
π

∞∑
n=1

∞∑
m>m0

n2
(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (47)

M1√
2π

∞∑
m>m0

(
|τ0m|+ |ψ0m|

)
|R′′

0m(r)|+

+
M1√
π

∞∑
n=1

∞∑
m>m0

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|R′′

nm(r)|. (48)

Lemma 3. Let 0 < r0 ≤ r ≤ l, where r0 is a small positive fixed constant. Then atm > m0 and any fixed n ∈ N0

there are the following estimates

|Rnm(r)| ≤ M4, (49)
|R′

nm(r)| ≤ M5µnm, (50)
|R′′

nm(r)| ≤ M6µ
2
nm. (51)
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where

ω =

√
1−

(
t

p

)2

, t < p, z = p(Arthω − ω),

K1/3(z) –McDonald’s function.
Using a power series expansion of the function

arctg ω = ω − ω3

3
+

ω5

5
− ω7

7
+ . . . ,

evaluate the expression
ω2

3

(
1− 3

5
ω2

)
< 1− arctg ω

ω
<

ω2

3
.

Hence at 0 < ω < 1 we have √
2

15
ω <

(
1− arctg ω

ω

)1/2

<
ω√
3
. (63)

Then from the formula (62), taking into account the estimation (63), we obtain

|Jp(t)| ≤
ω

π
√
3
K1/3(z), (64)

|Jp(t)| >
√

2

15

ω

π
K1/3(z). (65)

Now on the basis of estimates (64) and (65) we have

|Jn(µnmr)| ≤ ω1

π
√
3
K1/3(z1), (66)

|Jn(qnm)| ≥
√

2

15

ω2

π
K1/3(z2), (67)

where

ω1 =

√
1−

(qnmr

nl

)2

, z1 = n(Arthω1 − ω1),

ω2 =

√
1−

(
qnm
n+ 1

)2

, z2 = (n+ 1)(Arthω2 − ω2).

From inequalities (66) and (67), estimate (59) follows, since ω1 ≈ ω2 at large n.
Based on formulas (55) and (56), we estimate the derivative R′

nm(r):

|R′
nm(r)| ≤ qnm√

2l2|Jn+1(qnm)|
(|Jn−1(µnmr)|+ |Jn+1(µnmr)|).

Hence, taking into account estimates (66) and (67), we obtain (60).
By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function Rnm(r) and its derivatives R′

nm(r), R′′
nm(r), starting from some number n,

tend to zero at r → 0. Therefore, in Lemmas 3 and 4 the estimates (49)–(51) and (59)–(61) are obtained at
r ≥ r0 > 0.

By virtue of lemmas 3 and 4, rows (46)–(48) are majorized by the combination of rows

M10

∞∑
m>m0

m2(|τ0m|+ |ψ0m|), M11

∞∑
n=1

∞∑
m>m0

n2(|τ0m|+ |ψ0m|),

M12

∞∑
n=1

∞∑
m>m0

µ2
nm(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|). (68)

Proof. Based on the asymptotic formula for the Bessel function of the first kind Jν(z) at large values of the
argument z [20, p. 98]

Jν(z) =

√
2

πz

[
cos

(
z − νπ

2
− π

4

)
− 1

2z
sin

(
z − νπ

2
− π

4

)]
+O(z−5/2) (52)

we have

|Jn(µnmr)| ≤
√

2

πr0µnm

(
1 +

1

2r0µnm

)
≤ 2

√
2

πr0µnm
, (53)

as 1(2r0µnm) < 1 at largem.
Similarly, we obtain the estimates

|Jn+1(qnm)| = |Jn+1(lµnm)| ≤ 2

√
2

πlµnm
, (54)

from which follows the estimation (49).
Now find the derivative

R′
nm(r) =

√
2

l|Jn+1(qnm)|
µnmJ ′

n(z), z = µnmr. (55)

Using the equality
J ′
ν(z) =

1

2
[Jν−1(z)− Jν+1(z)] (56)

and formula (52), we obtain the asymptotic formula for J ′
n(z) at large z

J ′
n(z) =

1

2

√
2

πz

[
cos

(
z − (n− 1)

2
π − π

4

)
− cos

(
z − (n+ 1)

2
π − π

4

)]
+O(z−3/2) =

=

√
2

πz
cos

(
z − nπ

2
+

π

4

)
+O(z−3/2),

on the basis of which, similarly to estimates (53) and (54), we find

|J ′
n(µnmr)| ≤ 2

√
2

πr0µnm
. (57)

Then from equality (55) by virtue of estimates (57) and (54), follows estimate (50).
From (12) we calculate the second derivative

J ′′
n(µnmr) = −1

r
J ′
n(µnmr) +

(
n2

r2
− µ2

nm

)
Jn(µnmr). (58)

Hence, taking into account estimates (53) and (57), we have

|J ′′
n(µnmr)| ≤ 1

r0
2

√
2

πr0µnm
+

n2

r20
2

√
2

πr0µnm
+ µ2

nm2

√
2

πr0µnm
.

From this inequality, by virtue of (54), we verify the validity of the estimate (51).
Lemma 4. Let 0 < r0 ≤ r ≤ l. Then for large n and any fixedm ∈ N, the following estimates are valid

|Rnm(r)| ≤ M7, (59)
|R′

nm(r)| ≤ M8n, (60)
|R′′

nm(r)| ≤ M9n
2. (61)

Proof. To obtain these estimates, let us use Langer’s asymptotic formula at large values of order p of the Bessel
function [20, p. 103]

Jp(t) =
1

π

√
1− arctg ω

ω
K1/3(z) +O(p−4/3), (62)
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where

ω =

√
1−

(
t

p

)2

, t < p, z = p(Arthω − ω),

K1/3(z) –McDonald’s function.
Using a power series expansion of the function

arctg ω = ω − ω3

3
+

ω5

5
− ω7

7
+ . . . ,

evaluate the expression
ω2

3

(
1− 3

5
ω2

)
< 1− arctg ω

ω
<

ω2

3
.

Hence at 0 < ω < 1 we have √
2

15
ω <

(
1− arctg ω

ω

)1/2

<
ω√
3
. (63)

Then from the formula (62), taking into account the estimation (63), we obtain

|Jp(t)| ≤
ω

π
√
3
K1/3(z), (64)

|Jp(t)| >
√

2

15

ω

π
K1/3(z). (65)

Now on the basis of estimates (64) and (65) we have

|Jn(µnmr)| ≤ ω1

π
√
3
K1/3(z1), (66)

|Jn(qnm)| ≥
√

2

15

ω2

π
K1/3(z2), (67)

where

ω1 =

√
1−

(qnmr

nl

)2

, z1 = n(Arthω1 − ω1),

ω2 =

√
1−

(
qnm
n+ 1

)2

, z2 = (n+ 1)(Arthω2 − ω2).

From inequalities (66) and (67), estimate (59) follows, since ω1 ≈ ω2 at large n.
Based on formulas (55) and (56), we estimate the derivative R′

nm(r):

|R′
nm(r)| ≤ qnm√

2l2|Jn+1(qnm)|
(|Jn−1(µnmr)|+ |Jn+1(µnmr)|).

Hence, taking into account estimates (66) and (67), we obtain (60).
By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function Rnm(r) and its derivatives R′

nm(r), R′′
nm(r), starting from some number n,

tend to zero at r → 0. Therefore, in Lemmas 3 and 4 the estimates (49)–(51) and (59)–(61) are obtained at
r ≥ r0 > 0.

By virtue of lemmas 3 and 4, rows (46)–(48) are majorized by the combination of rows

M10

∞∑
m>m0

m2(|τ0m|+ |ψ0m|), M11

∞∑
n=1

∞∑
m>m0

n2(|τ0m|+ |ψ0m|),

M12

∞∑
n=1

∞∑
m>m0

µ2
nm(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|). (68)
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where

J1 =

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr,

J2 =

∫ l

0

τ1(r, φ)r
n+1Xn(r) dr,

J3 =

∫ l

0

τ2(r, φ)r
n+1Xn(r) dr,

τ1(r, φ) =
τ
(1,4)
r,φ (r, φ)

r
, τ2(r, φ) =

τ
(0,4)
r,φ (r, φ)

r2
.

Similarly to the integral J(φ) by formula (74), we transform the integrals Ji, i = 1, 2:

Ji = − 1

µ2
nm

Ji1 −
1

µ2
nm

Ji2 +
n2

µ2
nm

Ji3, (75)

where

J11 =

∫ l

0

τ (4,4)r,φ (r, φ)rn+1Xn(r) dr =

∫ l

0

τ (4,4)r,φ (r, φ)Jn(µnmr)r dr,

J12 =

∫ l

0

τ (3,4)r,φ (r, φ)rnXn(r) dr =

∫ l

0

τ
(3,4)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J13 =

∫ l

0

τ (2,4)r,φ (r, φ)rn−1Xn(r) dr =

∫ l

0

τ
(2,4)
r,φ (r, φ)

r2
Jn(µnmr)r dr,

J21 =

∫ l

0

τ ′′1r(r, φ)r
n+1Xn(r) dr =

∫ l

0

τ ′′1r(r, φ)Jn(µnmr)r dr,

J22 =

∫ l

0

τ ′1r(r, φ)r
nXn(r) dr =

∫ l

0

τ ′1r(r, φ)

r
Jn(µnmr)r dr,

J23 =

∫ l

0

τ1(r, φ)r
n−1Xn(r) dr =

∫ l

0

τ1(r, φ)

r2
Jn(µnmr)r dr.

We transform the integral J3 as follows:

J3 =

∫ l

0

τ (0,4)r,φ (r, φ)r−1Jn(µnmr) dr =

=

∫ l

0

τ (0,4)r,φ (r, φ)r−n−2rn+1Jn(µnmr) dr =

=
τ
(0,4)
r,φ (r, φ)

r
Jn+1(µnmr)

∣∣∣∣∣
l

0

− 1

µnm

∫ l

0

d
[
r−n−2τ (0,4)r,φ (r, φ)

]
rn+1Jn+1(µnmr) dr =

= − 1

µnm

∫ l

0

τ (1,4)r,φ (r, φ)r−1Jn+1(µnmr) dr +
n+ 2

µnm

∫ l

0

τ (0,4)r,φ (r, φ)r−2Jn+1(µnmr) dr =

= − 1

µnm
J31 +

n+ 2

µnm
J32. (76)

After substituting (75) and (76) into equality (74), we obtain

J(φ) =
1

µ4
nm

(J11 + J12 + J21 + J22)−
n2

µ4
nm

(J13 + J23)−
n2

µ3
nm

J31 +
n2(n+ 2)

µ3
nm

J32. (77)

Let us denote by C4,4(D) the set of functions f(r, φ), that have continuous mixed derivatives on r and φ up to
and including fourth order in the closed regionD.

Lemma 5. Let τ(r, φ), ψ(r, φ) ∈ C4,4(D), and τ (0,i)(r, 0) = τ (0,i)(r, 2π), i = 0, 3, τ (k,4)(0, φ) = 0, k = 0, 3,
ψ(0,i)(r, 0) = ψ(0,i)(r, 2π), i = 0, 3, ψ(k,4)(0, φ) = 0, k = 0, 3. Then the coefficients of τnm, τ̃nm, ψnm, ψ̃nm at
µnm → +∞ have estimates of

τnm = O

(
1

nµ4
nm

)
, τ̃nm = O

(
1

nµ4
nm

)
, ψnm = O

(
1

nµ4
nm

)
, ψ̃nm = O

(
1

nµ4
nm

)
.

Proof. Consider the coefficients τnm, ψnm, τ̃nm, and ψ̃nm defined by formulas (25), (26), (30), and (31), re-
spectively. Let us represent τnm in the following form:

τnm =
1√
π

∫ l

0

Rnm(µnmr)I(r)r dr, (69)

where

I(r) =

∫ 2π

0

τ(r, φ) cos(nφ) dφ.

By the condition τ ′φ(r, 0) = τ ′φ(r, 2π) and τ ′′′φ (r, 0) = τ ′′′φ (r, 2π), then the integral I(r) can be transformed by
fourfold integration by parts into the form

I(r) =
1

n4

∫ 2π

0

τ (4)φ (r, φ) cos(nφ) dφ. (70)

Now let us write the integral (69), taking into account the representation (70), as

τnm =

√
2

l
√
π|Jn+1(qnm)|n4

∫ 2π

0

J(φ) cos(nφ) dφ, (71)

where

J(φ) =

∫ l

0

τ (4)φ (r, φ)Jn(µnmr)r dr. (72)

Note that the functionXn(r) = r−nJn(ξ), ξ = µnmr is a solution of the differential equation

X ′′
n(r) +

2n+ 1

r
X ′

n(r) + µ2
nmXn(r) = 0. (73)

Then the integral (72), taking into account equation (73), is transformed as follows:

J(φ) =

∫ l

0

τ (4)φ (r, φ)Xn(r)r
n+1 dr =

= − 1

µ2
nm

∫ l

0

τ (4)φ (r, φ)

[
X ′′

n(r) +
2n+ 1

r
X ′

n(r)

]
rn+1 dr =

= − 1

µ2
nm

∫ l

0

τ (4)φ (r, φ)
[
(rn+1X ′

n(r))
′ + nrnX ′

n(r)
]
dr =

= − 1

µ2
nm

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr−

− 1

µ2
nm

∫ l

0

τ (1,4)r,φ (r, φ)rnXn(r) dr+

+
n2

µ2
nm

∫ l

0

τ (0,4)r,φ (r, φ)rn−1Xn(r) dr =

= − 1

µ2
nm

J1 −
1

µ2
nm

J2 +
n2

µ2
nm

J3, (74)
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where

J1 =

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr,

J2 =

∫ l

0

τ1(r, φ)r
n+1Xn(r) dr,

J3 =

∫ l

0

τ2(r, φ)r
n+1Xn(r) dr,

τ1(r, φ) =
τ
(1,4)
r,φ (r, φ)

r
, τ2(r, φ) =

τ
(0,4)
r,φ (r, φ)

r2
.

Similarly to the integral J(φ) by formula (74), we transform the integrals Ji, i = 1, 2:

Ji = − 1

µ2
nm

Ji1 −
1

µ2
nm

Ji2 +
n2

µ2
nm

Ji3, (75)

where

J11 =

∫ l

0

τ (4,4)r,φ (r, φ)rn+1Xn(r) dr =

∫ l

0

τ (4,4)r,φ (r, φ)Jn(µnmr)r dr,

J12 =

∫ l

0

τ (3,4)r,φ (r, φ)rnXn(r) dr =

∫ l

0

τ
(3,4)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J13 =

∫ l

0

τ (2,4)r,φ (r, φ)rn−1Xn(r) dr =

∫ l

0

τ
(2,4)
r,φ (r, φ)

r2
Jn(µnmr)r dr,

J21 =

∫ l

0

τ ′′1r(r, φ)r
n+1Xn(r) dr =

∫ l

0

τ ′′1r(r, φ)Jn(µnmr)r dr,

J22 =

∫ l

0

τ ′1r(r, φ)r
nXn(r) dr =

∫ l

0

τ ′1r(r, φ)

r
Jn(µnmr)r dr,

J23 =

∫ l

0

τ1(r, φ)r
n−1Xn(r) dr =

∫ l

0

τ1(r, φ)

r2
Jn(µnmr)r dr.

We transform the integral J3 as follows:

J3 =

∫ l

0

τ (0,4)r,φ (r, φ)r−1Jn(µnmr) dr =

=

∫ l

0

τ (0,4)r,φ (r, φ)r−n−2rn+1Jn(µnmr) dr =

=
τ
(0,4)
r,φ (r, φ)

r
Jn+1(µnmr)

∣∣∣∣∣
l

0

− 1

µnm

∫ l

0

d
[
r−n−2τ (0,4)r,φ (r, φ)

]
rn+1Jn+1(µnmr) dr =

= − 1

µnm

∫ l

0

τ (1,4)r,φ (r, φ)r−1Jn+1(µnmr) dr +
n+ 2

µnm

∫ l

0

τ (0,4)r,φ (r, φ)r−2Jn+1(µnmr) dr =

= − 1

µnm
J31 +

n+ 2

µnm
J32. (76)

After substituting (75) and (76) into equality (74), we obtain

J(φ) =
1

µ4
nm

(J11 + J12 + J21 + J22)−
n2

µ4
nm

(J13 + J23)−
n2

µ3
nm

J31 +
n2(n+ 2)

µ3
nm

J32. (77)
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here unmi(r, φ, t) are determined by formula (35), where m0 should be replaced by mi, Cnmi are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved
Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if∆nm(ν) ̸= 0 at allm = 1,m0, then problem

(2)–(5) is uniquely solvable, and this solution is defined by row (37); if∆nm(ν) = 0 at somem = m1,m2, . . . ,ms ≤
m0, then problem (2)–(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).

Note that the fulfillment of the condition∆nm(ν) ̸= 0 atm = 1,m0 can be achieved if ν ̸= πk/qnm (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

∥u(r, φ, t)∥L2(D) =

∫∫

D

u2(r, φ, t)r dr dφ,

∥u(r, φ, t)∥C(Q) = max
r,φ,t∈Q

|u(r, φ, t)|,

∥f (2,2)
r,φ (r, φ)∥L2(D) =

∫∫

D

(f (2,2)
r,φ (r, φ))2r dr dφ,

∥g(2,2)r,φ (r, φ)∥2
C(D)

= max
r,φ∈D

|g(2,2)r,φ (r, φ)|.

Theorem 3. Let the conditions of Theorem 2 and∆nm(ν) ̸= 0 be satisfied atm = 1,m0. Then for the solution (37)
of the problem (2)–(5), the following estimates are valid

∥u(r, φ, t)∥L2(D) ≤ M16(∥τ(r, φ)∥L2(D) + ∥ψ(r, φ)∥L2(D)), (83)

∥u(r, φ, t)∥C(Q) ≤ M17(∥τ (2,2)r,φ (r, φ)∥C(D) + ∥ψ(2,2)
r,φ (r, φ)∥C(D)). (84)

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space L2(D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

∥u(r, φ, t)∥2L2(D) =

∞∑
m=1

A2
0m(t) +

∞∑
n,m=1

A2
nm(t) +B2

nm(t) ≤

≤ 2M2
1M

2
4

[ ∞∑
m=1

(
|τ0m|2 + |ψ0m|2

)
+

∞∑
n,m=1

(
|τnm|2 + |τ̃nm|2 + |ψnm|2 + |ψ̃nm|2

)]
=

= 2M2
1M

2
4

(
∥τ(r, φ)∥2L2(D) + ∥ψ(r, φ)∥2L2(D)

)
.

Hence we obtain the estimate (83).
Let (r, φ, t) be an arbitrary pointQ. Then from formula (37), taking into account estimates (44), (45) and (49),

we have

|u(r, φ, t)| ≤ M1M4

[ ∞∑
m=1

(|τ0m|+ |ψ0m|) +
∞∑

n,m=1

(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|)

]
. (85)

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient τnm as

τnm = −
√
2

l
√
π|Jn+1(qnm)|n2

∫ 2π

0

J(φ) cos(nφ) dφ,

If τ (0,4)r,φ (r, φ) ∈ C4[0, l] and τ
(k,4)
r,φ (0, φ) = 0, k = 0, 3, then the representations are fair

τ (0,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r4

4!
, 0 < θ < r,

τ (1,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r3

3!
,

τ (2,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r2

2!
,

τ (3,4)r,φ (r, φ) = τ (4,4)r,φ (θ, φ)r.

By virtue of this in the integrals J31 and J32, the functions τ
(0,4)
r,φ (r, φ)r−5/2, τ (1,4)r,φ (r, φ)r−3/2 are continuously

differentiable on [0, l], so on this interval they have complete bounded variation, i.e., finite variation. Taking into
account the theorem from [21, p. 653], the integrals J31 and J32 at µnm → ∞ have the following evaluation

J31 = O(µ−3/2
nm ), J32 = O(µ−3/2

nm ). (78)

In the integrals J1i, i = 1, 2, 3, the integrand functions τ (4,4)r,φ (r, φ), τ (3,4)r,φ (r, φ)r−1, and τ
(2,4)
r,φ (r, φ)r−2 are

continuous on the segment [0, l]. Then by virtue of Young’s theorem [21, p. 654], these integrals at µnm → ∞
have the following evaluation

J1i = O(µ−1/2
nm ). (79)

Now consider the integrals J2i, i = 1, 2, 3. In them, the functions τ ′′1r(r, φ), τ ′1r(r, φ)r−1 and τ1r(r, φ)r
−2 are

also continuous on the segment [0, l], so the estimates are valid

J2i = O(µ−1/2
nm ), µnm → ∞. (80)

Then from the representation (71), taking into account equality (77) and estimates (78)–(80), we obtain

τnm = O

(
1

nµ4
nm

)
.

Similarly, from formulas (26), (30), and (31), the rest of the estimates follow. The lemma is proved.
Numerical series (68), by virtue of formula (40), are majorized by convergent series, respectively

M13

∞∑
m>m0

1

m2
, M14

∞∑
n=1

∞∑
m>m0

n

(4m+ 2n− 1)4
, M15

∞∑
n=1

∞∑
m>m0

1

n(4m+ 2n− 1)2
.

If for the numbers ν from lemma 1, for somem = m1,m2, . . . ,ms ≤ m0, where 1 ≤ m1 < m2 < · · · < ms,
∆nmi(ν) = 0, then it is necessary and sufficient for the solvability of problem (2)–(5) that the conditions are
satisfied

τnmi
= ψnmi

= 0, τ̃nmi
= ψ̃nmi

= 0, i = 1, s. (81)

In this case, the solution of the problem (2)–(5) is defined as a sum of series:

u(r, φ, t) =
1√
2π




m1−1∑
m=1

+

m2−1∑
m=m1+1

+ · · ·+
ms−1∑

m=ms−1+1

+

∞∑
m=ms+1


A0m(t)R0m(r) +

+
1√
π

∞∑
n=1




m1−1∑
m=1

+

m2−1∑
m=m1+1

+ · · ·+
ms−1∑

m=ms−1+1

+

∞∑
m=ms+1


×

× (Anm(t) cos(nφ) +Bnm(t) sin(nφ))Rnm(r) +

+
s∑

i=1

Cnmiunmi(r, φ, t), (82)
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here unmi(r, φ, t) are determined by formula (35), where m0 should be replaced by mi, Cnmi are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved
Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if∆nm(ν) ̸= 0 at allm = 1,m0, then problem

(2)–(5) is uniquely solvable, and this solution is defined by row (37); if∆nm(ν) = 0 at somem = m1,m2, . . . ,ms ≤
m0, then problem (2)–(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).

Note that the fulfillment of the condition∆nm(ν) ̸= 0 atm = 1,m0 can be achieved if ν ̸= πk/qnm (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

∥u(r, φ, t)∥L2(D) =

∫∫

D

u2(r, φ, t)r dr dφ,

∥u(r, φ, t)∥C(Q) = max
r,φ,t∈Q

|u(r, φ, t)|,

∥f (2,2)
r,φ (r, φ)∥L2(D) =

∫∫

D

(f (2,2)
r,φ (r, φ))2r dr dφ,

∥g(2,2)r,φ (r, φ)∥2
C(D)

= max
r,φ∈D

|g(2,2)r,φ (r, φ)|.

Theorem 3. Let the conditions of Theorem 2 and∆nm(ν) ̸= 0 be satisfied atm = 1,m0. Then for the solution (37)
of the problem (2)–(5), the following estimates are valid

∥u(r, φ, t)∥L2(D) ≤ M16(∥τ(r, φ)∥L2(D) + ∥ψ(r, φ)∥L2(D)), (83)

∥u(r, φ, t)∥C(Q) ≤ M17(∥τ (2,2)r,φ (r, φ)∥C(D) + ∥ψ(2,2)
r,φ (r, φ)∥C(D)). (84)

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space L2(D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

∥u(r, φ, t)∥2L2(D) =

∞∑
m=1

A2
0m(t) +

∞∑
n,m=1

A2
nm(t) +B2

nm(t) ≤

≤ 2M2
1M

2
4

[ ∞∑
m=1

(
|τ0m|2 + |ψ0m|2

)
+

∞∑
n,m=1

(
|τnm|2 + |τ̃nm|2 + |ψnm|2 + |ψ̃nm|2

)]
=

= 2M2
1M

2
4

(
∥τ(r, φ)∥2L2(D) + ∥ψ(r, φ)∥2L2(D)

)
.

Hence we obtain the estimate (83).
Let (r, φ, t) be an arbitrary pointQ. Then from formula (37), taking into account estimates (44), (45) and (49),

we have

|u(r, φ, t)| ≤ M1M4

[ ∞∑
m=1

(|τ0m|+ |ψ0m|) +
∞∑

n,m=1

(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|)

]
. (85)

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient τnm as

τnm = −
√
2

l
√
π|Jn+1(qnm)|n2

∫ 2π

0

J(φ) cos(nφ) dφ,
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+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2
+

( ∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

)
)1/2]

≤

≤ M21

√
2

[( ∞∑
m=1

|τ (2,2)0m |2 +
∞∑

n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

)
)1/2

+

+

( ∞∑
m=1

|ψ(2,2)
0m |2 +

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]
=

=
√
2M21

(
∥τ (2,2)(r, φ)∥L2(D) + ∥ψ(2,2)(r, φ)∥L2(D)

)
≤ M22

(
∥τ (2,2)(r, φ)∥C(D) + ∥ψ(2,2)(r, φ)∥C(D)

)
.

From the last inequality, the estimate (84) follows directly.
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where

J(φ) =

∫ l

0

τ (0,2)r,φ (r, φ)Jn(µnmr)r dr = − 1

µ2
nm

(J ′
1 + J ′

2 − n2J ′
3),

J ′
1 =

∫ l

0

τ (2,2)r,φ (r, φ)Jn(µnmr)r dr,

J ′
2 =

∫ l

0

τ
(1,2)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J ′
3 =

∫ l

0

τ
(0,2)
r,φ (r, φ)

r2
Jn(µnmr)r dr.

If τ (0,2)r,φ (r, φ) ∈ C2[0, l] and τ
(0,2)
r,φ (0, φ) = τ (1,2)(0, φ) = 0, then the functions τ (1,2)r,φ (r, φ)r−1 = τ

(2,2)
r,φ (θ, φ),

τ
(0,2)
r,φ (r, φ) = τ

(2,2)
r,φ (θ, φ)/2, 0 < θ < r are continuous on the segment [0, l], then

|τnm| ≤ M18

µ2
nm

|τ (2,2)nm |,

where
τ (2,2)nm =

1√
π

∫∫

D

τ (2,2)r,φ (r, φ) cos(nφ)Rnm(r)r dr dφ. (86)

Similarly, we obtain the estimates

|τ̃nm| ≤ M18

µ2
nm

|τ̃ (2,2)nm |,

τ̃ (2,2)nm =
1√
π

∫∫

D

τ (2,2)r,φ (r, φ) sin(nφ)Rnm(r)r dr dφ, (87)

|ψnm| ≤ M18

µ2
nm

|ψ(2,2)
nm |,

|ψ̃nm| ≤ M18

µ2
nm

|ψ̃(2,2)
nm |,

where ψ(2,2)
nm and ψ̃

(2,2)
nm are defined according to formulas (86) and (87), but with the replacement of τ(r, φ) with

ψ(r, φ).
Now, continuing the estimation (85), we have

|u(r, φ, t)| ≤ M19

[ ∞∑
m=1

1

µ2
0m

(|τ (2,2)0m |+ |ψ(2,2)
0m |) +

∞∑
n,m=1

1

µ2
nm

(|τ (2,2)nm |+ |τ̃ (2,2)nm |+ |ψ(2,2)
nm |+ |ψ̃(2,2)

nm |)

]
.

Hence, using Bunyakovsky’s inequality, we obtain

|u(r, φ, t)| ≤ M20

{( ∞∑
m=1

1

µ4
0m

)1/2[( ∞∑
m=1

|τ (2,2)0m |2
)1/2

+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2]
+

+

( ∞∑
n,m=1

1

µ4
nm

)1/2[(
2

∞∑
n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

))1/2
+

(
2

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]}
≤

≤ M21

[( ∞∑
m=1

|τ (2,2)0m |2
)1/2

+

( ∞∑
n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

))1/2
+
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+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2
+

( ∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

)
)1/2]

≤

≤ M21

√
2

[( ∞∑
m=1

|τ (2,2)0m |2 +
∞∑

n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

)
)1/2

+

+

( ∞∑
m=1

|ψ(2,2)
0m |2 +

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]
=

=
√
2M21

(
∥τ (2,2)(r, φ)∥L2(D) + ∥ψ(2,2)(r, φ)∥L2(D)

)
≤ M22

(
∥τ (2,2)(r, φ)∥C(D) + ∥ψ(2,2)(r, φ)∥C(D)

)
.

From the last inequality, the estimate (84) follows directly.
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1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

δutt − uttxx − α2utxx − α1utx + β2uxxxx + β1uxx + γu = uxxf
′(ux), (1)

where (t, x) ∈ R+ × R, R+ = (0,+∞), R = (−∞,+∞); the dash in the equation denotes differentiation by
ux = ∂xu = ∂u/∂x; the coefficients αi, βi, i = 1, 2, γ, δ are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), r ∈ R, for which the modulus |f(r)| at r ≥ 0 is a non-decreasing
function and the estimates are valid

sup
x∈R

|f (i)(g(x))| ≤
∣∣∣f (i)

(
sup
x∈R

|g(x)|
)∣∣∣, i = 0, 1, g(x) ∈ C[R],

|f(ξr)| ≤ χ(ξ)|f(r)|, ξ > 0, r ≥ 0, (2)

χ– a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at x → ±∞ and the norm is ∥g∥C = supx∈R |g(x)|, with initial conditions

u|t=0 = φ(x), ut|t=0 = ψ(x), x ∈ R. (3)

The sought classical solution u = u(t, x), (t, x) ∈ R+ × R, R+ = [0,+∞), and its partial derivatives included in
equation (1), for all values of the temporary variable t on the variable x belong to the space C[R]. (By a classical

1

SABITOV

PARTIAL DIFFERENTIAL EQUATIONS
13. Aldashev S.A. Correctness of a local boundary value problem in a cylindrical domain for multidimensional

hyperbolic equations with a wave operator, Vestnik NGU. Series Mathematics, Mechanics, Computer Sci-
ence, 2015, Vol. 15, No. 4, pp. 3–11.

14. Aldashev S.A.Correctness of the boundary value problem in a cylindrical domain for multidimensional wave
equations, Bull. of Samara State Univ. Series Physical and Mathematical Sciences, 2012, Vol. 29, No. 4.
pp. 48–55.

15. Arnold V.I. Small denominators and problems of stability of motion in classical and celestial mechanics,
Uspekhi Mat., 1963, Vol. 18, No. 6, pp. 91–192.

16. Arnold V.I. Small denominators I. On mappings of a circle onto itself, Proc. of the USSR Academy of Sci-
ences. Mathematical Series, 1961, Vol. 25, pp. 21–86.

17. Kozlov V.V. A condition for the freezing of a direction field, small denominators, and the chaotization of
steady flows of a viscous fluid, J. Appl. Math. Mech., 1999, Vol. 63, No. 2, pp. 229–235.

18. Koshlyakov N.S., Glinner E.B., and Smirnov M.M.Uravneniya matematicheskoy fiziki (Equations of Math-
ematical Physics), Moscow: Vyschaya schkola, 1970.

19. Olver F.W.J. Asymptotics and Special Functions, New York; London: Academic Press, 1974.

20. Bateman H. and Erdélyi A.Higher Transcendental Functions, New York; Toronto; London: McGraw-Hill,
1953.

21. Watson G.N. A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge: Cambridge University
Press, 1944.



57

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY OF THE
CAUCHY PROBLEM FOR THE EQUATION OF VIBRATIONS OF A

HOLLOW ROD

© 2025 Kh. G. Umarov∗

Academy of Sciences of the Chechen Republic, Grozny, Russia
Chechen State Pedagogical University, Grozny, Russia

∗e-mail: umarov50@mail.ru

Recieved June 19, 2024
Revised June 19, 2024

Accepted October 31, 2024

Abstract. For a nonlinear partial differential equation of Sobolev type, generalizing the equation of oscillations
of a hollow flexible rod, the Cauchy problem is studied in the space of continuous functions defined on the entire
numerical axis and for which there are limits at infinity. The conditions for the existence of a global classical
solution and the blow-up of the solution to the Cauchy problem on a finite time interval are considered.

Keywords: equation of vibrations of a hollow flexible rod, nonlinear equation of Sobolev type, global solution, blow-
up of the solution

DOI: 10.31857/S03740641250106e7

1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

δutt − uttxx − α2utxx − α1utx + β2uxxxx + β1uxx + γu = uxxf
′(ux), (1)

where (t, x) ∈ R+ × R, R+ = (0,+∞), R = (−∞,+∞); the dash in the equation denotes differentiation by
ux = ∂xu = ∂u/∂x; the coefficients αi, βi, i = 1, 2, γ, δ are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), r ∈ R, for which the modulus |f(r)| at r ≥ 0 is a non-decreasing
function and the estimates are valid

sup
x∈R

|f (i)(g(x))| ≤
∣∣∣f (i)

(
sup
x∈R

|g(x)|
)∣∣∣, i = 0, 1, g(x) ∈ C[R],

|f(ξr)| ≤ χ(ξ)|f(r)|, ξ > 0, r ≥ 0, (2)

χ– a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at x → ±∞ and the norm is ∥g∥C = supx∈R |g(x)|, with initial conditions

u|t=0 = φ(x), ut|t=0 = ψ(x), x ∈ R. (3)

The sought classical solution u = u(t, x), (t, x) ∈ R+ × R, R+ = [0,+∞), and its partial derivatives included in
equation (1), for all values of the temporary variable t on the variable x belong to the space C[R]. (By a classical
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The bounded operator A1 generates a uniformly continuous group U(τ ;A1), τ ∈ R, represented by a degree
series

U(τ ;A1) =

+∞∑
n=0

τn

n!
An

1 ,

uniformly converging on τ at eachfinite segment fromR, and by virtue of the permutationof operators (
√
δI − ∂x)

−1

and (δI − ∂2
x)

−1, the representation is true

U(τ ;A1) = eα2τU
(
−α1τ ; (

√
δI − ∂x)

−1
)
U
(
−(α2

√
δ − α1)

√
δτ ; (δI − ∂2

x)
−1

)
=

= eα2τ

(
+∞∑
n=0

(−1)
n
αn
1 τ

n

n!
(
√
δI − ∂x)

−n

)(
+∞∑
m=0

(−1)m(α2

√
δ − α1)

mδm/2τm

m!
(δI − ∂2

x)
−m

)
,

as well as the evaluation
∥U(t;A1)∥ ≤ e(α2+α1/

√
δ+|α2−α1/

√
δ|)t, t ∈ R+.

In equation (9) we substitute the unknown function

w(t, x) = U(t/2;A1)v(t, x), (10)

then we can uniquely determine the initial values of the function w(t, x):

w|t=0 = w0(x) = v0(x),

wt|t=0 = w1(x) =
A1v0(x)

2
+ v1(x) =

=
α2v0(x)

2
− α2

√
δ − α1

4

∫ +∞

−∞
e−|s|

√
δv0(x+ s)ds −

− α1

2

∫ +∞

0

e−r
√
δv0(x+ r)dr + v1(x)

and express the solution v(t, x) of equation (9) through a new unknown function w(t, x):

v(t, x) = U(−t/2;A1)w(t, x). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

wtt =

(
A2

1

4
−A2

)
w, (12)

in which the operator coefficient

A2
1

4
−A2 = B = B0 +B1, D(B) = C(2)[R],

where B0 = β2∂
2
x and

B1 =

(
β2δ + β1 +

α2
2

4

)
I −

(
b2δ

2 + β1δ + γ +
α2(α2

√
δ − α1)

2

√
δ

)
(δI − ∂2

x)
−1 −

− α2α1

2
(
√
δI − ∂x)

−1 +
1

4

(
α1(

√
δI − ∂x)

−1 + (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1

)2

.

Equation (12) can be written as an abstract ordinary differential equation

Wtt = BW, t ∈ R+, (13)

whereW = W (t) : t → w(t, x) is the sought vector-function defined for t ∈ R+ with values in the space C[R].

solution of the equationwemean a sufficiently smooth function having all continuous derivatives of the desired order
and satisfying the equation at every point in the domain of its setting.)

By C(k)[R] = {g(x) ∈ C[R] : g′(x), . . . , g(k)(x) ∈ C[R]}, k = 1, 2, . . . , we denote subsets of differentiable
functions in C[R].

Recall [5, Chap. 8, § 1; 6, § 2] that in the space C[R] the differential operator ∂x with domain of definition
D(∂x) = C(1)[R] generates a compressive strongly continuous groupU(τ ; ∂x)g(x) = g(x+τ), τ ∈ R, of left shifts,
and the operator ∂2

x with domain of definitionD(∂2
x) = C(2)[R] is the derivative operator of the strongly continuous

semigroup U(t; ∂2
x)g(x) = (2

√
πt)−1

∫ +∞
0

e−ξ2/(4t)g(x + ξ)dξ, t ∈ R+; and for the resolvents (λI − ∂x)
−1,

(λI − ∂2
x)

−1 the estimates ∥(λI − ∂x)
−1∥ ≤ 1/λ and ∥(λI − ∂2

x)
−1∥ ≤ 1/λ are valid at λ > 0.

Let us investigate the Cauchy problem (1), (3) according to the following plan.
1. Let us make sure that the formulation of the Cauchy problem (1), (3) is correct and its classical solution

exists locally in time. For this purpose, we find the solution of the Cauchy problem for the linear homogeneous
equation corresponding to (1).

2. Let us introduce an auxiliary Cauchy problem

δvtt − vttxx − α2vtxx − α1vtx + β2vxxxx + β1vxx + γv = ∂2
xf(v), (4)

v|t=0 = φ′(x), vt|t=0 = ψ′(x), x ∈ R, (5)

for which we find the time interval [0, t1] of existence and uniqueness of its classical solution and estimate the norm
in C[R] of this local solution.

3. Let us establish the relation between the solutions of equations (1) and (4) by assuming that on the segment
[0, t1, the solution u = u(t, x) at the variable x belongs to the intersection of the subset C(4)[R] ⊂ C[R] with
the Sobolev space W 4

2 (R), and the temporary partial derivatives ut = ut(t, x) and utt = utt(t, x) belong to the
intersection C(2)[R] ∩W 2

2 (R).
4. Let us find sufficient conditions for the existence of a single classical global (t ≥ 0) solution and destruction

on a finite time interval of the solution of the Cauchy problem (1), (3).

2. CAUCHY PROBLEM FOR A LINEAR HOMOGENEOUS EQUATION

Consider the linear homogeneous equation corresponding to (1):

(δI − ∂2
x)utt − (α2∂

2
x + α1∂x)ut + (β2∂

4
x + β1∂

2
x + γI)u = 0. (6)

Let’s introduce in (6) a new unknown function

v(t, x) = δu(t, x)− uxx(t, x), (7)

assuming that the partial derivatives of uxx, utxx are continuous at t ∈ R+. From substitution (7), provided that
the initial functions φ(x), ψ(x) belong to C(2)[R], we can uniquely determine the initial values of the function
v = v(t, x):

v|t=0 = v0(x) = δφ(x)− φ′′(x), vt|t=0 = v1(x) = δψ(x)− ψ′′(x),

and, using the membership of the positive semi-axis to the resolvent set of the differential operator ∂2
x, express the

solution u(t, x) of equation (6) through the new unknown function v(t, x):

u(t, x) = (δI − ∂2
x)

−1v(t, x) =
1

2
√
δ

∫ +∞

−∞
e−|s|

√
δv(t, x+ s)ds. (8)

As a result of substitution (7) we obtain the equivalent (6) integro-differential equation

vtt +A1vt +A2v = 0, (9)

in which the operator coefficients are

A1 = α2I − (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1 − α1(

√
δI − ∂x)

−1, D(A1) = C[R],

A2 = −β2∂
2
x − (β2δ + β1)I + (β2δ

2 + β1δ + γ)(δI − ∂2
x)

−1, D(A2) = C(2)[R].
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The bounded operator A1 generates a uniformly continuous group U(τ ;A1), τ ∈ R, represented by a degree
series

U(τ ;A1) =

+∞∑
n=0

τn

n!
An

1 ,

uniformly converging on τ at eachfinite segment fromR, and by virtue of the permutationof operators (
√
δI − ∂x)

−1

and (δI − ∂2
x)

−1, the representation is true

U(τ ;A1) = eα2τU
(
−α1τ ; (

√
δI − ∂x)

−1
)
U
(
−(α2

√
δ − α1)

√
δτ ; (δI − ∂2

x)
−1

)
=

= eα2τ

(
+∞∑
n=0

(−1)
n
αn
1 τ

n

n!
(
√
δI − ∂x)

−n

)(
+∞∑
m=0

(−1)m(α2

√
δ − α1)

mδm/2τm

m!
(δI − ∂2

x)
−m

)
,

as well as the evaluation
∥U(t;A1)∥ ≤ e(α2+α1/

√
δ+|α2−α1/

√
δ|)t, t ∈ R+.

In equation (9) we substitute the unknown function

w(t, x) = U(t/2;A1)v(t, x), (10)

then we can uniquely determine the initial values of the function w(t, x):

w|t=0 = w0(x) = v0(x),

wt|t=0 = w1(x) =
A1v0(x)

2
+ v1(x) =

=
α2v0(x)

2
− α2

√
δ − α1

4

∫ +∞

−∞
e−|s|

√
δv0(x+ s)ds −

− α1

2

∫ +∞

0

e−r
√
δv0(x+ r)dr + v1(x)

and express the solution v(t, x) of equation (9) through a new unknown function w(t, x):

v(t, x) = U(−t/2;A1)w(t, x). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

wtt =

(
A2

1

4
−A2

)
w, (12)

in which the operator coefficient

A2
1

4
−A2 = B = B0 +B1, D(B) = C(2)[R],

where B0 = β2∂
2
x and

B1 =

(
β2δ + β1 +

α2
2

4

)
I −

(
b2δ

2 + β1δ + γ +
α2(α2

√
δ − α1)

2

√
δ

)
(δI − ∂2

x)
−1 −

− α2α1

2
(
√
δI − ∂x)

−1 +
1

4

(
α1(

√
δI − ∂x)

−1 + (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1

)2

.

Equation (12) can be written as an abstract ordinary differential equation

Wtt = BW, t ∈ R+, (13)

whereW = W (t) : t → w(t, x) is the sought vector-function defined for t ∈ R+ with values in the space C[R].
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where j1(t, B0)g(x) =
4
π

∫ 1

0

√
1− r2C(tr;B0)g(x)dr.

For t ∈ R+ we obtain estimates of the norms: ∥j1(t, B0)∥ ≤ 4
π

∫ 1

0

√
1− r2dr = 1 and

∥C(t;B)∥ ≤ 1 +
t2

2

1∫

0

ch (c1ts) ds = 1 +
t

2c1
sh(c1t) = σ1(t), (15)

∥S(t;B)∥ ≤ t+
1

2c1

t∫

0

τ sh(c1τ) dτ ≤ t

(
1 +

ch (c1t)

2c21

)
= σ2(t). (16)

Using formulas (11) and (8) of inverse substitutions we have

u(t, x) = (δI − ∂2
x)

−1v(t, x) = (δI − ∂2
x)

−1U(−t/2;A1)w(t, x). (17)

Then, using the permutability of the resolvent (δI−∂2
x)

−1 and the semigroupU(−t/2;A1) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t, x) = U(−t/2;A1)
[
C(t;B)φ(x) + S(t;B)(A1φ(x)/2 + ψ(x))

]
. (18)

Thus, there is
Theorem 1. Let the initial functions φ(x) and ψ(x) belong to the subsetC(4)[R] of the spaceC[R], then the Cauchy

problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup
x∈R

|u(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2×

×

[
σ1(t) sup

x∈R
|φ(x)|+ σ2(t)

(
sup
x∈R

|ψ(x)|+ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|φ(x)|

)]
, t ∈ R+.

Remark 1. The classical solution W (t) of the abstract Cauchy problem (13), (14) belongs to C(2)(R+, C[R])
and for it BW (t) ∈ C(R+, C[R]), hence w(t, x) = U(t/2;A1) × (δI − ∂2

x)u(t, x) ∈ C2,2(R+,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t, x) ∈ C2,4(R+,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting ux = v (the left parts of these equations coincide).

Let’s act on both parts of equation (4) by the operator (δI − ∂2
x)

−1 and obtain the equivalent equation

vtt +A1vt +A2v = f1(v), (19)

in which the nonlinearity f1(u) = [δ(δI − ∂2
x)

−1 − I]f(u), and the operators A1 and A2 are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(−t/2;A1)w(t, x)

Wtt = BW + f2(t, U(−t/2;A1)W ), (20)

where the operator B is the same as in (13) and the nonlinear operator f2 is defined by the formula

f2(t, ·) = U(t/2;A1)[δ(δI − ∂2
x)

−1 − I]f(·),

here f(·) is the superposition operator: f(g) = f(g(x)), g(x) ∈ C[R].

For equation (13), we consider an abstract Cauchy problem with initial conditions

W |t=0 = W0, W ′|t=0 = W1, (14)

whereW0 = w0(x),W1 = w1(x) are elements of the space C[R].
The Cauchy problem (13), (14) is uniformly correct [6, § 1.4], only when the operator B is the producing

operator of a strongly continuous cosine operator-function C(τ ;B), τ ∈ R.
In the spaceC[R], the operatorB0 is the derivative operator of the strongly continuous cosine operator-function

C(τ ;B0), τ ∈ R [6, § 1.5]:

C(τ ;B0)g(x) = 2−1[U(τ
√
β2; ∂x) + U(−τ

√
β2; ∂x)]g(x) = 2−1[g(x+ τ

√
β2) + g(x− τ

√
β2)],

for which the estimate of the norm is fair

∥C(t;B0)∥ ≤ 1, t ∈ R+.

The corresponding sine operator-function S(τ ;B0), τ ∈ R, has the form

S(τ ;B0)g(x) =

∫ τ

0

C(s;B0)g(x)ds =
1

2
√
β2

∫ x+τ
√
β2

x−τ
√
β2

g(ξ)dξ

and the norm estimation is valid for it
∥S(t;B0)∥ ≤ t, t ∈ R+.

The bounded operator B1 generates a strongly continuous cosine operator-function C(τ ;B1), for which the
representation [6, §§ 1.4, 4.2] is valid on an arbitrary element g(x) ∈ C[R]

C(τ ;B1)g(x) =

+∞∑
n=0

τ2n

(2n)!
Bn

1 g(x), τ ∈ R,

and the power series converges uniformly on τ on each finite segment from R. Note that the operator-valued
function C(τ ;B1) is continuous in the uniform operator topology, and the norm estimate is valid for it

∥C(t;B1)∥ ⩽
+∞∑
n=0

t2n

(2n)!
∥B1∥n ⩽ ch(c1t), t ∈ R+,

where c21 = 2β2δ + 2β1 + γ/δ + (α2

√
δ + α1 + |α2

√
δ − α1|)2/(4δ).

The operator B is obtained by perturbing the unbounded operator B0 by the bounded operator B1, but the
perturbation by the bounded operator preserves [6, § 8.2] the ability of the operator B0 to generate the cosine
operator-function, soB = B0 +B1 is the derivative operator of the strongly continuous cosine operator-function
C(τ ;B), τ ∈ R, and hence the abstract Cauchy problem (13), (14) is uniformly correct.

The solution of the Cauchy problem (13), (14) for any initial dataW0 ∈ D(B) andW1 ∈ C1[R] is defined by
the formula

W (t) = C(t;B)W0 + S(t;B)W1,

where S(t;B) is the sine operator-function associated with C(t;B):

S(t;B)g =

∫ t

0

C(τ ;B)gdτ, g ∈ C[R],

C1[R] = {g ∈ C[R] : C(t;B)g ∈ C(1)(R, C[R])} is a linear manifold. It is obvious thatD(B) = C(2)[R] ⊂ C1[R].
In order to derive an estimate of the norm of the solution of equation (13) that is the abstract function W (t),

we find estimates of the norms of the cosine and sine of the operator functions generated by the operator B, for
which we obtain a representation of the operator-valued function C(t;B) via C(t;B0) and C(t;B1).

Considering the derivative operatorB as the result of perturbing the derivative operatorB0 by the operatorB1,
that in turn gives rise to the cosine operator-function, for g(x) ∈ D(B0) ∩D(B1) = C(2)[R], we obtain [6, § 8.2]
the representation of

C(t;B)g(x) = C(t;B0)g(x) +
t2

2

∫ 1

0

j1(t
√

1− s2, B0)C(ts;B1)g(x)ds,
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where j1(t, B0)g(x) =
4
π

∫ 1

0

√
1− r2C(tr;B0)g(x)dr.

For t ∈ R+ we obtain estimates of the norms: ∥j1(t, B0)∥ ≤ 4
π

∫ 1

0

√
1− r2dr = 1 and

∥C(t;B)∥ ≤ 1 +
t2

2

1∫

0

ch (c1ts) ds = 1 +
t

2c1
sh(c1t) = σ1(t), (15)

∥S(t;B)∥ ≤ t+
1

2c1

t∫

0

τ sh(c1τ) dτ ≤ t

(
1 +

ch (c1t)

2c21

)
= σ2(t). (16)

Using formulas (11) and (8) of inverse substitutions we have

u(t, x) = (δI − ∂2
x)

−1v(t, x) = (δI − ∂2
x)

−1U(−t/2;A1)w(t, x). (17)

Then, using the permutability of the resolvent (δI−∂2
x)

−1 and the semigroupU(−t/2;A1) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t, x) = U(−t/2;A1)
[
C(t;B)φ(x) + S(t;B)(A1φ(x)/2 + ψ(x))

]
. (18)

Thus, there is
Theorem 1. Let the initial functions φ(x) and ψ(x) belong to the subsetC(4)[R] of the spaceC[R], then the Cauchy

problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup
x∈R

|u(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2×

×

[
σ1(t) sup

x∈R
|φ(x)|+ σ2(t)

(
sup
x∈R

|ψ(x)|+ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|φ(x)|

)]
, t ∈ R+.

Remark 1. The classical solution W (t) of the abstract Cauchy problem (13), (14) belongs to C(2)(R+, C[R])
and for it BW (t) ∈ C(R+, C[R]), hence w(t, x) = U(t/2;A1) × (δI − ∂2

x)u(t, x) ∈ C2,2(R+,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t, x) ∈ C2,4(R+,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting ux = v (the left parts of these equations coincide).

Let’s act on both parts of equation (4) by the operator (δI − ∂2
x)

−1 and obtain the equivalent equation

vtt +A1vt +A2v = f1(v), (19)

in which the nonlinearity f1(u) = [δ(δI − ∂2
x)

−1 − I]f(u), and the operators A1 and A2 are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(−t/2;A1)w(t, x)

Wtt = BW + f2(t, U(−t/2;A1)W ), (20)

where the operator B is the same as in (13) and the nonlinear operator f2 is defined by the formula

f2(t, ·) = U(t/2;A1)[δ(δI − ∂2
x)

−1 − I]f(·),

here f(·) is the superposition operator: f(g) = f(g(x)), g(x) ∈ C[R].
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Thus, there is
Theorem 2. Let the function f satisfy the conditions (2), and the initial functions φ(x), ψ(x) of the Cauchy problem

(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup
x∈R

|v(t, x)| = sup
x∈R

|ux(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2σ6(t) = σ7(t), t ∈ [0, t1].

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space L2(R) of functions with integrable square.

Recall that the scalar product and norm in L2(R) are defined by the formulas (φ,ψ) =
∫ +∞
−∞ φ(x)ψ(x)dx and

∥φ∥2 =
(∫ +∞

−∞ |φ(x)|2dx
)1/2

, respectively, and that for functions g(x) belonging to the intersection of the space
of continuous bounded functions C(R) with the Sobolev spaceW 1

2 (R), the following estimate is valid

∥g∥C ≤ ∥g∥W 1
2
=

(∫ +∞

−∞
[(g(x))2 + (g′(x))2]dx

)1/2

, (26)

and if g(x) ∈ C(2)(R), then [8] the limits of the functions g(x), g′(x) at x → ±∞ are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t ∈ [0, t1], of equation (4) follows the existence

of a corresponding solution of

u = u(t, x) = lim
x0→−∞

∫ x

x0

v(t, s)ds =

∫ x

−∞
v(t, s)ds (27)

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled

u(t, x) ∈ C(4)[R] ∩W 4
2 (R), ut(t, x), utt(t, x) ∈ C(2)[R] ∩W 2

2 (R), t ∈ [0, t1]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

lim
x→±∞

∂k
xu(t, x) = 0, k = 0, 4;

lim
x→±∞

∂n
t ∂

m
x u(t, x) = 0, n = 1, 2, m = 0, 2; t ∈ [0, t1]. (29)

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, t1]. Then, using relations (29),
we obtain the equations

∫ x

−∞
∂i
t∂

j
sv(t, s)ds =

∫ x

−∞
(∂i

t∂
j
su(t, s))sds = ∂i

t∂
j
xu(t, x)− lim

s→−∞
∂i
t∂

j
su(t, s) = ∂i

t∂
j
xu(t, x).

Further, by virtue of continuity of the function f ′, we have
∫ x

−∞
∂2
sf(v(t, s))ds = (f(ux(t, x)))x − f ′

(
lim

x0→−∞
ux(t, x0)

)
lim

x0→−∞
uxx(t, x0) = uxx(t, x)f

′(ux(t, x)).

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, t1], whence it follows that function (27) is a solution of equation (1). The lemma is
proved.

Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, x), the conditions
that the initial functions must satisfy are required to follow:

φ(x) ∈ C(4)[R] ∩W 4
2 (R), ψ(x) ∈ C(2)[R] ∩W 2

2 (R). (30)

Given t ∈ R+, it is fair to estimate the norm of the operator f2(t, ·) in the space C[R]:

∥F (t, g)∥C ≤ 2e(α2+α1/
√
δ+|α2−α1/

√
δ|)t/2f(∥g∥C). (21)

For equation (20) we consider an abstract Cauchy problem with initial conditions

W |t=0 = W ′
0, W ′|t=0 = W ′

1, (22)

whereW ′
0 = (w0(x))

′ andW ′
1 = (w1(x))

′ are elements of the space C[R].
From the continuous differentiability of the superposition operator in the space of continuous functions and

boundedness of the operators U(t/2;A1) and (δI−∂2
x)

−1, the continuous Fréchet differentiability of the operator
f2(t, ·) in the spaceC[R] follows and, consequently, there exists an interval [0, t0), withinwhich the abstractCauchy
problem (20), (22) has [7, § 3] the only classical solutionW = W (t) (provided that the initial dataW ′

0,W ′
1 belong

to the domain of definition of the operator B) that satisfies the integral equation

W (t) = C(t;B)W ′
0 + S(t;B)W ′

1 +

∫ t

0

S(t− τ ;B)f2(τ, U(−τ/2;A1)W )dτ. (23)

From equation (23), using estimates (15), (16), (21), and (2), we derive the integral inequality

∥W (t)∥C ≤ σ1(t)∥W ′
0∥C + σ2(t)∥W ′

1∥C +

+ 2

t∫

0

σ2(t− τ)e(α2+α1/
√
δ+|α2−α1/

√
δ|)τ/2χ

(
e−(α2−α1/

√
δ−|α2−α1/

√
δ|)τ/2)f(∥W (τ)∥C) dτ, (24)

where
∥W ′

0∥C = ∥(w0(x))
′∥C = ∥(v0(x))′∥C = sup

x∈R
|δφ′(x)− φ′′′(x)|,

∥W ′
1∥C = ∥(w1(x))

′∥C = ∥(v1(x))′∥C = ∥(A1v0(x)/2 + v1(x))
′∥C ≤

≤ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|δφ′(x)− φ′′′(x)|+ sup
x∈R

|δψ′(x)− ψ′′′(x)|.

Denoting

σ3(t) = σ1(t)∥W ′
0∥C + σ2(t)∥W ′

1∥C ,

σ4(τ) = e(α2+α1/
√
δ+|α2−α1/

√
δ|)τ/2χ(e−(α2−α1/

√
δ−|α2−α1/

√
δ|)τ/2)

and using the inequality

σ5(t) = t(1 + ch(c1t)/(2c21) ⩾ (t− τ)(1 + ch(c1(t− τ))/(2c21) = σ2(t− τ), t ⩾ τ ⩾ 0,

let us write the integral inequality (24) in the form

∥W (t)∥C ≤ σ3(t) + 2σ5(t)

∫ t

0

σ4(τ)f(∥W (τ)∥C)dτ. (25)

From inequality (25), we derive [3] an estimate of the norm in the space C[R] of the solution of equation (20)
on the segment [0, t1]:

∥W (t)∥C ≤ σ3(t)Φ
−1(Ψ(t)) = σ6(t),

where

Ψ(t) = Φ(1) + 2σ5(t)

∫ t

0

σ4(τ)
χ(σ3(τ))

σ3(τ)
dτ,

Φ(ξ) =
∫ ξ

ξ0
|f(s)|−1ds for ξ0, ξ > 0; Φ−1 is the inverse function to Φ, the segment [0, t1] ⊂ [0, t0) is defined by

those values t for which the values of the functionΨ(t) belong to the region of existence Dom(Φ−1) of the inverse
function Φ−1.
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Thus, there is
Theorem 2. Let the function f satisfy the conditions (2), and the initial functions φ(x), ψ(x) of the Cauchy problem

(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup
x∈R

|v(t, x)| = sup
x∈R

|ux(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2σ6(t) = σ7(t), t ∈ [0, t1].

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space L2(R) of functions with integrable square.

Recall that the scalar product and norm in L2(R) are defined by the formulas (φ,ψ) =
∫ +∞
−∞ φ(x)ψ(x)dx and

∥φ∥2 =
(∫ +∞

−∞ |φ(x)|2dx
)1/2

, respectively, and that for functions g(x) belonging to the intersection of the space
of continuous bounded functions C(R) with the Sobolev spaceW 1

2 (R), the following estimate is valid

∥g∥C ≤ ∥g∥W 1
2
=

(∫ +∞

−∞
[(g(x))2 + (g′(x))2]dx

)1/2

, (26)

and if g(x) ∈ C(2)(R), then [8] the limits of the functions g(x), g′(x) at x → ±∞ are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t ∈ [0, t1], of equation (4) follows the existence

of a corresponding solution of

u = u(t, x) = lim
x0→−∞

∫ x

x0

v(t, s)ds =

∫ x

−∞
v(t, s)ds (27)

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled

u(t, x) ∈ C(4)[R] ∩W 4
2 (R), ut(t, x), utt(t, x) ∈ C(2)[R] ∩W 2

2 (R), t ∈ [0, t1]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

lim
x→±∞

∂k
xu(t, x) = 0, k = 0, 4;

lim
x→±∞

∂n
t ∂

m
x u(t, x) = 0, n = 1, 2, m = 0, 2; t ∈ [0, t1]. (29)

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, t1]. Then, using relations (29),
we obtain the equations

∫ x

−∞
∂i
t∂

j
sv(t, s)ds =

∫ x

−∞
(∂i

t∂
j
su(t, s))sds = ∂i

t∂
j
xu(t, x)− lim

s→−∞
∂i
t∂

j
su(t, s) = ∂i

t∂
j
xu(t, x).

Further, by virtue of continuity of the function f ′, we have
∫ x

−∞
∂2
sf(v(t, s))ds = (f(ux(t, x)))x − f ′

(
lim

x0→−∞
ux(t, x0)

)
lim

x0→−∞
uxx(t, x0) = uxx(t, x)f

′(ux(t, x)).

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, t1], whence it follows that function (27) is a solution of equation (1). The lemma is
proved.

Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, x), the conditions
that the initial functions must satisfy are required to follow:

φ(x) ∈ C(4)[R] ∩W 4
2 (R), ψ(x) ∈ C(2)[R] ∩W 2

2 (R). (30)
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From relation (35) it follows that the energy functional E(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) ≡ E0, (36)

where

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 − β1∥φ′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx

is the initial energy.
Let us require that the initial energy is non-negative: E0 ≥ 0, i.e., the inequality

δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx ≥ β1∥φ′∥22,

where the function F (φ′(x)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 + γ∥u∥22+

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22ds = E0 + β1∥ux∥22. (37)

Suppose that
F (η) ≥ 0, η ∈ R, (38)

then from equality (37), reducing the left part, we obtain

z(t) ≤ E0 + β1(δ∥u∥22 + ∥ux∥22) = E0 + β1y(t), t ∈ [0, t1]. (39)

From inequalities (32) and (39), the integral inequality follows

y(t) ≤ E0t+ y(0) + (1 + β1)

∫ t

0

y(s)ds, t ∈ [0, t1]. (40)

Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral

y(t) ≤
(

E0

1 + β1
+ y(0)

)
e(1+β1)t = σ8(t), (41)

true on the entire positive semi-axis of t ∈ R+, and hence the classical solution of u = u(t, x) at t ∈ R+ belongs
to the Sobolev spaceW 1

2 (R):

∥u∥2W 1
2
= ∥u∥22 + ∥ux∥22 ≤

{(
1 + 1−δ

δ

)
y(t) ≤ 1

δσ8(t), 0 < δ < 1,

δ∥u∥22 + ∥ux∥22 = y(t) ≤ σ8(t), δ ≥ 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t, x), t ∈ R+ of the Cauchy
problem (1), (3) in the space C[R]:

∥u∥C = sup
x∈R

|u(t, x)| ≤ ∥u∥W 1
2
≤

{√
σ8(t)
δ , 0 < δ < 1,√

σ8(t), δ ≥ 1,

ensuring the existence of a global solution. The theorem is proved.

5. EXISTENCE OF A GLOBAL SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Consider the so-called energy integral for equation (1):

y(t) = δ(u, u) + (ux, ux) =

∫ +∞

−∞
(δu2 + u2

x)dx, t ∈ [0, t1]. (31)

Applying the Cauchy-Bunyakovsky inequality |(φ,ψ)| ≤ ∥φ∥2∥ψ∥2 to the derivative of the energy integral
y′(t) = 2(δ(ut, u) + (utx, ux)), we derive an auxiliary estimate on the segment t ∈ [0, t1]:

y′(t) ≤ y(t) + z(t), (32)

where

z(t) = δ(ut, ut) + (utx, utx) =

∫ +∞

−∞
(δu2

t + u2
tx)dx, t ∈ [0, t1], (33)

is the second integral of energy for equation (1).
Theorem 3. Let the conditions of lemma and theorem 2 be satisfied and let the parameters αi, βi, i = 1, 2, γ, δ of

equation (1), the nonlinearity f and the initial functions φ(x), ψ(x) satisfy conditions (30) and

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx− β1∥φ′∥22 ≥ 0;

F (η) =

∫ η

0

f(s)ds ≥ 0, η ∈ R; F (φ′(x)) ∈ L(R).

Then, there exists a single global solution of the Cauchy problem (1), (3) and for it the estimation is valid

sup
x∈R

|u(t, x)| ≤

{√
c2/δe

(1+β1)t/2, 0 < δ < 1,
√
c2e

(1+β1)t/2, δ ≥ 1,
t ≥ 0,

where
c2 =

(
E0 + (1 + β1)(δ∥φ∥22 + ∥φ′∥22)

)
/(1 + β1).

Proof. Multiply both parts of equation (1) by the partial time derivative ut = ut(t, x) and integrate from−∞ to
+∞. Then, integrating by parts and taking into account, by virtue of (29), the equality to zero outside the integral
summands, we obtain

δ

2

d

dt
∥ut∥22 + (uttx, utx) + α2(utx, utx)−

α1

2

∫ +∞

−∞
(u2

t )xdx +

+ β2(uxx, utxx)− β1(ux, utx) +
γ

2

d

dt
∥u∥22 + (f(ux), utx) = 0. (34)

Let us introduce the potential F (η) =
∫ η

0
f(s)ds, generated by the nonlinearity f of equation (1), and, taking

into account that
∫ +∞
−∞ (u2

t )xdx = u2
t |+∞

−∞ = 0, we rewrite the equality (34) as

1

2

d

dt
E(t) = 0, (35)

where

E(t) = δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 − β1∥ux∥22 + γ∥u∥22 +

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22dτ

is the energy functional of equation (1).
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From relation (35) it follows that the energy functional E(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) ≡ E0, (36)

where

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 − β1∥φ′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx

is the initial energy.
Let us require that the initial energy is non-negative: E0 ≥ 0, i.e., the inequality

δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx ≥ β1∥φ′∥22,

where the function F (φ′(x)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 + γ∥u∥22+

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22ds = E0 + β1∥ux∥22. (37)

Suppose that
F (η) ≥ 0, η ∈ R, (38)

then from equality (37), reducing the left part, we obtain

z(t) ≤ E0 + β1(δ∥u∥22 + ∥ux∥22) = E0 + β1y(t), t ∈ [0, t1]. (39)

From inequalities (32) and (39), the integral inequality follows

y(t) ≤ E0t+ y(0) + (1 + β1)

∫ t

0

y(s)ds, t ∈ [0, t1]. (40)

Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral

y(t) ≤
(

E0

1 + β1
+ y(0)

)
e(1+β1)t = σ8(t), (41)

true on the entire positive semi-axis of t ∈ R+, and hence the classical solution of u = u(t, x) at t ∈ R+ belongs
to the Sobolev spaceW 1

2 (R):

∥u∥2W 1
2
= ∥u∥22 + ∥ux∥22 ≤

{(
1 + 1−δ

δ

)
y(t) ≤ 1

δσ8(t), 0 < δ < 1,

δ∥u∥22 + ∥ux∥22 = y(t) ≤ σ8(t), δ ≥ 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t, x), t ∈ R+ of the Cauchy
problem (1), (3) in the space C[R]:

∥u∥C = sup
x∈R

|u(t, x)| ≤ ∥u∥W 1
2
≤

{√
σ8(t)
δ , 0 < δ < 1,√

σ8(t), δ ≥ 1,

ensuring the existence of a global solution. The theorem is proved.
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where w(x) is an arbitrary function from C[R], for which the functions F (w(x)) and w(x)f(w(x)) belong to the
space L1(R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

2

∣∣∣∣∣
+∞∫

−∞

F (ux) dx

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
+∞∫

−∞

f(ux) du(x)

∣∣∣∣∣ =
∣∣∣∣∣u(x)f(ux)|+∞

−∞ −
+∞∫

−∞

uf ′(ux)uxx dx

∣∣∣∣∣ ≤

≤ 2|(uf ′(ux), uxx)| ≤ 2∥uf ′(ux)∥2∥uxx∥2 ≤ ∥uf ′(ux)∥22 + ∥uxx∥22 ≤

≤ sup
x∈R

(f ′(ux))
2

+∞∫

−∞

u2
2 dx+ ∥uxx∥22 ≤ (f ′(σ7(t)))

2∥u∥22 + ∥uxx∥22 = σ9(t)∥u∥22 + ∥uxx∥22,

whence follows the inequality

2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ ≤ c6∥u∥22 + ∥uxx∥22, t ∈ [0, t2]. (45)

Applying the estimation (45) to the relation (43) under the condition

β2 > 1, (46)

we obtain the inequality

∥uxx∥22 ≤ E0

β2 − 1
+

β1 + c6
β2 − 1

y(t)− 1

β2 − 1
z(t), t ∈ [0, t2],

using which we increase the right part of the estimate (42):

∥utt∥22 ≤ c5
β2 − 1

E0 +

(
3c4 + c5

(β1 + c6)

β2 − 1

)
y(t) +

(
3c3 −

c5
β2 − 1

)
z(t), t ∈ [0, t2].

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

y′′(t) + 2(utt, uxx)− 2δ(utt, u) = 2z(t).

Using the estimates

2(utt, uxx) ≤ 2|(utt, uxx)| ≤ ∥utt∥22 + ∥uxx∥22 ≤ 3c3z(t) + 3c4y(t) + (c5 + 1)∥uxx∥22 ≤

≤ c5 + 1

β2 − 1
E0 +

(
3c4 + (c5 + 1)

β1 + c6
β2 − 1

)
y(t) +

(
3c3 −

c5 + 1

β2 − 1

)
z(t),

−2δ(utt, u) ≤ 2δ|(utt, u)| ≤ δ∥utt∥22 + δ∥u∥22 ≤ 3δc3z(t) + δ(3c4 + 1)y(t) + δc5∥uxx∥22 ≤

≤ δc5
β2 − 1

E0 + δ

(
3c4 + 1 + c5

β1 + c6
β2 − 1

)
y(t) + δ

(
3c3 −

c5
β2 − 1

)
z(t),

increase the left side of it:
y′′(t) + c7 + c8y(t) ≥ c9z(t), t ∈ [0, t2], (47)

where

c7 =
(δ + 1)c5 + 1

β2 − 1
E0, c8 = 3(δ+1)c4 + δ+((δ+1)c5 +1)

(β1 + c6)

β2 − 1
, c9 = 2+

(δ + 1)c5 + 1

β2 − 1
− 3(δ+1)c3.

Let us now reduce the right-hand side of inequality (47):

y(t)y′′(t)− c9
4
(y′(t))2 + c7y(t) + c8y

2(t) ≥ 0, t ∈ [0, t2]. (48)

6. DECOMPOSITIONOF THE SOLUTIONOF THE CAUCHY PROBLEMFOR EQ. (1)

Let us find sufficient conditions for the occurrence of a gap of the second kind for the energy integral (31) on
the segment [0, t2] ⊆ [0, t1], that we choose so that the inequality y(t) > 0, following from the initial condition
y(0) = δ∥φ∥22 + ∥φ′∥22 > 0, holds.

Applying the Cauchy-Bunyakovsky inequality to the square of the derivative of the energy integral y(t) on the
segment t ∈ [0, t2], we have

[y′(t)]2 ≤ 4y(t)z(t).

Let us derive an estimate of the square of the norm of the partial derivative utt, using the representation of
equation (1) in an equivalent form

utt = −A1ut −A2u+ (δI − ∂2
x)

−1uxxf
′(ux),

obtained by acting on both parts of equation (1) by a linear bounded operator (δI − ∂2
x)

−1. For this purpose, we
obtain auxiliary estimates

∥uxxf
′(ux)∥22 ≤ sup

x∈
(f ′(ux))

2

+∞∫

−∞

u2
xx dx ≤

(
f ′
(
sup
x∈

|ux|
))2

∥uxx∥22 ≤ σ9(t)∥uxx∥22,

where σ9(t) = (f ′(σ7(t)))
2 — is a continuous function on the segment [0, t1];

∥A1ut∥22 ≤
∥∥α2ut − (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1ut − α1(

√
δI − ∂x)

−1ut

∥∥2
2
≤

≤
(
α2∥ut∥2 +

∣∣∣∣α2 −
α1√
δ

∣∣∣∣∥ut∥2 +
α1√
δ
∥ut∥2

)2

≤ c3∥ut∥22 ≤ c3z(t),

where c3 = (α2 + α1/
√
δ + |α2 − cα1/

√
δ|)2;

∥A2u∥22 ≤
∥∥−β2∂

2
xu− (β2δ + β1)u+ (β2δ

2 + β1δ + γ)(δI − ∂2
x)

−1u
∥∥2
2
≤

≤
(
β2∥uxx∥2 + (β2δ + β1)∥u∥2 +

(
β2δ + β1 + γ/δ

)
∥u∥2

)2 ≤

≤ 2
(
β2
2∥uxx∥22 +

(
2(β2δ + β1) + γ/δ

)2∥u∥22
)
≤ 2β2

2∥uxx∥22 + c4y(t),

where c4 = 2(2(β2δ + β1) + γ/δ)2.
Taking them into account, we have

∥utt∥22 ≤
(
∥A1ut∥2 + ∥A2u∥2 + ∥(δI − ∂2

x)
−1uxxf

′(ux)∥2
)2 ≤

≤ 3

(
∥A1ut∥22 + ∥A2u∥22 +

1

δ2
∥uxxf

′(ux)∥22
)

≤ 3

(
c3z(t) + 2β2

2∥uxx∥22 + c4y(t) +
σ9(t)

δ2
∥uxx∥22

)
,

whence follows the inequality

∥utt∥22 ≤ 3c3z(t) + 3c4y(t) + c5∥uxx∥22, t ∈ [0, t2], (42)

where c5 = 6β2
2 + 3c6δ

2, c6 = maxt∈[0,t1] σ9(t).
Let’s return to the conservation law (37) and obtain the relation from it

z(t) + β2∥uxx∥22 + γ∥u∥22 + 2α2

∫ t

0

∥usx∥22ds ≤ E0 + β1∥ux∥22 + 2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ . (43)

Earlier, when proving the existence of a global solution, we assumed the fulfillment of condition (38) – non-
negativity of the potential F (η) on the whole numerical axis η ∈ R. Now, when considering the destruction of the
solution, we require to fulfill the inequality for the nonlinearity f

∣∣∣∣∣
∫ +∞

−∞
dx

∫ w(x)

0

f(s)ds

∣∣∣∣∣ ≤
∣∣∣∣
∫ +∞

−∞
w(x)f(w(x))dx

∣∣∣∣ , (44)
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where w(x) is an arbitrary function from C[R], for which the functions F (w(x)) and w(x)f(w(x)) belong to the
space L1(R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

2

∣∣∣∣∣
+∞∫

−∞

F (ux) dx

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
+∞∫

−∞

f(ux) du(x)

∣∣∣∣∣ =
∣∣∣∣∣u(x)f(ux)|+∞

−∞ −
+∞∫

−∞

uf ′(ux)uxx dx

∣∣∣∣∣ ≤

≤ 2|(uf ′(ux), uxx)| ≤ 2∥uf ′(ux)∥2∥uxx∥2 ≤ ∥uf ′(ux)∥22 + ∥uxx∥22 ≤

≤ sup
x∈R

(f ′(ux))
2

+∞∫

−∞

u2
2 dx+ ∥uxx∥22 ≤ (f ′(σ7(t)))

2∥u∥22 + ∥uxx∥22 = σ9(t)∥u∥22 + ∥uxx∥22,

whence follows the inequality

2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ ≤ c6∥u∥22 + ∥uxx∥22, t ∈ [0, t2]. (45)

Applying the estimation (45) to the relation (43) under the condition

β2 > 1, (46)

we obtain the inequality

∥uxx∥22 ≤ E0

β2 − 1
+

β1 + c6
β2 − 1

y(t)− 1

β2 − 1
z(t), t ∈ [0, t2],

using which we increase the right part of the estimate (42):

∥utt∥22 ≤ c5
β2 − 1

E0 +

(
3c4 + c5

(β1 + c6)

β2 − 1

)
y(t) +

(
3c3 −

c5
β2 − 1

)
z(t), t ∈ [0, t2].

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

y′′(t) + 2(utt, uxx)− 2δ(utt, u) = 2z(t).

Using the estimates

2(utt, uxx) ≤ 2|(utt, uxx)| ≤ ∥utt∥22 + ∥uxx∥22 ≤ 3c3z(t) + 3c4y(t) + (c5 + 1)∥uxx∥22 ≤

≤ c5 + 1

β2 − 1
E0 +

(
3c4 + (c5 + 1)

β1 + c6
β2 − 1

)
y(t) +

(
3c3 −

c5 + 1

β2 − 1

)
z(t),

−2δ(utt, u) ≤ 2δ|(utt, u)| ≤ δ∥utt∥22 + δ∥u∥22 ≤ 3δc3z(t) + δ(3c4 + 1)y(t) + δc5∥uxx∥22 ≤

≤ δc5
β2 − 1

E0 + δ

(
3c4 + 1 + c5

β1 + c6
β2 − 1

)
y(t) + δ

(
3c3 −

c5
β2 − 1

)
z(t),

increase the left side of it:
y′′(t) + c7 + c8y(t) ≥ c9z(t), t ∈ [0, t2], (47)

where

c7 =
(δ + 1)c5 + 1

β2 − 1
E0, c8 = 3(δ+1)c4 + δ+((δ+1)c5 +1)

(β1 + c6)

β2 − 1
, c9 = 2+

(δ + 1)c5 + 1

β2 − 1
− 3(δ+1)c3.

Let us now reduce the right-hand side of inequality (47):

y(t)y′′(t)− c9
4
(y′(t))2 + c7y(t) + c8y

2(t) ≥ 0, t ∈ [0, t2]. (48)
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We require that the coefficient at the square of the derivative in inequality (48) be greater than one, i.e., we
require the inequality c9/4 > 1 or (in the detailed notation)

6(δ + 1)β2
2 − (2 + 3(δ + 1)c3)β2 + 3(δ + 1)(c6/δ

2 + c3) + 3 > 0. (49)

Two cases arise here: if the discriminant of the quadratic trinomial

D1 = D1(δ, c3, c6) = (2 + 3(δ + 1)c3)
2 − 72(δ + 1)((δ + 1)(c6/δ

2 + c3) + 1) < 0, (50)

then inequality (49) is valid for all values of β2 > 1; IfD1 ≥ 0, then inequality (49) holds at

1 < β2 <
2 + 3(δ + 1)c3 −

√
D1(δ, c3, c6)

12(δ + 1)
or β2 >

2 + 3(δ + 1)c3 +
√
D1(δ, c3, c6)

12(δ + 1)
. (51)

From condition (50), follows the inequality

9c23 − 12

(
6− 1

(δ + 1)2

)
c3 − 72

c6
δ2

− 72(δ + 1)− 4

(δ + 1)2
< 0, (52)

and the discriminant of the quadratic trinomial

D2 = D2(δ, c6) = 36
(
6− (δ + 1)−2

)2
+ 648(δ−2c6 + (δ + 17/18)(δ + 1)−2) ≥ 0,

therefore inequality (52), and hence (50), is satisfied at

0 < c3 =

(
α2 +

α1√
δ
+

∣∣∣∣α2 −
α1√
δ

∣∣∣∣
)2

<
6(6− (δ + 1)−2) +

√
D2(δ, c6)

9
, (53)

i.e., if condition (53) is satisfied, the inequality c9/4 > 1 is valid for any value of the parameter β2 > 1.
In the case of D1 ≥ 0, inequality (49) is satisfied for parameter values satisfying conditions (51), in which the

values δ, c3 and c6 are related by the relation

(α2 + α1/
√
δ + |α2 − α1/

√
δ|)2 ≥

6(6− (δ + 1)−2) +
√

D2(δ, c6)

9
.

Comparing inequality (48) with one of the basic ordinary differential inequalities for the energy integral [10,
Appendix A, § 5], we conclude that if the initial conditions are fulfilled

(δ(φ,ψ) + (φ′, ψ′))2 >

(
c8

c9 − 4
(δ∥φ∥22 + ∥φ′∥22) +

c7
c9 − 2

)
(δ∥φ∥22 + ∥φ′∥22), (54)

then the time t2 of existence of the solution of the Cauchy problem (1), (3) cannot be arbitrarily large, namely,
there is an estimate from above

t2 ≤ T∞ ≤ 1

c10(δ∥φ∥22 + ∥φ′∥22)(c9−4)/4
, (55)

where

c210 =
(c9 − 4)2

4(δ∥φ∥22 + ∥φ′∥22)c9/2

(
(δ(φ,ψ) + (φ′, ψ′))2 −

(
c8(δ∥φ∥22 + ∥φ′∥22)

c9 − 4
+

c7
c9 − 2

)
(δ∥φ∥22 + ∥φ′∥22)

)
> 0,

and for the functionality of y(t), it is fair to estimate from below

y(t) =

∫ +∞

−∞
(δu2 + u2

x)dx ≥ 1

((δ∥φ∥22 + ∥φ′∥22)(c9−4)/4 − c10t)4/(c9−4)
, (56)

and, hence, there is no time-global solution of the Cauchy problem (1), (3).
Thus, the following theorem is proven
Theorem 4. Let the conditions of lemma and theorem 2 be satisfied and let the parameters αi, βi, i = 1, 2, γ, δ

of equation (1), the nonlinearity f and the initial functions φ(x), ψ(x) satisfy conditions (30), (44), (46), (49), (54),
respectively, then the time t2 of existence of the solution u(t, x) of the Cauchy problem (1), (3) cannot be arbitrarily large,
namely it is bounded from above and the estimation (55) takes place, and for the energy integral y(t) the estimation from
below (56) is valid.
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1. INTRODUCTION. PROBLEM STATEMENT

Consider a system of nonlinear multivariate integral equations

fi(x1, . . . , xn) =

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn))dt1 . . . dtn, i = 1, N, (1)

with respect to the vector-function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))
T with non-negative

continuous and bounded on the set Rn coordinates f (x1, . . . , xn), i = 1, N, where (x1, . . . , xn) ∈ Rn,
R = (−∞,+∞), T is the transpose sign. In system (1) the matrix kernel

K(x, t) := (Kij(x1, . . . , xn, t1, . . . , tn))i,j=1,N

satisfies the following conditions:
1) Kij(x1, . . . , xn, t1, . . . , tn) > 0, (x1, . . . , xn, t1, . . . , tn) ∈ R2n,Kij ∈ C(R2n), i, j = 1, N ;

1
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2) there exist aij := sup(x1,...,xn)∈Rn

∫
Rn Kij(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn < +∞, i, j = 1, N , with

r(A) = 1, A = (aij)i,j=1,N , where r(A) is the spectral radius of the matrix A, i.e., the modulus of the
largest modulo eigenvalue.

According to Perron’s theorem (see [1, p. 260]), there exists a vector η = (η1, . . . , ηN )T with positive coordi-
nates ηi such that

N∑
j=1

aijηj = ηi, i = 1, N. (2)

Let us fix the vector η and impose the following conditions on the nonlinearities of {Gj(u)}j=1,N (Fig. 1):

a) Gj ∈ C(R+),R+ = [0,+∞), Gj(u) are monotonically increasing on the set R+, j = 1, N ;

b) Gj(0) = 0, Gj(ηj) = ηj , j = 1, N ;

c) Gj(u), j = 1, N , are strictly concave (convex upwards) on R+ and there exists a continuous mapping φ :
[0, 1] → [0, 1] with properties

φ(0) = 0, φ(1) = 1, φmonotonically increases on the interval [0, 1], (3)

φ strictly concave on the segment [0, 1], (4)

such that the following inequalities hold:

Gj(σu) ≥ φ(σ)Gj(u), u ∈ [0, ηj ], σ ∈ [0, 1], j = 1, N ;

d) there exists a number r > 0 such that the functional equations Gi(u) = u/εi(r), i = 1, N , have positive
solutions di, where

εi(r) := min
j=1,N

{
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn

}
∈ (0, 1), i = 1, N,

Br := {x := (x1, . . . , xn) : |x| =
√
x2
1 + · · ·+ x2

n ≤ r}.

Fig. 1. Graph of the function y = Gi(u)

The main purpose of this paper is to investigate the existence and uniqueness of a continuous bounded and
positive solution of system (1), as well as the uniform convergence to the solution of the corresponding iterative
process with the rate of decreasing geometric progression.
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concavity of the graph of Gj∗(u), it follows that the function
Gj∗ (u)

u is monotonically decreasing at (0,+∞). So
Gj∗ (γj∗ )

γj∗
<

Gj∗ (ηj∗ )

ηj∗
= 1. The latter inequality contradicts the inequality γj∗ ≤ Gj∗(γj∗) obtained above. Thus,

γj∗ ≤ ηj∗ . By virtue of this evaluation, relation (6) and conditions a), b), we arrive from (5) at the inequality
γi ≤ ηi, i = 1, N . The lemma is proved.

The following is also useful
Lemma 2. Let conditions a), b), d), 1), and 2) be satisfied and f(x1, . . . , xn) be an arbitrary generically non-

negative and continuous on Rn solution of system (1). Then if there exists an index j0 ∈ {1, 2, . . . , N} such that
δj0 := inf(x1,...,xn)∈Rn\Br

fj0(x1, . . . , xn) > 0, then inf(x1,...,xn)∈Rn fi(x1, . . . , xn) > 0, i = 1, N , where the num-
ber r is defined under condition d).

Proof. First of all, note that it follows from conditions a), b), d), 1) and, 2) that

fi(x1, . . . , xn) ≥
N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn))dt1 . . . dtn ≥

≥
∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)Gj0(fj0(t1, . . . , tn))dt1 . . . dtn ≥

≥ Gj0(δj0)

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn. (7)

Next, let us consider the functions

C̃ij0(x1, . . . , xn) :=

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn, i = 1, N,

and the following possible cases: A) (x1, . . . , xn) ∈ Rn\Br, B) (x1, . . . , xn) ∈ Br.
In case A), considering the definition of numbers εi(r) in condition d) and inequality (7), we obtain

fi(x1, . . . , xn) ≥ Gj0(δj0)εi(r), (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (8)

Let us now consider the case B). It immediately follows from conditions 1), 2), that C̃ij0 ∈ C(Rn),
C̃ij0(x1, . . . , xn) > 0, (x1, . . . , xn) ∈ Rn, i = 1, N . Given the compactness of the ball Br, according to the
Weierstrass theorem, we can assert that for each i ∈ {1, 2, . . . , N} there exists a point xi = (xi

1, . . . , x
i
n) ∈ Br such

that
min

(x1,...,xn)∈Br

{C̃ij0(x1, . . . , xn)} = C̃ij0(x
i
1, . . . , x

i
n) > 0. (9)

From (7)–(9) we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) ≥ min{εi(r), C̃ij0(x
i
1, . . . , x

i
n)}Gj0(δj0), (x1, . . . , xn) ∈ Rn, i = 1, N.

The lemma is proved.
Now consider the functions Cij(x1, . . . , xn), i, j = 1, N and suppose that
e) there exist a point (x1, . . . , xn) ∈ Rn and indices i1, j1 ∈ {1, 2, . . . , N} such that

Ci1,j1(x1, . . . , xn) < ai1j1 .

Lemma 3. Let the conditions of Lemma 1 and e) be satisfied. Then, any continuous bounded and coordinate
non-negative solution f(x1, . . . , xn) of system (1) satisfies the inequalities fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn,
i = 1, N .

Proof. According to lemma1, the solution is fi(x1, . . . , xn) ≤ ηi, i = 1, N . Let us verify that fi(x1, . . . , xn) ̸≡ ηi,
i = 1, N . Indeed, otherwise, from (1) with condition b) we obtain

N∑
j=1

Cij(x1, . . . , xn)ηj ≡ ηi, i = 1, N.

The scalar analog of the system of nonlinear integral equations (1), besides purely theoretical interest, has a
number of important applications to the study of various applied problems from physics and biology. In particular,
under specific representations of the matrix kernel K and nonlinearities {Gj(u)}j=1,N , the scalar system (1) is
encountered in problems from the dynamical theory of p-adic open, closed, and open-closed strings (see [2–5])
and in the mathematical theory of spatial and temporal pandemic propagation in the framework of the modified
Atkinson–Roiter and Dickman–Kaper models (see [6, p. 318] and [7, p. 121], respectively).

Mathematical investigations of the system of the form (1) were mainly carried out in the one-dimensional case
at n = 1. Thus, for example, in the case when n = 1 and the kernelK depends on the difference of its arguments,
the system (1) is studied in [8–10]. The corresponding scalar analog of system (1) (N = 1) in themultidimensional
case is studied in [5, 11–13], when the kernelK either depends on the difference of its arguments or is majorized
by such a kernel. It should also be noted that the corresponding scalar one-dimensional equations under different
restrictions on the kernel and on the nonlinearity have been studied (by different methods) in [2, 3, 14–17].

In this paper, under conditions 1), 2) and a)–d), we will first prove the constructive theorem of existence of
a positive continuous and bounded solution of system (1). In the course of the proof of this theorem, we obtain
a uniform estimate of the difference between the constructed solution and the corresponding successive approxi-
mations, with the right-hand side of the obtained inequality tending to zero as an infinitely decreasing geometric
progression when the number of m-th approximation tends to infinity. Further, using some estimates for strictly
concave and monotone functions, we prove the uniqueness of the solution of the system (1) in a sufficiently wide
subclass of continuous bounded and coordinately nonnegative vector-functions. In the case when

Cij(x1, . . . , xn) :=

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn = aij

for all (x1, . . . , xn) ∈ Rn and i, j = 1, N , we show that in the above mentioned subclass of vector-functions, the
only solution of the system (1) is only the vector η = (η1, . . . , ηN )T . In this paper, we give specific examples of
the matrix kernelK and nonlinearities {Gj(u)}j=1,N , satisfying all conditions of the proved statements. Some of
these examples have applications in the above-mentioned areas of physics and biology.

2. KEY NOTATIONS AND SUPPORTING RESULTS

The following lemma plays an important role in our further reasoning.
Lemma1. Let conditions a), b), 1), 2) be satisfied, and the graphs of the functions {Gj(u)}j=1,N are strictly concave

at R+. Then the inequality is true for any ordinally non-negative and bounded on Rn solution f∗(x1, . . . , xn) =
(f∗

1 (x1, . . . , xn), . . . , f
∗
N (x1, . . . , xn))

T of the system (1):

f∗
i (x1, . . . , xn) ≤ ηi, (x1, . . . , xn) ∈ Rn, i = 1, N,

where η = (η1, . . . , ηN )T is the fixed vector of the matrix A (see (2)).
Proof. Let us denote γi := sup(x1,...,xn)∈Rn f∗

i (x1, . . . , xn), i = 1, N . Then from system (1) by virtue of
conditions 1), 2), a) and relation (2) we will have

f∗
i (x1, . . . , xn) ≤

N∑
j=1

aijGj(γj) ≤ max
j=1,N

{
Gj(γj)

ηj

} N∑
j=1

aijηj = ηi max
j=1,N

{
Gj(γj)

ηj

}
,

(x1, . . . , xn) ∈ Rn, i = 1, N.

It follows that
γi ≤ ηi max

j=1,N

{
Gj(γj)

ηj

}
, i = 1, N. (5)

Obviously, there exists an index j∗ ∈ {1, 2, . . . , N} such that

max
j=1,N

{
Gj(γj)

ηj

}
=

Gj∗(γj∗)

ηj∗
. (6)

Replacing in inequality (5) the index i by the index j∗, we obtain γj∗ ≤ Gj∗(γj∗). Let us see that the last inequality
implies the evaluation of γj∗ ≤ ηj∗ . Assume the opposite: γj∗ > ηj∗ . By virtue of conditions a), b) and the strict
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concavity of the graph of Gj∗(u), it follows that the function
Gj∗ (u)

u is monotonically decreasing at (0,+∞). So
Gj∗ (γj∗ )

γj∗
<

Gj∗ (ηj∗ )

ηj∗
= 1. The latter inequality contradicts the inequality γj∗ ≤ Gj∗(γj∗) obtained above. Thus,

γj∗ ≤ ηj∗ . By virtue of this evaluation, relation (6) and conditions a), b), we arrive from (5) at the inequality
γi ≤ ηi, i = 1, N . The lemma is proved.

The following is also useful
Lemma 2. Let conditions a), b), d), 1), and 2) be satisfied and f(x1, . . . , xn) be an arbitrary generically non-

negative and continuous on Rn solution of system (1). Then if there exists an index j0 ∈ {1, 2, . . . , N} such that
δj0 := inf(x1,...,xn)∈Rn\Br

fj0(x1, . . . , xn) > 0, then inf(x1,...,xn)∈Rn fi(x1, . . . , xn) > 0, i = 1, N , where the num-
ber r is defined under condition d).

Proof. First of all, note that it follows from conditions a), b), d), 1) and, 2) that

fi(x1, . . . , xn) ≥
N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn))dt1 . . . dtn ≥

≥
∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)Gj0(fj0(t1, . . . , tn))dt1 . . . dtn ≥

≥ Gj0(δj0)

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn. (7)

Next, let us consider the functions

C̃ij0(x1, . . . , xn) :=

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn, i = 1, N,

and the following possible cases: A) (x1, . . . , xn) ∈ Rn\Br, B) (x1, . . . , xn) ∈ Br.
In case A), considering the definition of numbers εi(r) in condition d) and inequality (7), we obtain

fi(x1, . . . , xn) ≥ Gj0(δj0)εi(r), (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (8)

Let us now consider the case B). It immediately follows from conditions 1), 2), that C̃ij0 ∈ C(Rn),
C̃ij0(x1, . . . , xn) > 0, (x1, . . . , xn) ∈ Rn, i = 1, N . Given the compactness of the ball Br, according to the
Weierstrass theorem, we can assert that for each i ∈ {1, 2, . . . , N} there exists a point xi = (xi

1, . . . , x
i
n) ∈ Br such

that
min

(x1,...,xn)∈Br

{C̃ij0(x1, . . . , xn)} = C̃ij0(x
i
1, . . . , x

i
n) > 0. (9)

From (7)–(9) we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) ≥ min{εi(r), C̃ij0(x
i
1, . . . , x

i
n)}Gj0(δj0), (x1, . . . , xn) ∈ Rn, i = 1, N.

The lemma is proved.
Now consider the functions Cij(x1, . . . , xn), i, j = 1, N and suppose that
e) there exist a point (x1, . . . , xn) ∈ Rn and indices i1, j1 ∈ {1, 2, . . . , N} such that

Ci1,j1(x1, . . . , xn) < ai1j1 .

Lemma 3. Let the conditions of Lemma 1 and e) be satisfied. Then, any continuous bounded and coordinate
non-negative solution f(x1, . . . , xn) of system (1) satisfies the inequalities fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn,
i = 1, N .

Proof. According to lemma1, the solution is fi(x1, . . . , xn) ≤ ηi, i = 1, N . Let us verify that fi(x1, . . . , xn) ̸≡ ηi,
i = 1, N . Indeed, otherwise, from (1) with condition b) we obtain

N∑
j=1

Cij(x1, . . . , xn)ηj ≡ ηi, i = 1, N.
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Suppose that conditions a)–d), 1), and 2) are satisfied. By induction onm, it is not difficult to check the validity
of the following statements:

f
(m)
i (x1, . . . , xn)monotonically decreasing onm, m = 0, 1, 2, . . . , i = 1, N, (13)

f
(m)
i ∈ C(Rn), i = 1, N, (14)

f
(m)
i (x1, . . . , xn) > 0, m = 0, 1, 2, . . . , i = 1, N. (15)

Let us prove that for all (x1, . . . , xn) ∈ Rn\Br the following lower bound estimates hold:

f
(m)
i (x1, . . . , xn) ≥ di, m = 0, 1, 2, . . . , i = 1, N, (16)

where the numbers di are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions Gi(u)/u are monotonically decreasing at

(0,+∞), i = 1, N , then from the estimation of

1 =
Gi(ηi)

ηi
<

1

εi(r)
=

Gi(di)

di

we get that di < ηi = f
(0)
i (x1, . . . , xn), i = 1, N .

Suppose now that for (x1, . . . , xn) ∈ Rn\Br, inequality (16) holds for some naturalm. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

f
(m+1)
i (x1, . . . , xn) ≥

N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn ≥

≥
N∑
j=1

Gj(dj)

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn ≥ Gi(di)εi(r) = di, i = 1, N.

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

f
(m)
i (x1, . . . , xn) < ηi, m = 1, 2, . . . , i = 1, N, (x1, . . . , xn) ∈ Rn. (17)

Taking into account (14), (15) and the compactness of the ball Br, we can say that for every i ∈ {1, 2, . . . , N}
andm ∈ {0, 1, 2, . . . }, there exists a point (x(m,i)

1 , . . . , x
(m,i)
n ) ∈ Br such that

min
(x1,...,xn)∈Br

f
(m)
i (x1, . . . , xn) = f

(m)
i (x

(m,i)
1 , . . . , x(m,i)

n ) > 0, (x1, . . . , xn) ∈ Br. (18)

Thus, it follows from (16) and (18) for (x1, . . . , xn) ∈ Rn, that

f
(m)
i (x1, . . . , xn) ≥ min{f (m)

i (x
(m,i)
1 , . . . , x(m,i)

n ), di} > 0, m = 0, 1, 2, . . . , i = 1, N. (19)

Let us now consider the functions χi(x1, . . . , xn) =
f
(2)
i (x1,...,xn)

f
(1)
i (x1,...,xn)

, i = 1, N , on the set Rn. From (13), (14),
and (19) we have

χi ∈ C(Rn), i = 1, N,

αi

ηi
≤ χi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N, (20)

where by virtue of (17), (19),

0 < αi := min{f (2)
i (x

(2,i)
1 , . . . , x(2,i)

n ), di} < ηi, i = 1, N.

Let us denote by σ0 = mini=1,N (αiηi). Obviously, σ0 ∈ (0, 1).

Taking into account (2), we come to the equality

N∑
j=1

ηj(Cij(x1, . . . , xn)− aij) ≡ 0, i = 1, N. (10)

Since Cij(x1, . . . , xn) ≤ aij , ηj > 0, i, j = 1, N , we arrive at a contradiction in (10) by virtue of condition e).
Hence, there exists a point (x∗

1, . . . , x
∗
n) ∈ Rn and an index j∗ ∈ {1, 2, . . . , N} such that fj∗(x∗

1, . . . , x
∗
n) < ηj∗ .

Hence, by continuity of the function fj∗ it follows. That there exists a neighborhood Oδ(x
∗
1, . . . , x

∗
n) of the point

(x∗
1, . . . , x

∗
n) such that

fj∗(x1, . . . , xn) < ηj∗ , (x1, . . . , xn) ∈ Oδ(x
∗
1, . . . , x

∗
n). (11)

By virtue of (11), relation (2) and inequality Cij(x1, . . . , xn) ≤ aij from (1), taking into account conditions a), b)
we will have

fi(x1, . . . , xn) =
∑
j ̸=j∗

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn)) dt1 . . . dtn +

+

∫

Rn

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn ≤

≤
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj +

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn+

+

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn ≤

≤
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + ηj∗

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn +

+

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn <

<
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + ηj∗

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn +

+ηj∗

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn =

=
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + Cij∗(x1, . . . , xn)ηj∗ ≤
N∑
j=1

aijηj = ηi, i, j = 1, N.

The lemma is proved.

3. THEOREMOF EXISTENCE OF BOUNDED SOLUTION

Let us now consider the following successive approximations for system (1):

f
(m+1)
i (x1, . . . , xn) =

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn,

f
(0)
i (x1, . . . , xn) ≡ ηi, (x1, . . . , xn) ∈ Rn, i = 1, N,m = 0, 1, 2, . . . (12)
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Suppose that conditions a)–d), 1), and 2) are satisfied. By induction onm, it is not difficult to check the validity
of the following statements:

f
(m)
i (x1, . . . , xn)monotonically decreasing onm, m = 0, 1, 2, . . . , i = 1, N, (13)

f
(m)
i ∈ C(Rn), i = 1, N, (14)

f
(m)
i (x1, . . . , xn) > 0, m = 0, 1, 2, . . . , i = 1, N. (15)

Let us prove that for all (x1, . . . , xn) ∈ Rn\Br the following lower bound estimates hold:

f
(m)
i (x1, . . . , xn) ≥ di, m = 0, 1, 2, . . . , i = 1, N, (16)

where the numbers di are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions Gi(u)/u are monotonically decreasing at

(0,+∞), i = 1, N , then from the estimation of

1 =
Gi(ηi)

ηi
<

1

εi(r)
=

Gi(di)

di

we get that di < ηi = f
(0)
i (x1, . . . , xn), i = 1, N .

Suppose now that for (x1, . . . , xn) ∈ Rn\Br, inequality (16) holds for some naturalm. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

f
(m+1)
i (x1, . . . , xn) ≥

N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn ≥

≥
N∑
j=1

Gj(dj)

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn ≥ Gi(di)εi(r) = di, i = 1, N.

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

f
(m)
i (x1, . . . , xn) < ηi, m = 1, 2, . . . , i = 1, N, (x1, . . . , xn) ∈ Rn. (17)

Taking into account (14), (15) and the compactness of the ball Br, we can say that for every i ∈ {1, 2, . . . , N}
andm ∈ {0, 1, 2, . . . }, there exists a point (x(m,i)

1 , . . . , x
(m,i)
n ) ∈ Br such that

min
(x1,...,xn)∈Br

f
(m)
i (x1, . . . , xn) = f

(m)
i (x

(m,i)
1 , . . . , x(m,i)

n ) > 0, (x1, . . . , xn) ∈ Br. (18)

Thus, it follows from (16) and (18) for (x1, . . . , xn) ∈ Rn, that

f
(m)
i (x1, . . . , xn) ≥ min{f (m)

i (x
(m,i)
1 , . . . , x(m,i)

n ), di} > 0, m = 0, 1, 2, . . . , i = 1, N. (19)

Let us now consider the functions χi(x1, . . . , xn) =
f
(2)
i (x1,...,xn)

f
(1)
i (x1,...,xn)

, i = 1, N , on the set Rn. From (13), (14),
and (19) we have

χi ∈ C(Rn), i = 1, N,

αi

ηi
≤ χi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N, (20)

where by virtue of (17), (19),

0 < αi := min{f (2)
i (x

(2,i)
1 , . . . , x(2,i)

n ), di} < ηi, i = 1, N.

Let us denote by σ0 = mini=1,N (αiηi). Obviously, σ0 ∈ (0, 1).
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Fig. 2. Graph of the function y = φ(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T satisfies the system (1) and the evaluation from
below

fi(x1, . . . , xn) ≥ di, (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (27)

Given the estimate (27) and lemma 2, we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) > 0, i = 1, N. (28)

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N. (29)

Now in evaluation (26), instead of m, we takem + 1,m + 2, . . . ,m + p. As a result, we obtain the following
inequalities:

0 ≤ f
(m+2)
i (x1, . . . , xn)− f

(m+3)
i (x1, . . . , xn) < ηi(1− σ0)k

m+1,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

0 ≤ f
(m+3)
i (x1, . . . , xn)− f

(m+4)
i (x1, . . . , xn) < ηi(1− σ0)k

m+2,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ≤ f
(m+p+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m+p,

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0 ≤ f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)(k

m + km+1 + · · ·+ km+p),

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N. (30)

From (30), in particular, it follows that

0 < f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (31)

Consequently, considering (20) and (12) and conditions 1), a), we will have

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(σ0f
(1)
j (t1, . . . , tn))dt1 . . . dtn ≤

≤ f
(3)
i (x1, . . . , xn) ≤

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(1)
j (t1, . . . , tn))dt1 . . . dtn =

= f
(2)
i (x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N.

Hence, by virtue of condition c), we arrive at the inequalities

φ(σ0)f
(2)
i (x1, . . . , xn) ≤ f

(3)
i (x1, . . . , xn) ≤ f

(2)
i (x1, . . . , xn), i = 1, N. (21)

Now, using (21), (12), conditions 1), a), and c), let us write down

φ(φ(σ0))f
(3)
i (x1, . . . , xn) ≤ f

(4)
i (x1, . . . , xn) ≤ f

(3)
i (x1, . . . , xn), i = 1, N.

Continuing this reasoning, atm-step we obtain the following estimate:

Fm(σ0)f
(m+1)
i (x1, . . . , xn) ≤ f

(m+2)
i (x1, . . . , xn) ≤ f

(m+1)
i (x1, . . . , xn),

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, Fm(σ) := φ(φ . . . φ(σ))︸ ︷︷ ︸
m times

, σ ∈ [0, 1]. (22)

Then, using properties (3) and (4) of the function φ, we prove the validity of the inequality

Fm(σ0) ≥ kmσ0 + 1− km, m = 1, 2, . . . , (23)

where
k :=

1− φ(σ0

2 )

1− σ0

2

∈ (0, 1), σ0 = min
i=1,N

{
αi

ηi

}
∈ (0, 1). (24)

For this purpose, consider the line y = ku + 1 − k, passing through the points (1, 1) and (σ0

2 , φ(σ0

2 )), where
the number k is given according to formula (24). From properties (3) and (4), it immediately follows that (Fig. 2)

φ(σ0) ≥ kσ0 + 1− k. (25)

Since kσ0 +1− k ∈ (0, 1), then taking into account the properties of concavity of the graph and monotonicity
of the function φ from (25) we will have

F2(σ0) = φ(φ(σ0)) ≥ φ(kσ0 + 1− k) ≥ k(kσ0 + 1− k) + 1− k = k2σ0 + 1− k2.

Continuing this process, atm-th step we obtain inequality (23).
Thus, in view of (22), (23), (17) and (13) we arrive at the following uniform estimate for successive approxima-

tions of (12):
0 ≤ f

(m+1)
i (x1, . . . , xn)− f

(m+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N. (26)

From (26), we obtain uniform convergence of the sequence of continuous vector functions f (m)(x1, . . . , xn) =

(f
(m)
1 (x1, . . . , xn), . . . , f

(m)
N (x1, . . . , xn))

T ,m = 0, 1, 2, . . . , on the set Rn:

lim
m→∞

f
(m)
i (x1, . . . , xn) = fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N,

and fi ∈ C(Rn), i = 1, N .
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Fig. 2. Graph of the function y = φ(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T satisfies the system (1) and the evaluation from
below

fi(x1, . . . , xn) ≥ di, (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (27)

Given the estimate (27) and lemma 2, we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) > 0, i = 1, N. (28)

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N. (29)

Now in evaluation (26), instead of m, we takem + 1,m + 2, . . . ,m + p. As a result, we obtain the following
inequalities:

0 ≤ f
(m+2)
i (x1, . . . , xn)− f

(m+3)
i (x1, . . . , xn) < ηi(1− σ0)k

m+1,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

0 ≤ f
(m+3)
i (x1, . . . , xn)− f

(m+4)
i (x1, . . . , xn) < ηi(1− σ0)k

m+2,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ≤ f
(m+p+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m+p,

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0 ≤ f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)(k

m + km+1 + · · ·+ km+p),

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N. (30)

From (30), in particular, it follows that

0 < f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (31)
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Consider the functions Bi(x1, . . . , xn) = f∗
i (x1, . . . , xn)/fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N .

. Since f, f∗ ∈ H, then by virtue of (28), (29), (35), (36), (38), we have that Bi ∈ C(Rn), i = 1, N , and

α∗
i

ηi
≤ Bi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N.

Let us denote σ∗ = mini∈1,N{α∗
i /ηi}. By virtue of (35) and (36), the number σ∗ ∈ (0, 1). Thus, we obtain the

inequality

σ∗fi(x1, . . . , xn) ≤ f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

0 ≤ fi(x1, . . . , xn)− f∗
i (x1, . . . , xn) ≤ ηi(1− σ∗)km∗ , (x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, (40)

where k∗ =
1−φ(σ∗

2 )
1−σ∗

2

∈ (0, 1).
In (40), by decreasing the numberm → ∞, we arrive at the equality fi(x1, . . . , xn) = f∗

i (x1, . . . , xn),
(x1, . . . , xn) ∈ Rn, i = 1, N . The theorem is proved.

Similarly, the following is proved
Theorem 3. Let the conditions a)–d), 1), 2) be satisfied and the following relations hold

Cij(x1, . . . , xn) = aij , (x1, . . . , xn) ∈ Rn, i, j = 1, N.

Then the system (1) in the classH possesses only a trivial solution η = (η1, . . . , ηN )T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernelK and nonlinearities
{Gj(u)}j=1,N .

Core K examples:

p1) Kij(x1, . . . , xn, t1, . . . , tn) = K̊ij(x1−t1, x2−t2, . . . , xn−tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn, 2i, j = 1, N ,
where K̊ij(τ1, τ2, . . . , τn) > 0, K̊ij ∈ C(Rn),

∫
Rn K̊ij(τ1, . . . , τn) dτ1 . . . dτn = aij < 1, i, j = 1, N ,

r(A) = 1, A = (aij)i,j=1,N , (τ1, . . . , τn) ∈ Rn.

p2) Kij(x1,...,xn,t1,...,tn) = λij(|x|)K̊ij(x1 − t1,x2 − t2,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,
|x| =

√
x2
1 + . . .+ x2

n, 0 < infv≥0 λij(v) ≤ λij(v) < 1, v ≥ 0, 1− λij ∈ L1(0,+∞), i, j = 1, N .

p3) Kij(x1,...,xn,t1,...,tn) = C∗
ij(x1,...,xn)K̊ij(x1 − t1,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,

inf(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) > 0, C∗

ij ∈ C(Rn), sup(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) = 1, i, j = 1, N .

Here are also examples of functions K̊ij, λij, C∗
ij, i, j = 1, N :

q1) K̊ij(τ1, . . . , τn) = π−n/2aije
−(τ2

1+...+τ2
n), r(A) = 1, A = (aij)i,j=1,N , τj ∈ R, i, j = 1, N ,

q2) K̊ij(τ1, . . . , τn) =
∫ b

a
e−(|τ1|+...+|τn|)s dQij(s), τj ∈ R, i, j = 1, N , where Qij(s) — are monotonically

increasing functions on [a, b), 0 < a < b ≤ +∞, with

2n
b∫

a

1

sn
dQij(s) = aij , i, j = 1, N ;

q3) λij(|x|) = 1− εije
−(x2

1+...+x2
n), 0 < εij < 1— are parameters, (x1, . . . , xn) ∈ Rn, i, j = 1, N ,

q4) C∗
ij(x1, . . . , xn) = 1− εije

−(|x1|+...|xn|), (x1, . . . , xn) ∈ Rn, i, j = 1, N .
Let us now turn to examples of nonlinearities {Gj(u)}j=1,N :

Fixing the indexm and decreasing p → ∞ in (31), we obtain

0 < f
(m+1)
i (x1, . . . , xn)− fi(x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (32)

Note also that if the functions {Cij(x1, . . . , xn)}i,j=1,N satisfy the additional condition

aij − Cij(x1, . . . , xn) ∈ L1(Rn), i, j = 1, N, (33)

then, reasoning similarly to the proof of the main theorem (on the integral asymptotics of the solution) from [13],
we can assert that there exist positive constantsD1, D2, . . . , DN such that

0 ≤
∫

Rn

(ηi − f
(m)
i (x1, . . . , xn))dx1 . . . dxn ≤ Di, m = 0, 1, 2, . . . , i = 1, N.

Hence, according to the theorem of B. Levi, we conclude that ηi − fi ∈ L1(Rn), i = 1, N , and
∫

Rn

(ηi − fi(x1, . . . , xn))dx1 . . . dxn ≤ Di, i = 1, N.

Based on the above, the following is true
Theorem1. If conditions a)–e), 1), 2) are satisfied, the systemof nonlinearmultivariate integral equations (1) has an

ordinally positive continuous and bounded on Rn solution f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))
T ,

that is a uniform limit of successive approximations (12). Moreover, the estimates (27)–(29) and (32) hold. If in addition
condition (33) is satisfied, then ηi − fi ∈ L1(Rn), i = 1, N .

4. SINGULARITY OF THE SOLUTION OF THE SYSTEM (1)

Let us consider the following subclass of continuous nonnegative and bounded vector functions on Rn:

H :=
{
f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T : fi ∈ CM (Rn),

fi(x1, . . . , xn) ≥ 0, (x1, . . . , xn) ∈ Rn, i = 1, N,

there is such j0 ∈ {1, 2, . . . , N} that inf
(x1,...,xn)∈Rn\Br

fj0(x1, . . . , xn) > 0
}
, (34)

where the number r > 0 is defined in condition d), through CM (Rn), the space of continuous and bounded
functions on the set Rn is denoted. The following holds

Theorem 2. If conditions a)–e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has
no other solutions in the classH except for the solution f , constructed by means of successive approximations (13).

Proof. Suppose the converse: the system (1) besides the solution f ∈ H, constructed by means of successive
approximations (12), also possesses another solution f∗ ∈ H. Then, using lemmas 2 and 3, we conclude that

f∗
i (x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N, (35)

α∗
i := inf

(x1,...,xn)∈Rn
f∗
i (x1, . . . , xn) > 0, i = 1, N. (36)

Applying the method of induction bym, it is easy to verify the validity of the following inequalities:

f∗
i (x1, . . . , xn) < f

(m)
i (x1, . . . , xn), (x1, . . . , xn) ∈ Rn,m = 0, 1, 2, . . . , i = 1, N. (37)

In (37) by decreasingm → ∞, we arrive at the inequality

f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (38)



79

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

ON THE SOLVABILITY OF A SYSTEM

Consider the functions Bi(x1, . . . , xn) = f∗
i (x1, . . . , xn)/fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N .

. Since f, f∗ ∈ H, then by virtue of (28), (29), (35), (36), (38), we have that Bi ∈ C(Rn), i = 1, N , and

α∗
i

ηi
≤ Bi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N.

Let us denote σ∗ = mini∈1,N{α∗
i /ηi}. By virtue of (35) and (36), the number σ∗ ∈ (0, 1). Thus, we obtain the

inequality

σ∗fi(x1, . . . , xn) ≤ f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

0 ≤ fi(x1, . . . , xn)− f∗
i (x1, . . . , xn) ≤ ηi(1− σ∗)km∗ , (x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, (40)

where k∗ =
1−φ(σ∗

2 )
1−σ∗

2

∈ (0, 1).
In (40), by decreasing the numberm → ∞, we arrive at the equality fi(x1, . . . , xn) = f∗

i (x1, . . . , xn),
(x1, . . . , xn) ∈ Rn, i = 1, N . The theorem is proved.

Similarly, the following is proved
Theorem 3. Let the conditions a)–d), 1), 2) be satisfied and the following relations hold

Cij(x1, . . . , xn) = aij , (x1, . . . , xn) ∈ Rn, i, j = 1, N.

Then the system (1) in the classH possesses only a trivial solution η = (η1, . . . , ηN )T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernelK and nonlinearities
{Gj(u)}j=1,N .

Core K examples:

p1) Kij(x1, . . . , xn, t1, . . . , tn) = K̊ij(x1−t1, x2−t2, . . . , xn−tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn, 2i, j = 1, N ,
where K̊ij(τ1, τ2, . . . , τn) > 0, K̊ij ∈ C(Rn),

∫
Rn K̊ij(τ1, . . . , τn) dτ1 . . . dτn = aij < 1, i, j = 1, N ,

r(A) = 1, A = (aij)i,j=1,N , (τ1, . . . , τn) ∈ Rn.

p2) Kij(x1,...,xn,t1,...,tn) = λij(|x|)K̊ij(x1 − t1,x2 − t2,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,
|x| =

√
x2
1 + . . .+ x2

n, 0 < infv≥0 λij(v) ≤ λij(v) < 1, v ≥ 0, 1− λij ∈ L1(0,+∞), i, j = 1, N .

p3) Kij(x1,...,xn,t1,...,tn) = C∗
ij(x1,...,xn)K̊ij(x1 − t1,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,

inf(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) > 0, C∗

ij ∈ C(Rn), sup(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) = 1, i, j = 1, N .

Here are also examples of functions K̊ij, λij, C∗
ij, i, j = 1, N :

q1) K̊ij(τ1, . . . , τn) = π−n/2aije
−(τ2

1+...+τ2
n), r(A) = 1, A = (aij)i,j=1,N , τj ∈ R, i, j = 1, N ,

q2) K̊ij(τ1, . . . , τn) =
∫ b

a
e−(|τ1|+...+|τn|)s dQij(s), τj ∈ R, i, j = 1, N , where Qij(s) — are monotonically

increasing functions on [a, b), 0 < a < b ≤ +∞, with

2n
b∫

a

1

sn
dQij(s) = aij , i, j = 1, N ;

q3) λij(|x|) = 1− εije
−(x2

1+...+x2
n), 0 < εij < 1— are parameters, (x1, . . . , xn) ∈ Rn, i, j = 1, N ,

q4) C∗
ij(x1, . . . , xn) = 1− εije

−(|x1|+...|xn|), (x1, . . . , xn) ∈ Rn, i, j = 1, N .
Let us now turn to examples of nonlinearities {Gj(u)}j=1,N :
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Thus, we have
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥

≥ inf
(x1,...,xn)∈Rn

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥ aij −max{aij/2, δij} > 0, i, j = 1, N,

whence it follows that
εi(r) ≥ min

j=1,N
{C0

ij(aij −max{aij
2
, δij})} > 0,

where C0
ij := inf(x1,...,xn)∈Rn C∗

ij(x1, . . . , xn).
On the other hand, it is obvious that εi(r) ≤ aij < 1, i, j = 1, N .
We now verify that, for Example p3), the equations Gi(u) = u/εi(r) have positive solutions di. Indeed, since

Gi ∈ C(R+), Gi(ηi) = ηi, limu→+0 Gi(u)/u = +∞, limu→+∞ Gi(u)/u = 0, i = 1, N , and εi(r) ∈ (0, 1); and
Gi(u)/u decreases monotonically at (0,+∞), then for every i ∈ {1, 2, . . . , N}, there exists a single di > 0 such
thatGi(di)/di = 1/εi(r).

The verification of conditions 2) and d) for the rest of the examples is done in the same way.
Now let us give a specific example of a nonlinear multidimensional integral equation having an application in

the theory of p-adic string (see [5]):

φp(x1, . . . , xn) = π−n/2

∫

Rn

e−((x1−t1)
2+···+(xn−tn)

2)φ(t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn,

where p > 2 is an odd number. Using the notation f(x1, . . . , xn) = φp(x1, . . . , xn), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(x1, . . . , xn).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(x) = a

∫ ∞

−∞
K(x− t)(1− e−f(t))dt, x ∈ R,

where a > 1 is a numerical parameter, the kernel K(x) > 0, x ∈ R,
∫∞
−∞ K(x)dx = 1 (see [6, p. 318] in the

formulation of Theorem 1 (f(x) = −χ(x))).
The authors would like to thank the reviewers for helpful comments.
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r1) Gj(u) = uβjη
1−βj

j , u ∈ [0,+∞), βj ∈ (0, 1), j = 1, N ;

r2) Gj(u) = ηj(u
βj + uδj )/(η

βj

j + η
δj
j ), u ∈ [0,+∞), βj , δj ∈ (0, 1), j = 1, N ;

r3) Gj(u) = lj(1− e−uβj
), u ∈ [0,+∞), βj ∈ (0, 1), lj = ηj/(1− exp{−η

βj

j }), j = 1, N .

Let us elaborate on examples p3), q1), r3) and verify that conditions 2) and d) are satisfied. First of all, note
that in this case

sup
(x1,...,xn)∈Rn

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn =

= sup
(x1,...,xn)∈Rn

(
C∗

ij(x1, . . . , xn)

∫

Rn

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn

)
=

= sup
(x1,...,xn)∈Rn

(
C∗

ij(x1, . . . , xn)

∫

Rn

K̊ij(τ1, . . . , τn)dτ1 . . . dτn

)
=

= aij sup
(x1,...,xn)∈Rn

C∗
ij(x1, . . . , xn) = aij , i, j = 1, N.

Since r(A) = 1 (see Example q1)), condition 2) is satisfied. For completeness, let us give an example of the
matrix A = (aij)i,j=1,N with unit spectral radius and with elements aij ∈ (0, 1), i, j = 1, N (in the case when
N = 2):

A =

(
7/9 1/3
1/3 1/2

)
.

Let’s check condition d). First evaluate the integral of the function K̊ij(x1 − t1, . . . , xn − tn) over the set
Rn\Br:

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

=

∫

Rn

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn −
∫

Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

= aij −
∫

Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn ≥ aij −
r∫

−r

∫

Rn−1

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

= aij −
r∫

−r

Φij(xn − tn) dtn = aij −
xn+r∫

xn−r

Φij(τn) dτn,

where Φij(τ) :=
∫
Rn−1 K̊ij(t1, . . . , tn−1, τ)dt1 . . . dtn−1.

Consider the functions Fij(xn) :=
∫ xn+r

xn−r
Φij(τn)dτn, i, j = 1, N , xn ∈ R. Since Fij(xn) → 0 at |xn| → ∞,

for every fixed i, j ∈ {1, 2, . . . , N}, there exists a number r0 > 0 such that at |xn| > r0

Fij(xn) ≤
aij
2
.

But since Fij ∈ C(R) and K̊ij(t1, . . . , tn) > 0, (t1, . . . , tn) ∈ Rn, then for xn ∈ [−r0, r0]

Fij(xn) ≤ max
xn∈[−r0,r0]

{∫ xn+r

xn−r

Φij(τn)dτn

}
=: δij < aij .

Hence, Fij(xn) ≤ max{aij/2, δij} < aij, xn ∈ R, i, j = 1, N .
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Thus, we have
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥

≥ inf
(x1,...,xn)∈Rn

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥ aij −max{aij/2, δij} > 0, i, j = 1, N,

whence it follows that
εi(r) ≥ min

j=1,N
{C0

ij(aij −max{aij
2
, δij})} > 0,

where C0
ij := inf(x1,...,xn)∈Rn C∗

ij(x1, . . . , xn).
On the other hand, it is obvious that εi(r) ≤ aij < 1, i, j = 1, N .
We now verify that, for Example p3), the equations Gi(u) = u/εi(r) have positive solutions di. Indeed, since

Gi ∈ C(R+), Gi(ηi) = ηi, limu→+0 Gi(u)/u = +∞, limu→+∞ Gi(u)/u = 0, i = 1, N , and εi(r) ∈ (0, 1); and
Gi(u)/u decreases monotonically at (0,+∞), then for every i ∈ {1, 2, . . . , N}, there exists a single di > 0 such
thatGi(di)/di = 1/εi(r).

The verification of conditions 2) and d) for the rest of the examples is done in the same way.
Now let us give a specific example of a nonlinear multidimensional integral equation having an application in

the theory of p-adic string (see [5]):

φp(x1, . . . , xn) = π−n/2

∫

Rn

e−((x1−t1)
2+···+(xn−tn)

2)φ(t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn,

where p > 2 is an odd number. Using the notation f(x1, . . . , xn) = φp(x1, . . . , xn), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(x1, . . . , xn).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(x) = a

∫ ∞

−∞
K(x− t)(1− e−f(t))dt, x ∈ R,

where a > 1 is a numerical parameter, the kernel K(x) > 0, x ∈ R,
∫∞
−∞ K(x)dx = 1 (see [6, p. 318] in the

formulation of Theorem 1 (f(x) = −χ(x))).
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1. INTRODUCTION. PROBLEM STATEMENT

We consider a system of ordinary differential equations

ẏ(t) = f(t, y(t)) +Bu(t), t ∈ T = [0, ϑ], (1)

with the initial condition
y(0) = y0. (2)

Here 0 < ϑ < +∞, y ∈ RN , u ∈ Rr is the input influence, f(t, y) is a Lipschitz (with Lipschitz constantL) vector
function over a set of variables, B – a stationary matrix of dimensionN × r, n, r ∈ N.
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where h ∈ (0, 1) is the level of measurement error, | · |N denotes the Euclidean norm in the space RN .
It is required to specify an algorithm for approximate restoration of the input impact based on the results of
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We consider a system of ordinary differential equations

ẏ(t) = f(t, y(t)) +Bu(t), t ∈ T = [0, ϑ], (1)

with the initial condition
y(0) = y0. (2)

Here 0 < ϑ < +∞, y ∈ RN , u ∈ Rr is the input influence, f(t, y) is a Lipschitz (with Lipschitz constantL) vector
function over a set of variables, B – a stationary matrix of dimensionN × r, n, r ∈ N.

It is assumed that the system (1) is subjected to an unknown input influence u(·) ∈ L2(T ;Rr). At discrete,
sufficiently frequent, moments of time τi ∈ ∆ = {τi}i=0,m (τ0 = 0, τm = ϑ, τi+1 = τi + δ) the phase states
y(τi) = y(τi; y0, u(·)) of system (1) are measured. The states y(τi), i = 0,m− 1, are measured with error. The
measurement results are vectors ξhi ∈ RN , satisfying the inequalities

|y(τi)− ξhi |N ≤ h, (3)

where h ∈ (0, 1) is the level of measurement error, | · |N denotes the Euclidean norm in the space RN .
It is required to specify an algorithm for approximate restoration of the input impact based on the results of

inaccurate measurements y(τi). For this purpose, we consider the problem consisting in the construction of an
algorithm that, based on the current measurements of values y(τi) in “real time”, forms (according to the feedback
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if the value |x0−y0|N is small enough. Here x(·;x0, v
h(·)) is the solution of the system (6) generated by the control

vh(·) of the form (7). Note that both in the reconstruction problem and in the tracking problem, the input influence
of the given system is unknown.

If the algorithms for solving the reconstruction problem described in the papers cited above allowed us to obtain
for an arbitrary measurable input influence u(·) (possibly constrained by some specified instantaneous constraints)
estimates of the convergence rate (to u(·)) of uh(·) (in model (4) formed according to rule (5)) in a uniform or
mean-square metric, then, while solving the reconstruction problem, we would simultaneously solve the tracking
problem. Unfortunately, however, such estimates can be obtained only for special classes u(·), for example, for
functions with bounded variation. In the case when u(·) is not such a function, the algorithms from these works
guarantee only convergence of the controls uh(·) to u(·).

A question naturally arises: can we choose not the system of the form (4), but the system of the form (6), i.e., a
complete copy of the system (1), as a model in reconstruction algorithms? Then, while solving the reconstruction
problem in accordance with the described approach, we would simultaneously solve the tracking problem. Unfor-
tunately, for arbitrary f andB, even if smooth enough, it is not possible to give a positive answer to it. The purpose
of this paper is to specify two classes of systems of the form (1), for which the answer to the question is positive.
For each of these two classes, a different rule of control formation will be specified. The first class is a system
being linear both in phase variables and perturbation; the second is a system with a monotonic function in phase
variable f . It should be noted that the approach to solving problems of dynamic reconstruction developed, in this
paper, was applied when solving problems of reconstruction of unknown structural characteristics of a bioreactor
with recharge [3], the problem of formation of flight telemetry using indirect data [3], and problems of modeling
of pollution spreading processes [17].

Thereafter, for each h ∈ (0, 1), we fix a family∆h of partitions of the segment T by control time instants τh,i:

∆h = {τh,i}i=0,mh
, τh,0 = 0, τh,mh

= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1). (8)

It should be noted that the same solution of the system (1) can be conditioned by more than one influence. Let
U(y(·)) be the set of all input influences from L2(T ;Rr), generating the solution y(·) of system (1), i.e.,

U(y(·)) = {ũ(·) ∈ L2(T ;Rr) : ẏ(t)− f(t, y(t)) = Bũ(t) at a.e. t ∈ T}.

By the symbol u∗(·) we denote the minimal element of the set U(y(·)), i.e., by L2(T ;Rr)-norm.

u∗(·) = arg min
u(·)∈U(y(·))

|u(·)|L2(T ;Rr).

Such an element exists and is unique. Following the approach adopted in the theory of incorrect problems, we will
recover u∗(·). Hereinafter c(0), c(1), . . . , c0, c1, . . . , k(1), k(2), . . . , k1, k2, . . . denote positive constants that can be
written out explicitly, (·, ·) is the scalar product in the corresponding finite-dimensional Euclidean space, and | · |
is the modulus of a number.

2. SOLUTION ALGORITHM IN CASE OF A LINEAR SYSTEM

Let us consider the case when the system (1) is linear, i.e., has the form

ẏ(t) = Ay(t) +Bu(t) + f1(t). (9)

Here, A and B are constant matrices of corresponding dimensions, f1(·) ∈ L2(T ;RN ) is a given function. The
model is a copy of the system (9):

ẏh(t) = Ayh(t) +Buh(t) + f1(t) (10)

initialized
yh(0) = ξh0 .

Let’s fix the function α(h) : (0, 1) → (0.1). In the future we will need the following
Condition A.With h → 0, we have α(h) → 0, δ(h)α−2(h) → 0, h2(α(h)δ(h))−1 → 0.
Let us denote by Y(t) the fundamental matrix of the system of equations ẏ(t) = Ay(t). The inequality

∥Y(t)∥ ≤ exp{χt}, t ≥ 0,

principle) the function u = uh(·), that is an approximation (in the spacemetricL2(T ;Rr)) of some input influence
generating the solution y(·) of equation (1).

The formulated problem is a problem of dynamic recovery (reconstruction). One of the approaches to its
solution was developed in [1, pp. 7–87; 2, pp. 400–415; 3, pp. 13–93; 4–12]. In [1–10], the case of instantaneous
constraints on perturbations was considered; the case of absence of such constraints is described in [3, pp. 41–64;
6; 11; 12]. The approach is based on a combination of methods of the theory of positional control [13], according
to which for dynamic, realized at the rate of “real time”, restoration of the perturbation acting on the system
(1), one proceeds as follows: some controlled system, quite often called a model, is introduced; after that, the
restoration task is replaced by the task of forming the control of this model according to the feedback principle
in such a way, that at a suitable matching of the measurement error h, the value of the measurement interval δ
(as well as, perhaps, some other parameters, e.g., regulation parameter), the control uh (.) — in one or some
other metrics — approximates some input influence that induces a measured solution y (.) of system (1). Usually,
when speaking of approximation, one means uniform (space metricC) or mean-square (space metricL2) metrics.
When implementing this approach, in many cases the right-hand side of the model has the same structure as the
real system (system (1)). However, instead of the phase vector of the model in its right part there are the values ξhi ,
i.e., the results of measurements of phase states of the real system instead of the states of the model. Quite often
(see, for example, [1, p. 23; 4; 5]) the model has the following form:

ẏh(t) = f(τi, ξ
h
i ) +Buh

i at a.e. t ∈ δi = [τi, τi+1), i = 0,m− 1. (4)

In this case, the control uh(·) in the model is formed according to some rule U in the form of feedback:

uh(t) = uh
i = U(τi, ξ

h
i , y

h(τi)) at a.e. t ∈ δi, i = 0,m− 1. (5)

In mathematical control theory, one of the “classical” problems is the so-called tracking problem, the study
of which began in the fifties of the XX century and was caused by practical problems arising in aviation and as-
tronautics. This problem has not lost its relevance nowadays, in particular, due to the needs of flight dynamics
development. The tracking problem is also in demand when analyzing processes arising in control problems of
mechanical systems [14, 15], as well as systems functioning under uncertainty [16]. It also plays an important role
in the framework of positional differential games [13].

The essence of the tracking problem in the simplest case is as follows. There is a system (1) with an unknown
input influence u(·), satisfying usually the instantaneous constraint u(t) ∈ P at a.e. t ∈ T , where P ⊂ Rr is a
compact set. Along with the system (1) there is another system of the same type

ẋ(t) = f(t, x(t)) +Bv(t), t ∈ T, (6)

x(0) = x0

and control v(·), that obeys the same constraints as the function u(·). At moments τi, the phase states of systems
(1) and (6), y(τi) and x(τi), respectively, are measured (with error). The measurement results are vectors ξhi ∈ RN

and ψh
i ∈ RN , satisfying the inequalities

|ξhi − y(τi)|N ≤ h, |ψh
i − x(τi)|N ≤ h.

The essence of the tracking task consists in designing such an algorithm for forming the control of v = vh(·) system
(6) according to the feedback principle

vh(t) = vhi = V (τi, ξ
h
i , ψ

h
i ) at a.e. t ∈ δi, i = 0,m− 1, (7)

that, at appropriate coordination of values h and δ the solutions of systems (1) and (6), will be close, as a rule in
uniformmetric (in case of proximity of initial states of these systems), whatever the admissible realization of input
influence v(·) is. Thus, when solving the tracking problem, it is necessary to construct such a law V of control
formation (7), that whatever the number ε > 0, the numbers h∗ and δ∗ are specified, such that for all h ∈ (0, h∗)
and δ ∈ (0, δ∗), the inequality is true

sup
t∈T

|x(t;x0, v
h(·))− y(t; y0, u(·))|N ≤ ε,
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if the value |x0−y0|N is small enough. Here x(·;x0, v
h(·)) is the solution of the system (6) generated by the control

vh(·) of the form (7). Note that both in the reconstruction problem and in the tracking problem, the input influence
of the given system is unknown.

If the algorithms for solving the reconstruction problem described in the papers cited above allowed us to obtain
for an arbitrary measurable input influence u(·) (possibly constrained by some specified instantaneous constraints)
estimates of the convergence rate (to u(·)) of uh(·) (in model (4) formed according to rule (5)) in a uniform or
mean-square metric, then, while solving the reconstruction problem, we would simultaneously solve the tracking
problem. Unfortunately, however, such estimates can be obtained only for special classes u(·), for example, for
functions with bounded variation. In the case when u(·) is not such a function, the algorithms from these works
guarantee only convergence of the controls uh(·) to u(·).

A question naturally arises: can we choose not the system of the form (4), but the system of the form (6), i.e., a
complete copy of the system (1), as a model in reconstruction algorithms? Then, while solving the reconstruction
problem in accordance with the described approach, we would simultaneously solve the tracking problem. Unfor-
tunately, for arbitrary f andB, even if smooth enough, it is not possible to give a positive answer to it. The purpose
of this paper is to specify two classes of systems of the form (1), for which the answer to the question is positive.
For each of these two classes, a different rule of control formation will be specified. The first class is a system
being linear both in phase variables and perturbation; the second is a system with a monotonic function in phase
variable f . It should be noted that the approach to solving problems of dynamic reconstruction developed, in this
paper, was applied when solving problems of reconstruction of unknown structural characteristics of a bioreactor
with recharge [3], the problem of formation of flight telemetry using indirect data [3], and problems of modeling
of pollution spreading processes [17].

Thereafter, for each h ∈ (0, 1), we fix a family∆h of partitions of the segment T by control time instants τh,i:

∆h = {τh,i}i=0,mh
, τh,0 = 0, τh,mh

= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1). (8)

It should be noted that the same solution of the system (1) can be conditioned by more than one influence. Let
U(y(·)) be the set of all input influences from L2(T ;Rr), generating the solution y(·) of system (1), i.e.,

U(y(·)) = {ũ(·) ∈ L2(T ;Rr) : ẏ(t)− f(t, y(t)) = Bũ(t) at a.e. t ∈ T}.

By the symbol u∗(·) we denote the minimal element of the set U(y(·)), i.e., by L2(T ;Rr)-norm.

u∗(·) = arg min
u(·)∈U(y(·))

|u(·)|L2(T ;Rr).

Such an element exists and is unique. Following the approach adopted in the theory of incorrect problems, we will
recover u∗(·). Hereinafter c(0), c(1), . . . , c0, c1, . . . , k(1), k(2), . . . , k1, k2, . . . denote positive constants that can be
written out explicitly, (·, ·) is the scalar product in the corresponding finite-dimensional Euclidean space, and | · |
is the modulus of a number.

2. SOLUTION ALGORITHM IN CASE OF A LINEAR SYSTEM

Let us consider the case when the system (1) is linear, i.e., has the form

ẏ(t) = Ay(t) +Bu(t) + f1(t). (9)

Here, A and B are constant matrices of corresponding dimensions, f1(·) ∈ L2(T ;RN ) is a given function. The
model is a copy of the system (9):

ẏh(t) = Ayh(t) +Buh(t) + f1(t) (10)

initialized
yh(0) = ξh0 .

Let’s fix the function α(h) : (0, 1) → (0.1). In the future we will need the following
Condition A.With h → 0, we have α(h) → 0, δ(h)α−2(h) → 0, h2(α(h)δ(h))−1 → 0.
Let us denote by Y(t) the fundamental matrix of the system of equations ẏ(t) = Ay(t). The inequality

∥Y(t)∥ ≤ exp{χt}, t ≥ 0,
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where I is a unit matrix of dimensionN ×N . Therefore

|Sh
i − exp{−2χτi+1}shi |N ≤ δc∗ exp{−2χτi+1}|shi |N ≤ δc∗|shi |N . (15)

In this case, taking into account (15) and the inequality |Sh
i |N ≤ |shi |N , we have

|(Sh
i ,Y(δ)Bu)− exp{−2χτi+1}(shi , Bu)| ≤

≤ |Sh
i |N |Y(δ)− I|N |Bu|N + |(Sh

i , Bu)− exp{−2χτi+1}(shi , Bu)| ≤ 2δc(0)|shi |N |Bu|N . (16)

Further, by virtue of (16), the inequality is true

λ1i ≤ 2 exp{−2χτi+1}
(
yh(τi)− y(τi),

∫ τi+1

τi

B{uh
i − u∗(τ)}dτ

)
+ I1i,

where
I1i = δc(1)|shi |N

∫ τi+1

τi

|uh
i − u∗(τ)|rdτ.

It is not difficult to see that there is an estimation

I1i ≤ δ2λ(τi) + c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ. (17)

Considering (17) and the rule for choosing the control uh(·) (see (5), (11)), we obtain

λ1i + α

∫ τi+1

τi

(|uh(s)|2r − |u∗(s)|2r)ds ≤

≤ δ2λ(τi) + c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds+ c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds. (18)

In addition, the estimates are correct

µ1i ≤ δc(4)
∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ,

c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds ≤ δc(5)

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds+ c(6)h2. (19)

From (14), using (18), (19), we establish the validity of the inequality

γ(τi+1) = λ(τi+1) + α

∫ τi+1

τi

|uh(s)|2rds ≤

≤ (1 + δ2)λ(τi) + α

∫ τi+1

τi

|u∗(τ)|2rdτ + δc(7)
∫ τi+1

τi

(|u∗(τ)|2r + |uh
i |2r)dτ + c(6)h2. (20)

In turn, by virtue of (3), (11) we have

|uh
i |2r ≤ α−2c(8)(h2 + |yh(τi)− y(τi)|2N )2 ≤ α−2c(9)(λ(τi) + h2) ≤ α−2c(9)(γ(τi) + h2). (21)

From (20), (21) follows the estimation of

γ(τi+1) ≤ (1 + δ2)γ(τi) + (α+ c(7)δ)

∫ τi+1

τi

|u∗(s)|2rds+ c(6)h2 + c(9)δ2α−2(γ(τi) + h2). (22)

Taking into account condition A, we conclude that it is possible to specify the number h1 ∈ (0, 1) such that the
inequality holds

sup
h∈(0,h1)

δ(h)α−2(h) ≤ 1.

where χ = ∥A∥, ∥A∥ is the Euclidean norm of the matrix A, is true.
Before the algorithm starts, we fix the value h ∈ (0, 1), the partition ∆h = {τh,i}i=0,mh

of the form (8) and
the number α = α(h). The algorithm operation is divided into a finite number of steps of the same type. At the
i-th step, carried out at the time interval δi = [τi, τi+1), τi = τh,i, the following operations are performed: at the
moment τi, the vector uh

i is calculated according to formula (5), in which

U(τi, ξ
h
i , y

h(τi)) = α−1 exp{−2χτi+1}B′(ξhi − yh(τi)) (11)

(here dash means transpose); then the input of system (10) at all t ∈ δi is given control uh(t) of the form (5),
(11), under the action of which the system (10) passes from the state yh(τi) to the state yh(τi+1). The work of the
algorithm ends at the moment ϑ.

Let’s introduce the functional
λ(t) = exp{−2χt}|yh(t)− y(t)|2N .

In the future, we’ll need the following
Lemma 1 (Gronwall’s discrete inequality [18, p. 311]). Let ϕj ≥ 0, fj ≥ 0 at j = 0,m and fj ≤ fj+1 at

j = 0,m− 1. Then from the inequalities

ϕj+1 ≤ c0δ

j∑
i=1

ϕi + fj , j = 1,m− 1,

inequalities follow
ϕj+1 ≤ fj exp{c0jδ}, j = 0,m− 1,

if c0 > 0, ϕ1 ≤ f0.
Lemma 2. Let condition A be satisfied. Then it is possible to specify such a number h∗ ∈ (0, 1), that for all

h ∈ (0, h∗) the inequalities are true.

max
i∈0,mh−1

λ(τi+1) ≤ d1{α+ δ + h2δ−1}, (12)

ϑ∫

0

|uh(s)|2r ds ≤ (1 + d2δα
−2)

ϑ∫

0

|u∗(s)|2r ds+ d3h
2(αδ)−1, (13)

where dj, j = 1, 2, 3 are positive constants independent of h, δ and α.
Proof. Let’s estimate the change in the value of

ε(t) = λ(t) + α

∫ t

0

(|uh(τ)|2r − |u∗(τ)|2r)dτ.

Here α = α(h), δ = δ(h). It is easy to see that the inequality is true

ε(τi+1) ≤ ε(τi) + λ1i + µ1i + α

∫ τi+1

τi

(|uh(τ)|2r − |u∗(τ)|2r)dτ, (14)

where
λ1i = 2

(
Sh
i ,

∫ τi+1

τi

Y (τi+1 − τ)B(uh(τ)− u∗(τ))dτ

)
,

µ1i = δ exp{−2χτi+1}
∫ τi+1

τi

|Y (τi+1 − τ)B(uh(τ)− u∗(τ))|2Ndτ,

Sh
i = exp{−2χτi+1}Y (δ)shi , shi = yh(τi)− y(τi).

Note that at t ∈ [0, δ∗], δ∗ ∈ (0, 1),

∥Y(t)− I∥ ≤ c∗t, c∗ = c∗(δ∗),
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where I is a unit matrix of dimensionN ×N . Therefore

|Sh
i − exp{−2χτi+1}shi |N ≤ δc∗ exp{−2χτi+1}|shi |N ≤ δc∗|shi |N . (15)

In this case, taking into account (15) and the inequality |Sh
i |N ≤ |shi |N , we have

|(Sh
i ,Y(δ)Bu)− exp{−2χτi+1}(shi , Bu)| ≤

≤ |Sh
i |N |Y(δ)− I|N |Bu|N + |(Sh

i , Bu)− exp{−2χτi+1}(shi , Bu)| ≤ 2δc(0)|shi |N |Bu|N . (16)

Further, by virtue of (16), the inequality is true

λ1i ≤ 2 exp{−2χτi+1}
(
yh(τi)− y(τi),

∫ τi+1

τi

B{uh
i − u∗(τ)}dτ

)
+ I1i,

where
I1i = δc(1)|shi |N

∫ τi+1

τi

|uh
i − u∗(τ)|rdτ.

It is not difficult to see that there is an estimation

I1i ≤ δ2λ(τi) + c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ. (17)

Considering (17) and the rule for choosing the control uh(·) (see (5), (11)), we obtain

λ1i + α

∫ τi+1

τi

(|uh(s)|2r − |u∗(s)|2r)ds ≤

≤ δ2λ(τi) + c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds+ c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds. (18)

In addition, the estimates are correct

µ1i ≤ δc(4)
∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ,

c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds ≤ δc(5)

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds+ c(6)h2. (19)

From (14), using (18), (19), we establish the validity of the inequality

γ(τi+1) = λ(τi+1) + α

∫ τi+1

τi

|uh(s)|2rds ≤

≤ (1 + δ2)λ(τi) + α

∫ τi+1

τi

|u∗(τ)|2rdτ + δc(7)
∫ τi+1

τi

(|u∗(τ)|2r + |uh
i |2r)dτ + c(6)h2. (20)

In turn, by virtue of (3), (11) we have

|uh
i |2r ≤ α−2c(8)(h2 + |yh(τi)− y(τi)|2N )2 ≤ α−2c(9)(λ(τi) + h2) ≤ α−2c(9)(γ(τi) + h2). (21)

From (20), (21) follows the estimation of

γ(τi+1) ≤ (1 + δ2)γ(τi) + (α+ c(7)δ)

∫ τi+1

τi

|u∗(s)|2rds+ c(6)h2 + c(9)δ2α−2(γ(τi) + h2). (22)

Taking into account condition A, we conclude that it is possible to specify the number h1 ∈ (0, 1) such that the
inequality holds

sup
h∈(0,h1)

δ(h)α−2(h) ≤ 1.
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where µh(t) = yh(t)− y(t). It is not difficult to see that the inequalities are true at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(3)
∣∣∣∣
∫ t

τi

Y (t− s)B(uh(s)− u∗(s))ds

∣∣∣∣
N

≤

≤ k(2)λ(τi) + k(4)
∫ t

τi

(|uh(s)|r + |u∗(s)|r)ds. (27)

In turn, by virtue of (12) and (21) at t ∈ δi, we have
∫ t

τi

|uh(s)|rds ≤ k(5)δα−1(λ1/2(τi) + h) ≤ k(6)δα−1(α1/2 + δ1/2 + hδ−1/2). (28)

Given the convergence of δ(h)α−2(h) → 0 at h → 0, we conclude that at h ∈ (0, h∗), the following estimates
are valid

δα−1/2 ≤ k(7)α3/2, δ3/2α−1 ≤ k(8)α2, hδ1/2α−1 ≤ k(9)h. (29)

Moreover, in view of (28) and (29) at t ∈ δi, the following estimates are true
∫ t

τi

|uh(s)|rds ≤ k(10)(h+ α3/2),

∫ t

τi

|u∗(s)|rds ≤ k(11)δ1/2 ≤ k(12)α. (30)

From (27), taking into account (30), we derive the following relation, which is valid at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(13)(h+ α). (31)

In this case, by virtue of (12), from (31) we obtain

sup
t∈T

|µh(t)|N ≤ k(14)(α+ h+ h2δ−1)1/2.

Hence we deduce
∣∣∣∣
∫ t2

t1

(uh(t)− u∗(t))dt

∣∣∣∣
r

≤ k(15)
∣∣∣∣
∫ t2

t1

B(uh(t)− u∗(t))dt

∣∣∣∣
N

≤ k(16)(α1/2 + h1/2 + hδ−1/2). (32)

Again using lemma 2 (see (13)), we set
∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ =

∫ ϑ

0

|uh(τ)|2rdτ − 2

∫ ϑ

0

(uh(τ), u∗(τ))dτ +

∫ ϑ

0

|u∗(τ)|2rdτ ≤

≤ (2 + d2α
−2δ)

∫ ϑ

0

|u∗(τ)|2rdτ −
∫ ϑ

0

(uh(τ), u∗(τ))dτ + d3h
2(αδ)−1 =

= 2

∫ ϑ

0

(u∗(τ)− uh(τ), u∗(τ))dτ + d2α
−2δ

∫ ϑ

0

|u∗(τ)|2rdτ + d3h
2(αδ)−1. (33)

Considering lemma 3 and also (32), we obtain

sup
t∈T

∣∣∣∣
∫ t

0

(u∗(τ)− uh(τ), u∗(τ))dτ

∣∣∣∣ ≤ k(17)(α1/2 + h1/2 + hδ−1/2). (34)

Thus, inequality (26) is true for all h ∈ (0, h∗), t ∈ T , by virtue of (33), (34). The lemma is proved.

From (22), we derive in the standard way (see, e.g., [13, p. 59–64]) the relation

γ(τi+1) ≤
(
(α+ c(7)δ)

∫ τi+1

τi

|u∗(s)|2rds+ c(6)h2δ−1 + c(9)h2

)
exp{δ(1 + c(9)α−2)τi+1}. (23)

Note that δ(h)α−2(h) → 0 at h → 0. Therefore, we can specify a number c(10) > 0, such that for all h ∈ (0, h1)
the inequality is true

exp{δ(1 + c(9)α−2)ϑ} ≤ 1 + δc(10)(1 + α−2).

Then from (23) follows the relation
∫ ϑ

0

|uh(s)|2rds ≤ (1 + c(7)δα−1)(1 + c(10)δα(1 + α−2))

∫ ϑ

0

|u∗(s)|2rds+ c(11)h2(δα)−1. (24)

By virtue of condition A, there is such a number h∗ ∈ (0, h1) such that for all h ∈ (0, h∗)

(1 + c(7)δα−1)(1 + c(10)δ(1 + α−2)) ≤ 1 + d2δα
−2. (25)

Inequality (13) follows from (24) and (25). In turn, inequality (12) follows from (23). The lemma is proved.
Remark. If δ(h) = d4h, α(h) = d5h

1/2−ε, where d4 and d5 are positive constants, ε ∈ (0, 1/2), then the
inequalities hold

max
i=0,mh−1

λ(τi+1) ≤ d6h
1/2−ε,

∫ ϑ

0

|uh(s)|2rds ≤ (1 + d7h
2ε)

∫ ϑ

0

|u∗(s)|2rds+ d8h
1/2+ε.

It follows from lemma 2
Theorem 1. Let the conditions of lemma 2 be satisfied. Then there is convergence uh(·) → u∗(·) at h → 0.
The proof of this theorem follows the standard scheme (see, for example, the proof of Theo-

rem 1.2.3 in [3, pp. 21-27]).
Under some additional conditions, an estimate of the convergence rate of the algorithm can be obtained. To

justify it, we need the following
Lemma 3 [3, p. 29]. Let x1(·) ∈ L∞(T∗;Rn), y1(·) ∈ W (T∗;Rn), T∗ = [a, b],−∞ < a < b < +∞,

∣∣∣∣
∫ t

a

x1(τ)dτ

∣∣∣∣
n

≤ ε, |y1(t)|n ≤ K, t ∈ T∗.

Then the inequality is true for all t ∈ T∗:
∣∣∣∣
∫ t

a

(x1(τ), y1(τ))dτ

∣∣∣∣ ≤ ε(K + var(T∗; y1(·))).

Here, var(T∗; y1(·)) denotes the variation of the function y1(·) on the segment T∗, andW (T∗;Rn) denotes the
set of functions y(·) : T∗ → Rn with bounded variation.

Lemma 4. Let u∗(·) be a function of bounded variation, B be a matrix independent of t and y (stationary) matrix,
N ≥ r, rank B = r. Let the conditions of Lemma 2 also be satisfied. Then we can specify a number d9 > 0 such that
for all h ∈ (0, h∗) the inequality is true.

∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ ≤ d9(α
1/2 + h2(αδ)−1 + δα−2 + h1/2 + hδ−1/2). (26)

Proof. Note that for any t1, t2 ∈ T , t1 < t2, the following relation is true
∣∣∣∣
∫ t2

t1

B{uh(t)− u∗(t)}dt
∣∣∣∣
N

=

∣∣∣∣
∫ t2

t1

[ẏh(τ)− ẏ(τ)−A(yh(τ)− y(τ))]dτ

∣∣∣∣
N

≤

≤ |µh(t2)− µh(t1)|N + k(1)
∫ t2

t1

|µh(τ)|Ndτ,
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where µh(t) = yh(t)− y(t). It is not difficult to see that the inequalities are true at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(3)
∣∣∣∣
∫ t

τi

Y (t− s)B(uh(s)− u∗(s))ds

∣∣∣∣
N

≤

≤ k(2)λ(τi) + k(4)
∫ t

τi

(|uh(s)|r + |u∗(s)|r)ds. (27)

In turn, by virtue of (12) and (21) at t ∈ δi, we have
∫ t

τi

|uh(s)|rds ≤ k(5)δα−1(λ1/2(τi) + h) ≤ k(6)δα−1(α1/2 + δ1/2 + hδ−1/2). (28)

Given the convergence of δ(h)α−2(h) → 0 at h → 0, we conclude that at h ∈ (0, h∗), the following estimates
are valid

δα−1/2 ≤ k(7)α3/2, δ3/2α−1 ≤ k(8)α2, hδ1/2α−1 ≤ k(9)h. (29)

Moreover, in view of (28) and (29) at t ∈ δi, the following estimates are true
∫ t

τi

|uh(s)|rds ≤ k(10)(h+ α3/2),

∫ t

τi

|u∗(s)|rds ≤ k(11)δ1/2 ≤ k(12)α. (30)

From (27), taking into account (30), we derive the following relation, which is valid at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(13)(h+ α). (31)

In this case, by virtue of (12), from (31) we obtain

sup
t∈T

|µh(t)|N ≤ k(14)(α+ h+ h2δ−1)1/2.

Hence we deduce
∣∣∣∣
∫ t2

t1

(uh(t)− u∗(t))dt

∣∣∣∣
r

≤ k(15)
∣∣∣∣
∫ t2

t1

B(uh(t)− u∗(t))dt

∣∣∣∣
N

≤ k(16)(α1/2 + h1/2 + hδ−1/2). (32)

Again using lemma 2 (see (13)), we set
∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ =

∫ ϑ

0

|uh(τ)|2rdτ − 2

∫ ϑ

0

(uh(τ), u∗(τ))dτ +

∫ ϑ

0

|u∗(τ)|2rdτ ≤

≤ (2 + d2α
−2δ)

∫ ϑ

0

|u∗(τ)|2rdτ −
∫ ϑ

0

(uh(τ), u∗(τ))dτ + d3h
2(αδ)−1 =

= 2

∫ ϑ

0

(u∗(τ)− uh(τ), u∗(τ))dτ + d2α
−2δ

∫ ϑ

0

|u∗(τ)|2rdτ + d3h
2(αδ)−1. (33)

Considering lemma 3 and also (32), we obtain

sup
t∈T

∣∣∣∣
∫ t

0

(u∗(τ)− uh(τ), u∗(τ))dτ

∣∣∣∣ ≤ k(17)(α1/2 + h1/2 + hδ−1/2). (34)

Thus, inequality (26) is true for all h ∈ (0, h∗), t ∈ T , by virtue of (33), (34). The lemma is proved.
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≤ −2ωε1(t) + 2(yh(t)− y(t), B(uh
i − u∗(t))) ≤ −2ωε1(t) +

3∑
j=1

Iji(t), (40)

where
I1i(t) = 2(yh(τi)− ξhi , B(uh

i − u∗(t))),

I2i(t) = 2∥B∥h(|uh
i |r + |u∗(t)|r),

I3i(t) = 2∥B∥(|uh
i |N + |u∗(t)|N )

∫ τi+1

τi

|ẏh(s)− ẏ(s)|Nds.

From (40) follows the inequality

ε1(τi+1) ≤ ε1(τi)− 2ω

∫ τi+1

τi

ε1(s)ds+

∫ τi+1

τi

3∑
j=1

Iji(s)ds. (41)

Further, at t ∈ δi we have

ε1(τi) =

∣∣∣∣yh(t)− y(t)−
∫ t

τi

(ẏh(s)− ẏ(s))ds

∣∣∣∣
2

N

≤ 2ε1(t) + 2δ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds,

therefore

−ωε1(τi) ≥ −2ωε1(t)− 2ωδ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds.

Thus, at t ∈ δi the inequality is true

−2ωε1(t) ≤ −ωε(τi) + 2ωδ

∫ t

τi

|ẏh(s)− ẏ(t)|2Nds.

Hence, after integration at t ∈ [τi, τi+1], we obtain

−2ω

∫ t

τi

ε1(s)ds ≤ −ωδε1(τi) + 2ωδ2
∫ t

τi

|ẏh(s)− ẏ(s)|2Nds. (42)

From (41), (42), considering in (42) t = τi+1, we deduce

ε1(τi+1) ≤ (1− ωδ)ε1(τi) + Ĩ1i +

3∑
j=1

∫ τi+1

τi

Iji(s)ds, (43)

where
Ĩ1i = 4ωδ2

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

Further, taking into account the definition of uh
i (see (5), (37)), we conclude that the following inequality holds

∫ τi+1

τi

(I1i(t) + α(|uh
i |2r − |u∗(t)|2r))dt ≤ 0. (44)

It’s not hard to see that ∫ τi+1

τi

I2i(t)dt ≤ c0h
2 + Ĩ2i, (45)

where
Ĩ2i = δ

∫ τi+1

τi

(|uh
i |2r + |u∗(t)|2r)dt.

In turn, by virtue of (5), (37) and (3), the inequality is true

|uh
i |r ≤ α−1c1(h+ ε1(τi)),

3. SOLUTION ALGORITHM IN CASE OF NONLINEAR SYSTEM

Let us specify the algorithm for solving the problemunder consideration in the casewhen the system is nonlinear
in phase variable. Let the system (1) have the following form:

ẏ(t) = f(t, y(t)) +Bu(t), (35)

whereB is a constant matrix of dimensionN × r. Let us assume that the function f is continuous on t, monotone
on x, i.e., at some ω ≥ 0 the inequality is satisfied

(f(t, x)− f(t, y), x− y) ≤ −ω|x− y|2N , t ∈ T, x, y ∈ RN ,

and satisfies the growth condition

|f(t, x)|N ≤ c(1 + |x|N ), t ∈ T, x ∈ RN ,

where c => 0. If these conditions are satisfied, it is known that at any u(·) ∈ L2(T ;Rr), there exists a single
solution of the system (35), understood in the sense of Carathéodory. As a model, we take a copy of (35), namely
the system

ẏh(t) = f(t, yh(t)) +Buh(t) (36)

with initial state of
yh(0) = ξh0 .

The algorithm for solving the problem, in this case, is similar to the algorithm described above for the linear
system. First of all, we select some family ∆h (8) of partitions of the segment T , as well as the function
α(h) : (0, 1) → (0, 1).

The values h ∈ (0, 1), α = α(h) and the partition ∆h = {τh,i}i=0,mh
of the form (8) are fixed before the

algorithm starts. The work of the algorithm is divided into m − 1, m = mh steps of the same type. At i-th step,
carried out at the time interval δi = [τi, τi+1), τi = τh,i, the following operations are performed. First (at the
moment τi), the vector uh

i is calculated according to formula (5), in which

U(τi, ξ
h
i , y

h(τi)) = α−1B′(ξhi − yh(τi)). (37)

Then, the control uh(t) of the form (5), (37) is applied to the input of the system (36). Under the action of this
control, the system (36) changes from the state yh(τi) to the state yh(τi+1). The operation of the algorithm ends
at the moment ϑ.

As in the linear case, it turns out that at a certain agreement of the values h, δ(h) and α(h) the function uh(·)
is an approximation of u∗(·). Before proceeding to the proof of this fact, we give a lemma that will be needed later.

Lemma 5. It is possible to specify such a number d10 > 0, such that the inequality is satisfied uniformly over all
t ∈ T , y0 ∈ RN , u(·) ∈ L2(T ;Rr).

∫ t

0

|ẏ(s; y0, u(·))|2Nds ≤ d10

(
|y0|2N +

∫ t

0

|u(s)|2rds
)
.

Here y(·; y0, u(·)) is the solution of system (1) with initial state (2) generated by u(·) ∈ L2(T ;Rr).
Lemma 6. Let α(h) → 0, δ(h)α−2(h) → 0 at h → 0. Then we can specify such a number h1 ∈ (0, 1), such that

for all h ∈ (0, h1), t ∈ T for some positive d11, d12, d13, the inequalities are true.

max
i=0,mh−1

ε1(τi) ≤ d11(α+ δ + h2δ−1), (38)

∫ ϑ

0

|uh(τ)|2rdτ ≤ (1 + d12δα
−2)

∫ ϑ

0

|u∗(τ)|2rdτ + d13(h
2(αδ)−1 + δα−1), (39)

where ε1(t) = |yh(t)− y(t)|2N , α = α(h), δ = δ(h).
Proof. Consider the change in the value of ε1(t) at t ∈ T . For t ∈ δi = [τi, τi+1), i = 0,m− 1, we have

dε1(t)

dt
= 2(yh(t)− y(t), f(t, yh(t))− f(t, y(t)) +B(uh

i − u∗(t))) ≤
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≤ −2ωε1(t) + 2(yh(t)− y(t), B(uh
i − u∗(t))) ≤ −2ωε1(t) +

3∑
j=1

Iji(t), (40)

where
I1i(t) = 2(yh(τi)− ξhi , B(uh

i − u∗(t))),

I2i(t) = 2∥B∥h(|uh
i |r + |u∗(t)|r),

I3i(t) = 2∥B∥(|uh
i |N + |u∗(t)|N )

∫ τi+1

τi

|ẏh(s)− ẏ(s)|Nds.

From (40) follows the inequality

ε1(τi+1) ≤ ε1(τi)− 2ω

∫ τi+1

τi

ε1(s)ds+

∫ τi+1

τi

3∑
j=1

Iji(s)ds. (41)

Further, at t ∈ δi we have

ε1(τi) =

∣∣∣∣yh(t)− y(t)−
∫ t

τi

(ẏh(s)− ẏ(s))ds

∣∣∣∣
2

N

≤ 2ε1(t) + 2δ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds,

therefore

−ωε1(τi) ≥ −2ωε1(t)− 2ωδ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds.

Thus, at t ∈ δi the inequality is true

−2ωε1(t) ≤ −ωε(τi) + 2ωδ

∫ t

τi

|ẏh(s)− ẏ(t)|2Nds.

Hence, after integration at t ∈ [τi, τi+1], we obtain

−2ω

∫ t

τi

ε1(s)ds ≤ −ωδε1(τi) + 2ωδ2
∫ t

τi

|ẏh(s)− ẏ(s)|2Nds. (42)

From (41), (42), considering in (42) t = τi+1, we deduce

ε1(τi+1) ≤ (1− ωδ)ε1(τi) + Ĩ1i +

3∑
j=1

∫ τi+1

τi

Iji(s)ds, (43)

where
Ĩ1i = 4ωδ2

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

Further, taking into account the definition of uh
i (see (5), (37)), we conclude that the following inequality holds

∫ τi+1

τi

(I1i(t) + α(|uh
i |2r − |u∗(t)|2r))dt ≤ 0. (44)

It’s not hard to see that ∫ τi+1

τi

I2i(t)dt ≤ c0h
2 + Ĩ2i, (45)

where
Ĩ2i = δ

∫ τi+1

τi

(|uh
i |2r + |u∗(t)|2r)dt.

In turn, by virtue of (5), (37) and (3), the inequality is true

|uh
i |r ≤ α−1c1(h+ ε1(τi)),
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Note that
ε1(0) ≤ h2, exp{c9(i+ 1)δ2α−2} ≤ exp{c9ϑδα−2}.

Furthermore, if δ(h)α−2(h) → 0 at h → 0, then the inequalities are satisfied at h ∈ (0, h1), h1 ∈ (0, 1)

exp{c9ϑδα−2} ≤ 1 + c10δα
−2, δα−2 ≤ c11,

where c10 = c10(h1) > 0, c11 = c11(h1) > 0.
Thus, in view of (54) at h ∈ (0, h1), i = 0,m− 1, the inequality is true

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤ α(1 + c12δα
−2)

∫ τi+1

0

|u∗(s)|2rds+ c13(h
2δ−1 + δ),

from which inequalities (38) and (39) follow. The lemma is proved.
By means of lemma 6, it can be proved that
Theorem 2. Let the conditions of lemma 6 be satisfied. Suppose also h2(α(h)δ(h))−1 → 0 at h → 0. Then, there

is convergence of uh(·) → u∗(·) at h → 0.
As in the case of a linear system, we can write out an estimate of the convergence rate of the algorithm.
Lemma 7. Let the conditions of Theorem 2 be satisfied. Let also the function y → f(t, y) be a Lipschitz function,

r ≤ N , rank B = r. Then at h ∈ (0, h1), the following estimate of the convergence rate of the algorithm takes place:
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤ d14(α
1/2 + δ1/2 + hδ−1/2 + hα−1/2 + δα−2 + h2(αδ)−1). (55)

Proof. The proof of the lemma is similar to the proof of Lemma 4. Indeed, let L be the Lipschitz constant of
the function f . It is easy to see that at a.e. t ∈ δi, the following relation is true

ε̇1(t) ≤ −2ωε1(t) + I4i(t) + I3i(t) ≤ I4i(t) + I3i(t), (56)

where
I4i(t) = 2(yh(τi)− y(τi), B(uh

i − u∗(t))).

Note that the inequality is true at t ∈ δi
∣∣∣∣
∫ t

τi

I4i(s)ds

∣∣∣∣
N

≤ ε1(τi) + 2∥B∥2Ĩ2i,

therefore (see (49)) for all t ∈ δi, the estimate is true:
∣∣∣∣
∫ t

τi

(I4i(s) + I3i(s))ds

∣∣∣∣
N

≤ ε1(τi) + Ĩ3i + (1 + 2∥B∥2)Ĩ2i. (57)

Under the conditions of Theorem 2, we can consider that at h ∈ (0, h1), the following relations take place:

max
i=0,mh

ε1(τi) ≤ k1, δα−2 ≤ k2. (58)

Using (39), we obtain ∫ ϑ

0

|uh(s)|2Nds ≤ k3(1 + δα−2 + h2δ−1α−1). (59)

In turn, by virtue of (46), (50), (58), (59) and lemma 6, the inequalities are true at h ∈ (0, h1)

Ĩ2i ≤ k4δ + k5δ
2α−2(h2 + ε1(τi)) ≤ k6δ, (60)

Ĩ3i ≤ k7δ + k8δ

∫ τi

0

|uh(s)|2rds ≤ k9δ + k10(h
2α−1 + δ2α−2) ≤ k11(δ + h2α−1). (61)

In view of (58)
α−1 ≤ k12δ

−1/2 ≤ k13δ
−1.

therefore
δ

∫ τi+1

τi

|uh(s)|2rds ≤ 2δ2α−2c21(h
2 + ε1(τi)), (46)

hence,

δ

∫ τi+1

0

|uh(s)|2rds ≤ 2δ2α−2c21




i∑
j=0

ε1(τj) + ϑh2δ−1


 . (47)

Considering (47), we obtain

i∑
j=0

Ĩ2j ≤ δ

∫ τi+1

0

|u∗(s)|2rds+ 2ϑc21δh
2α−2 + 2c21δ

2α−2
i∑

j=0

ε1(τj). (48)

Then we have ∫ τi+1

τi

I3i(t)dt ≤ Ĩ3i + Ĩ2i, (49)

where
Ĩ3i = ∥B∥2δ

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

By virtue of lemma 5, for all i = 1,m, the following relation is correct
∫ τi

0

(|ẏh(s)|2N + |ẏ(s)|2N )ds ≤ c2

(
1 +

∫ τi

0

(|uh(s)|2r + |u∗(s)|2r)ds
)
. (50)

Then,
i∑

j=0

Ĩ1j ≤ c3δ


1 +

i∑
j=0

Ĩ2j


 ,

i∑
j=0

Ĩ3j ≤ c4


δ +

i∑
j=0

Ĩ2j


 .

In this case, taking into account (49), we conclude that the inequality holds

i∑
j=0

∫ τj+1

τj

I3j(s)ds ≤ c5δ + c6

i∑
j=0

Ĩ2j . (51)

Then from (45), (47), (48), and (51), we obtain

i∑
j=0

(
Ĩ1j +

∫ τj+1

τj

(I2j(t) + I3j(t))dt

)
≤ c7h

2δ−1 + c8δ + c9


δ2α−2

i∑
j=0

ε1(τj) + δh2α−2


 . (52)

In turn, from (43), taking advantage of (44) and (52), we derive the estimation

ε1(τi+1) + α

∫ τi+1

0

(|uh(s)|2r − |u∗(s)|2r)ds ≤

≤ ε1(0) + c7h
2δ−1 + c8δ + c9δh

2α−2 + c9δ
2α−2

i∑
j=0

ε1(τj). (53)

By virtue of the discrete Gronwall inequality (see lemma 1) from (53), we have

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤

≤
(
ε0(0) + c7h

2δ−1 + c8δ + c9δh
2α−2 + α

∫ τi+1

0

|u∗(s)|2rds
)
exp{c9(i+ 1)δ2α−2}. (54)
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Note that
ε1(0) ≤ h2, exp{c9(i+ 1)δ2α−2} ≤ exp{c9ϑδα−2}.

Furthermore, if δ(h)α−2(h) → 0 at h → 0, then the inequalities are satisfied at h ∈ (0, h1), h1 ∈ (0, 1)

exp{c9ϑδα−2} ≤ 1 + c10δα
−2, δα−2 ≤ c11,

where c10 = c10(h1) > 0, c11 = c11(h1) > 0.
Thus, in view of (54) at h ∈ (0, h1), i = 0,m− 1, the inequality is true

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤ α(1 + c12δα
−2)

∫ τi+1

0

|u∗(s)|2rds+ c13(h
2δ−1 + δ),

from which inequalities (38) and (39) follow. The lemma is proved.
By means of lemma 6, it can be proved that
Theorem 2. Let the conditions of lemma 6 be satisfied. Suppose also h2(α(h)δ(h))−1 → 0 at h → 0. Then, there

is convergence of uh(·) → u∗(·) at h → 0.
As in the case of a linear system, we can write out an estimate of the convergence rate of the algorithm.
Lemma 7. Let the conditions of Theorem 2 be satisfied. Let also the function y → f(t, y) be a Lipschitz function,

r ≤ N , rank B = r. Then at h ∈ (0, h1), the following estimate of the convergence rate of the algorithm takes place:
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤ d14(α
1/2 + δ1/2 + hδ−1/2 + hα−1/2 + δα−2 + h2(αδ)−1). (55)

Proof. The proof of the lemma is similar to the proof of Lemma 4. Indeed, let L be the Lipschitz constant of
the function f . It is easy to see that at a.e. t ∈ δi, the following relation is true

ε̇1(t) ≤ −2ωε1(t) + I4i(t) + I3i(t) ≤ I4i(t) + I3i(t), (56)

where
I4i(t) = 2(yh(τi)− y(τi), B(uh

i − u∗(t))).

Note that the inequality is true at t ∈ δi
∣∣∣∣
∫ t

τi

I4i(s)ds

∣∣∣∣
N

≤ ε1(τi) + 2∥B∥2Ĩ2i,

therefore (see (49)) for all t ∈ δi, the estimate is true:
∣∣∣∣
∫ t

τi

(I4i(s) + I3i(s))ds

∣∣∣∣
N

≤ ε1(τi) + Ĩ3i + (1 + 2∥B∥2)Ĩ2i. (57)

Under the conditions of Theorem 2, we can consider that at h ∈ (0, h1), the following relations take place:

max
i=0,mh

ε1(τi) ≤ k1, δα−2 ≤ k2. (58)

Using (39), we obtain ∫ ϑ

0

|uh(s)|2Nds ≤ k3(1 + δα−2 + h2δ−1α−1). (59)

In turn, by virtue of (46), (50), (58), (59) and lemma 6, the inequalities are true at h ∈ (0, h1)

Ĩ2i ≤ k4δ + k5δ
2α−2(h2 + ε1(τi)) ≤ k6δ, (60)

Ĩ3i ≤ k7δ + k8δ

∫ τi

0

|uh(s)|2rds ≤ k9δ + k10(h
2α−1 + δ2α−2) ≤ k11(δ + h2α−1). (61)

In view of (58)
α−1 ≤ k12δ

−1/2 ≤ k13δ
−1.
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11. Maksimov V. On a stable solution of the dynamical reconstruction and tracking control problems for cou-
pled ordinary differential equation-heat equation, Math. Contr. Related Fields, 2024, Vol. 14, No. 1,
pp. 322–345.

12. Maksimov V. Reconstruction of disturbances in a nonlinear system from measurements of some of the stat-
evector coordinates, Comput. Math. Math. Phys., 2019, Vol. 59, No. 11, pp. 1771–1780.
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and Applications, Berlin; Heidelberg: Springer, 2008.

15. Ananevsky I.M. and Reshmin S.A. The method of decomposition in the problem of tracking the trajectories
of mechanical systems, J. Comput. Syst. Sci. Int., 2002, Vol. 41, No. 5, pp. 695–702.

16. Utkin V.A. and Utkin A.V. Problem of tracking in linear systems with parametric uncertainties under unstable
zero dynamics, Autom. Remote Control, 2014, Vol. 75, pp. 1577–1592.

17. Kryazhimskii A.V., Maksimov V.I., and Samarskai E.A.On reconstruction inputs in parabolic systems, Math.
Model., 1997, Vol. 9, No. 3, pp. 51–72.

18. Samarskii A.A. The Theory of Difference Schemes, New York: CRC Press, 2001.

In this case, taking into account (57), (60), (61), from (56) we obtain the relations valid at t ∈ δi

ε1(t) ≤ 2ε1(τi) + k11(δ + h2α−1) ≤ 2ε(τi) + k14(δ + h2δ−1). (62)

Hence, by virtue of (38) and (62) at t ∈ δi there is a chain of inequalities
∣∣∣∣
∫ t

0

(uh(s)− u∗(s))ds

∣∣∣∣
r

≤ k15

∣∣∣∣
∫ t

0

(ẏh(s)− ẏ(s)− f(s, yh(s)) + f(s, y(s)))ds

∣∣∣∣
N

≤

≤ k15

(
ε
1/2
1 (t) + ε

1/2
1 (0) + L

∫ t

0

ε
1/2
1 (s)ds

)
≤ k16(α+ δ + h2δ−1 + h2α−1)1/2.

In addition, similarly to (33), (34), the estimates are established
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤

≤ 2

∫ ϑ

0

(u∗(s)− uh(s), u∗(s))ds+ d12δα
−2

∫ ϑ

0

|u∗(s)|2rds+ d13(h
2(αδ)−1 + δα−1), (63)

sup
t∈T

∣∣∣∣
∫ t

0

(uh(s)− u∗(s), u∗(s))ds

∣∣∣∣ ≤ k18(α+ δ + h2δ−1 + h2α−1)1/2. (64)

Lemma 3 is used to derive inequality (64). Inequality (55) follows from inequalities (63) and (64). The lemma
is proved.
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Abstract. In a finite-dimensional Euclidean space, the problem of pursuing of a group of evaders by a group
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1. INTRODUCTION

One of the directions of development of the modern theory of differential games is the study of pursuit-evasion
problems with participation of a group of participants [1–4], and besides deepening of classical methods of inves-
tigation the search of game problems to which previously developed methods are applicable is actively conducted.

Differential games with fractional derivatives were first considered in [5], where the method of scalar resolv-
ing functions was used for the study. Differential games with fractional derivatives based on the Hamilton-Jacobi
equation were studied in [6]. In [7], the problem of pursuit by a group of pursuers of a single evader in differential
games described by equations with fractional derivatives was considered. The problem of conflict interaction be-
tween a group of pursuers and a group of evaders in games with fractional dynamics was considered in [8], scalar
resolving functions were used for analysis. A. A. Chikrii, in his paper [9], notes that scalar resolving functions
attract a terminal set with images of some multivalued mappings that occur in a cone stretched over this set, which
limits the possibilities for the pursuer’s maneuver, and also proposes to use matrix resolving functions to analyze
two-person pursuit games. In [10], matrix resolution functions were applied to study the problem of pursuit by a
group of pursuers of a single evader described by a stationary linear system with fractional Caputo derivatives.

In [11], the problem of pursuit by a group of pursuers of a group of evaders in linear stationary differential
games with simple matrices under the condition that all evaders use the same control was considered. Sufficient
conditions for catching at least one evader were obtained. The pursuit problem in which all evaders use the same
control will be referred to as the coordinated evaders pursuit problem.

In this paper we consider the problem of conflict interaction between a group of pursuers and a group of evaders
in a differential game described by a nonstationary linear system of differential equations with fractional Caputo
derivatives. Under the condition that the evaders use the same control, sufficient conditions for catching at least one
evader are obtained, usingmatrix or scalar resolving functions. The study of the nonstationary case is supplemented
by some results for games described by linear stationary systems with a simple matrix.

1
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1. PROBLEM STATEMENT

In the spaceRk (k ⩾ 2) we consider a differential game of n+m persons: n pursuers P1, . . . , Pn andm evaders
E1, . . . , Em, described by a system of the form

(D(α))zij = Aij(t)zij + ui − v, zij(t0) = z0ij , ui ∈ Ui, v ∈ V. (1)

Here, i ∈ I = {1, . . . , n}, j ∈ J = {1, . . . ,m}, zij , ui, v ∈ Rk, Ui, V are compact sets Rk, α ∈ (0, 1), D(α)x is
Caputo derivative of the function x of orderα [12],Aij(t) are continuousmatrix functions of order k×k. Terminal
setsM∗

ij of the form
M∗

ij = Mij +M0
ij ,

whereMij is a linear subspace of Rk,M0
ij are convex compact sets from Lij – the orthogonal complement ofMij

to Rk. We consider z0ij /∈ M∗
ij for all i ∈ I, j ∈ J .

The actions of the evaders can be interpreted as follows: there is a center that, for all evaders E1, . . . , Em,
chooses the same control v(·).

Let v : [t0,+∞) → V be a measurable function, which we will call admissible. The prehistory of vt(·), at the
moment t of the function v(·), will be called the contraction of the function v at [t0, t].

2. SUFFICIENT CATCHING CONDITIONS

Definition 1. We will say that a quasi-strategy Ui of the pursuer Pi is defined, if a mapping U0
i , that puts the

measurable function ui(t) with values in Ui in accordance with the initial positions of z0 = (z0ij , i ∈ I, j ∈ J), the
moment t, and an arbitrary control prehistory vt(·) of the evader Ej , j ∈ J , is defined.

Let’s denote this game byG(n,m, z0).
Definition 2. A capture of at least one evader occurs in the game G(n,m, z0), if there exist moment T > 0,

quasi-strategies U1, . . . ,Un of pursuers P1, . . . , Pn such that for any measurable function v(·), v(t) ∈ V, t ∈ [t0, T ],
there exist moment τ ∈ [t0, T ] and numbers p ∈ I, q ∈ J , for which zpq(τ) ∈ Mpq.

Let us introduce the following notations: E0 is a identity matrix of order k×k, πij : Rk → Lij is an orthogonal
projection operator,

Γ(β) =

∫ +∞

0

sβ−1e−sds, τJtf(t) =
1

Γ(α)

∫ t

τ

(t− s)α−1f(s)ds,

G0
ij(t, τ) =

(t− τ)α−1

Γ(α)
E0,

Gl+1
ij (t, τ) = τJt(Aij(t)G

l
ij(t, τ)), l = 0, 1, . . . , Φij(t, τ) =

+∞∑
l=0

Gl
ij(t, τ),

G̃0
ij(t, τ) = E0, G̃l+1

ij (t, τ) = τJt(Aij(t)G̃
l
ij(t, τ)), l = 0, 1, . . . , Ψij(t, τ) =

+∞∑
l=0

G̃l
ij(t, τ),

Wij(t, τ, v) = πijΦij(t, τ)(Ui − v), Wij(t, τ) =
⋂
v∈V

Wij(t, τ, v),

Int A, co A are the interior and the convex hull of the set A, respectively.
Assumption 1. There exists a mapping q : I → J , such that for all i ∈ I, t ⩾ t0, τ ∈ [t0, t] the following condition

is satisfied
Wiq(i)(t, τ) ̸= ∅.

Remark 1. Fulfillment of assumption 1 will allow further organizing the pursuit of evaders, so that each pursuer
will carry out the capture of “its” evader.
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1. PROBLEM STATEMENT

In the spaceRk (k ⩾ 2) we consider a differential game of n+m persons: n pursuers P1, . . . , Pn andm evaders
E1, . . . , Em, described by a system of the form

(D(α))zij = Aij(t)zij + ui − v, zij(t0) = z0ij , ui ∈ Ui, v ∈ V. (1)

Here, i ∈ I = {1, . . . , n}, j ∈ J = {1, . . . ,m}, zij , ui, v ∈ Rk, Ui, V are compact sets Rk, α ∈ (0, 1), D(α)x is
Caputo derivative of the function x of orderα [12],Aij(t) are continuousmatrix functions of order k×k. Terminal
setsM∗

ij of the form
M∗

ij = Mij +M0
ij ,

whereMij is a linear subspace of Rk,M0
ij are convex compact sets from Lij – the orthogonal complement ofMij

to Rk. We consider z0ij /∈ M∗
ij for all i ∈ I, j ∈ J .

The actions of the evaders can be interpreted as follows: there is a center that, for all evaders E1, . . . , Em,
chooses the same control v(·).

Let v : [t0,+∞) → V be a measurable function, which we will call admissible. The prehistory of vt(·), at the
moment t of the function v(·), will be called the contraction of the function v at [t0, t].

2. SUFFICIENT CATCHING CONDITIONS

Definition 1. We will say that a quasi-strategy Ui of the pursuer Pi is defined, if a mapping U0
i , that puts the

measurable function ui(t) with values in Ui in accordance with the initial positions of z0 = (z0ij , i ∈ I, j ∈ J), the
moment t, and an arbitrary control prehistory vt(·) of the evader Ej , j ∈ J , is defined.

Let’s denote this game byG(n,m, z0).
Definition 2. A capture of at least one evader occurs in the game G(n,m, z0), if there exist moment T > 0,

quasi-strategies U1, . . . ,Un of pursuers P1, . . . , Pn such that for any measurable function v(·), v(t) ∈ V, t ∈ [t0, T ],
there exist moment τ ∈ [t0, T ] and numbers p ∈ I, q ∈ J , for which zpq(τ) ∈ Mpq.

Let us introduce the following notations: E0 is a identity matrix of order k×k, πij : Rk → Lij is an orthogonal
projection operator,

Γ(β) =

∫ +∞

0

sβ−1e−sds, τJtf(t) =
1

Γ(α)

∫ t

τ

(t− s)α−1f(s)ds,

G0
ij(t, τ) =

(t− τ)α−1

Γ(α)
E0,

Gl+1
ij (t, τ) = τJt(Aij(t)G

l
ij(t, τ)), l = 0, 1, . . . , Φij(t, τ) =

+∞∑
l=0

Gl
ij(t, τ),

G̃0
ij(t, τ) = E0, G̃l+1

ij (t, τ) = τJt(Aij(t)G̃
l
ij(t, τ)), l = 0, 1, . . . , Ψij(t, τ) =

+∞∑
l=0

G̃l
ij(t, τ),

Wij(t, τ, v) = πijΦij(t, τ)(Ui − v), Wij(t, τ) =
⋂
v∈V

Wij(t, τ, v),

Int A, co A are the interior and the convex hull of the set A, respectively.
Assumption 1. There exists a mapping q : I → J , such that for all i ∈ I, t ⩾ t0, τ ∈ [t0, t] the following condition

is satisfied
Wiq(i)(t, τ) ̸= ∅.

Remark 1. Fulfillment of assumption 1 will allow further organizing the pursuit of evaders, so that each pursuer
will carry out the capture of “its” evader.
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Lemma 1. Let assumptions 1, 2 be satisfied,

lim
t→+∞

∫ t

t0

δ(t, s)ds = +∞. (3)

Then, there exists a moment T > t0 such that for each measurable function v(·), v(t) ∈ V , t ∈ [t0, T ], there exists a
number l ∈ I, such that for all p ∈ Jl the inequalities are true:

∫ T

t0

λ∗
lp(T, s, v(s))ds ⩾ 1.

Proof. Let v(·) be an arbitrary admissible function. Then for all t ⩾ t0, s ∈ [t0, t], l ∈ I, p ∈ Jl, the inequalities
are true:

λ∗
lp(t, s, v(s)) ⩾ λ∗

l (t, s, v(s)). (4)

In addition, relations are true,

max
l∈I

∫ t

t0

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

∑
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

max
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

δ(t, s)ds.

It follows from condition (3) that there exists a number T > t0, for which

1

n

∫ T

t0

δ(T, s)ds ⩾ 1.

Hence,

max
l∈I

∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1,

so there is a number l ∈ I, for which ∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1.

From the last inequality and inequality (4), the validity of the statement of the lemma follows.
Let’s find the number

T0 = inf
{
t ⩾ t0 : inf

v(·)
max
l∈I

min
p∈Jl

∫ t

t0

λ∗
lp(t, s, v(s))ds ⩾ 1

}
.

Consider the sets (i ∈ I, p ∈ Jl)

Tip(v(·)) =
{
t ⩾ t0 :

∫ t

t0

λ∗
ip(T0, s, v(s))ds ⩾ 1

}
.

Let’s determine the values

t∗ip(v(·)) =

{
inf{t : t ∈ Tip(v(·))}, if Tip(v(·)) ̸= ∅,
+∞, if Tip(v(·)) = ∅.

Assumption 3. 1) For all τ ∈ [t0, T0], v ∈ V , l ∈ I, J0
l ⊂ Jl, selectors Bl(T0, τ, v) = diag(βl1(T0, τ, v), . . .

. . . , βlkl
(T0, τ, v)) where

βlp(T0, τ, v) =

{
λ∗
lp(T0, τ, v), if p ∈ J0

l ,

0, if p /∈ J0
l ,

satisfy the condition Bl(T0, τ, v) ⊂ Ml(T0, τ, v).
2)

∫ T0

t0
Bl(T0, s, v(s))M

0
lq(l)ds ⊂ M0

lq(l).
Theorem 2. Let assumptions 1–3 and condition (19) be satisfied. Then, at least one evader is captured in the game

G(n,m, z0).

It follows from the measurable choice theorem [13, Theorem 8.1.3], that for every i ∈ I for any ⩾ t0, there
exists at least one measurable selector γiq(i)(t, τ) ∈ Wiq(i)(t, τ) for all t ⩾ t0, τ ∈ [t0, t]. Let us choose arbitrary
measurable selectors γiq(i)(t, τ), fix them and denote

ξiq(i)(t) = πiq(i)Ψiq(i)(t, t0)z
0
iq(i) +

∫ t

t0

γiq(i)(t, τ)dτ.

Theorem 1. Let Assumption 1 be satisfied, and there exist T > t0, l ∈ I such that ξlq(l)(T ) ∈ M0
lq(l). Then a

capture occurs in the gameG(n,m, z0).
Proof. Let’s consider the multivalued mapping (τ ∈ [t0, T ], v ∈ V ):

Ul(T, τ, v) = {ul ∈ Ul : πlq(l)Φlq(l)(T, τ)(u− v)− γlq(l)(T, τ) = 0}.

By assumption 1, Ul(T, τ, v) ̸= ∅ for all τ ∈ [t0, T ], v ∈ V . It follows from the measurable choice theorem
[13, Theorem 8.1.3], that there exists a measurable selector u∗

l (τ, v) ∈ Ul(T, τ, v). We assume the control of the
pursuer Pl is equal to

ul(τ) = u∗
l (τ, v(τ)), τ ∈ [t0, T ].

The controls of the other pursuers are set arbitrarily. The solution of the Cauchy problem for the system (1) is
represented as [14]

zlq(l)(T ) = Ψlq(l)(T, t0)z
0
lq(l) +

∫ T

t0

Φlq(l)(T, s)(ul(s)− v(s))ds,

therefore

πlq(l)zlq(l)(T ) = ξlq(l)(T ) +

∫ T

t0

(πlq(l)Φlq(l)(T, s)(ul(s)− v(s))− γlq(l)(T, s))ds = ξlq(l)(T ) ∈ M0
lq(l).

This means that a capture of at least one evader occurs in the gameG(n,m, z0). The theorem is proven.
In the following, we will assume that ξiq(i)(t) /∈ M0

iq(i) is for all i ∈ I, t ⩾ t0.
Consider an arbitrary diagonal square matrix Λi of order ki × ki, where ki is the dimension of Liq(i), of the

form

Λi =




λi1 0 . . . 0
0 λi2 . . . 0
...

...
. . .

...
0 0 . . . λiki


 = diag(λi1, λi2, . . . , λiki).

We will identify the matrix Λi with the vector (λi1, . . . , λiki
). We will understand the inequality Λi ⩾ 0 coor-

dinatewise. Let us introduce multivalued mappings

Mi(t, τ, v) = {Λi : Λi ⩾ 0,Λi(M
0
iq(i) − ξiq(i)(t)) ∩ (Wiq(i)(t, τ, v)− γiq(i)(t, τ)) ̸= ∅}.

Due to the properties of the parameters of the conflict-controlled process, the mappingsMi(t, τ, v) are (τ, v)
measurable mappings [15]. Let us define the scalar functions

λ0
i (t, τ, v) = sup

Λi∈Mi(t,τ,v)
min
l∈Ji

λil(t, τ, v), Ji = {1, . . . , ki}. (2)

Assumption 2. For all t ⩾ t0, τ ∈ [t0, t], v ∈ V , an exact upper bound is achieved in (2).
We consider this assumption to be satisfied. Let us define the set

M∗
i (t, τ, v) = {Λi(t, τ, v) ∈ Mi(t, τ, v) : λ

0
i (t, τ, v) = min

l∈Ji

λil(t, τ, v)}.

It follows from [15], that under the assumptions made, M∗
i (t, τ, v) is measurable by (τ, v) and closed-valued

at any t ⩾ 0. By the measurable choice theorem [13, Theorem 8.1.3], for each i ∈ I in M∗
i (t, τ, v), there

exists at least one selector measurable by (τ, v) at any t ⩾ 0. Let us fix these selectors and denote them by
Λ∗
i (t, τ, v) = diag(λ∗

i1(t, τ, v), . . . , λ
∗
iki

(t, τ, v)). Let further

δ(t, τ) = inf
v∈V

max
i∈I

min
l∈Ji

λ∗
il(t, τ, v).
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Lemma 1. Let assumptions 1, 2 be satisfied,

lim
t→+∞

∫ t

t0

δ(t, s)ds = +∞. (3)

Then, there exists a moment T > t0 such that for each measurable function v(·), v(t) ∈ V , t ∈ [t0, T ], there exists a
number l ∈ I, such that for all p ∈ Jl the inequalities are true:

∫ T

t0

λ∗
lp(T, s, v(s))ds ⩾ 1.

Proof. Let v(·) be an arbitrary admissible function. Then for all t ⩾ t0, s ∈ [t0, t], l ∈ I, p ∈ Jl, the inequalities
are true:

λ∗
lp(t, s, v(s)) ⩾ λ∗

l (t, s, v(s)). (4)

In addition, relations are true,

max
l∈I

∫ t

t0

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

∑
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

max
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

δ(t, s)ds.

It follows from condition (3) that there exists a number T > t0, for which

1

n

∫ T

t0

δ(T, s)ds ⩾ 1.

Hence,

max
l∈I

∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1,

so there is a number l ∈ I, for which ∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1.

From the last inequality and inequality (4), the validity of the statement of the lemma follows.
Let’s find the number

T0 = inf
{
t ⩾ t0 : inf

v(·)
max
l∈I

min
p∈Jl

∫ t

t0

λ∗
lp(t, s, v(s))ds ⩾ 1

}
.

Consider the sets (i ∈ I, p ∈ Jl)

Tip(v(·)) =
{
t ⩾ t0 :

∫ t

t0

λ∗
ip(T0, s, v(s))ds ⩾ 1

}
.

Let’s determine the values

t∗ip(v(·)) =

{
inf{t : t ∈ Tip(v(·))}, if Tip(v(·)) ̸= ∅,
+∞, if Tip(v(·)) = ∅.

Assumption 3. 1) For all τ ∈ [t0, T0], v ∈ V , l ∈ I, J0
l ⊂ Jl, selectors Bl(T0, τ, v) = diag(βl1(T0, τ, v), . . .

. . . , βlkl
(T0, τ, v)) where

βlp(T0, τ, v) =

{
λ∗
lp(T0, τ, v), if p ∈ J0

l ,

0, if p /∈ J0
l ,

satisfy the condition Bl(T0, τ, v) ⊂ Ml(T0, τ, v).
2)

∫ T0

t0
Bl(T0, s, v(s))M

0
lq(l)ds ⊂ M0

lq(l).
Theorem 2. Let assumptions 1–3 and condition (19) be satisfied. Then, at least one evader is captured in the game

G(n,m, z0).
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λ∗
1(t, s, v) = sup

Λ∈M1(t,s,v)
min
l∈J1

λ1l(t, s, v) =
(t− s)α−1

2Γ(α)
.

Hence,

M∗
1 (t, s, v) = diag

(
(t− s)α−1

2Γ(α)
,
(t− s)α−1

Γ(α)

)
, δ(t, s) =

(t− s)α−1

2Γ(α)
.

We have limt→+∞
∫ t

0
δ(t, s)ds = +∞, so T0 = (2Γ(α+ 1))1/α. Let T1 = T0 − (Γ(α+ 1))1/α. The control of

pursuer P1 has the form

u1(t) =

{
(−1,−1), t ∈ [0, T1),

(−1, 0), t ∈ [T1, T0],

then [14]

z11(T0) = z011 +
1

Γ(α)

∫ T0

0

(T0 − s)α−1u1(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

Λ =

(
λ 0
0 λ

)
,

does not allow us to prove the solvability of the pursuit problem, since in this case the condition −Λz011 ∈ U1 − v
is satisfied only for the zero matrix Λ.

Example 2. Consider the gameG(n, 1, z0), in which the system (1) has the form
{
(D(α))zi1 = tzi2,

(D(α))zi2 = ui − v,
zi(0) = z0i . (5)

Here zi = (zi1, zi2) ∈ R2k, Ui = V = {v ∈ Rk : ∥v∥ ⩽ 1},M∗
i1 = {(zi1, zi2) ∈ R2k : zi1 = 0}, so (i ∈ I)

M0
i1 = {(zi1, zi2) ∈ R2k : zi1 = zi2 = 0}, Mi1 = {(zi1, zi2) ∈ R2k : zi1 = 0},

Li1 = {(zi1, zi2) ∈ R2k : zi2 = 0}, πi1 =

(
E0 0
0 0

)
.

Let’s denote

p(t, τ) =
(t− τ)α−1

Γ(α)
, q(t, τ) =

α(t− τ)2α−1(t+ τ)

Γ(2α+ 1)
, r(t, τ) =

(t− τ)α(t+ ατ)

Γ(α+ 2)
.

Then [14]

Ψi(t, τ) =

(
E0 r(t, τ)E0

0 E0

)
, Φi(t, τ) =

(
p(t, τ)E0 q(t, τ)E0

0 p(t, τ)E0

)
.

Hence,

Wi(t, τ, v) = q(t, τ)(V − v), Wi(t, τ) = {0}, γi(t, τ) = 0, ξi(t) = πiΨi(t, 0)z
0
i = z0i1 + r(t, 0)z0i2,

λi(t, τ, v) = q(t, τ)
(ξi(t), v) +

√
(ξi(t), v)2 + ∥ξi(t)∥2(1− ∥v∥2)

∥ξi(t)∥2
.

Assertion. Let z0i2 = 0 for all i ∈ I and 0 ∈ Int co{z0i1, i ∈ I}. Then a capture occurs in the gameG(n, 1, z0).
Proof. In this case, ξi1(t) = z0i1 for all t > 0. It follows from [16], that

δ(t, τ) = min
v

max
i

λi(t, τ, v) ⩾ q(t, τ)δ0

for all t, τ with some δ0 > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the gameG(n, 1, z0). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.

Proof. It follows from lemma 1, that T0 < +∞. Let v : [t0, T0] → V be an arbitrary admissible function. Let
us introduce the functions B∗

l (T0, t, v) = diag(β∗
l1(T0, t, v), . . . , β

∗
lkl

(T0, t, v)), where

β∗
lp(T0, t, v) =

{
λ∗
lp(T0, t, v), if t ∈ [t0, t

∗
lp(v(·))),

0, if t ∈ [t∗lp(v(·)), T0].

By assumption 3, B∗
i (T0, t, v) is a measurable selector ofMi(T0, t, v). Consider multivalued mappings

Ui(T0, t, v) = {ui ∈ Ui : πiq(i)Φiq(i)(T0, t)(ui − v)− γiq(i)(T0, t) ∈ B∗
i (T0, t, v)(M

0
iq(i) − ξiq(i)(T0))}.

Then Ui(T0, t, v) ̸= ∅ for all i ∈ I, t ∈ [t0, T0], v ∈ V , and hence by the measurable choice theorem [13,
Theorem 8.1.3], Ui(T0, t, v) has at least one measurable selector u∗

i (T0, t, v). We define the pursuers’ controls by
assuming ui(t) = u∗

i (T0, t, v(t)). We’ll show that this evaders’ control guarantees the capture of at least one evader.
The solution of the Cauchy problem of the system (1) has the form [14]

ziq(i)(t) = Ψiq(i)(t, t0)z
0
iq(i) +

∫ t

t0

Φiq(i)(t, s)(ui(s)− v(s))ds,

therefore

πiq(i)ziq(i)(T0) = πiq(i)Ψiq(i)(T0, t0)z
0
iq(i) +

∫ T0

t0

γiq(i)(T0, s)ds +

+

∫ T0

t0

(πiq(i)Φiq(i)(T0, s)(ui(s)− v(s))− γiq(i)(T0, s))ds =

= ξiq(i)(T0) +

∫ T0

t0

(πiq(i)Φiq(i)(T0, s)(ui(s)− v(s))− γiq(i)(T0, s))ds ∈

∈ ξiq(i)(T0) +

∫ T0

t0

B∗
i (T0, s, v(s))(M

0
iq(i) − ξiq(i)(T0))ds =

= ξiq(i)(T0)

(
E0 −

∫ T0

t0

B∗
i (T0, s, v(s))ds

)
+

∫ T0

t0

B∗
i (T0, s, v(s))M

0
iq(i)ds.

From the definition of B∗
i (T0, s, v) and lemma 1, it follows that there exists a number l ∈ I, for which

∫ T0

t0

B∗
l (T0, s, v(s))ds = E0.

Then,

πlq(l)zlq(l)(T0) =

∫ T0

t0

B∗
l (T0, s, v(s))M

0
lq(l)ds ⊂ M0

lq(l).

The theorem is proved.
Remark 2. Scalar resolving functions are a special case of matrix resolving functions, since they are represented

in the form λE0, where λ is a non-negative real number.
Example 1. Let the system (1) k = 2, n = m = 1, t0 = 0, A11(t) = 0 for all t, V = {0}, z011 = (2, 1),

M∗
11 = {0}, U1 = {(u1, u2) : u1 = 0, u2 ∈ [−1, 1]} ∪ {(u1, u2) : u2 = 0, u1 ∈ [−1, 1]} ∪ {(u1, u2) : u1 =

= u2 ∈ [−1, 1]}. Then

Ψ11(t, t0) = E0, Φ11(t, s) =
(t− s)α−1

Γ(α)
, W11(t, s, v) = W11(t, s) =

(t− s)α−1

Γ(α)
U1.

Let’s take γ11(t, s) = 0 for all (t, s), then ξ11(t) = z011,

M1(t, s, v) =

{(
0 0
0 λ2

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
∪

∪
{(

λ2/2 0
0 0

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
∪
{(

λ2/2 0
0 λ2

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
,
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λ∗
1(t, s, v) = sup

Λ∈M1(t,s,v)
min
l∈J1

λ1l(t, s, v) =
(t− s)α−1

2Γ(α)
.

Hence,

M∗
1 (t, s, v) = diag

(
(t− s)α−1

2Γ(α)
,
(t− s)α−1

Γ(α)

)
, δ(t, s) =

(t− s)α−1

2Γ(α)
.

We have limt→+∞
∫ t

0
δ(t, s)ds = +∞, so T0 = (2Γ(α+ 1))1/α. Let T1 = T0 − (Γ(α+ 1))1/α. The control of

pursuer P1 has the form

u1(t) =

{
(−1,−1), t ∈ [0, T1),

(−1, 0), t ∈ [T1, T0],

then [14]

z11(T0) = z011 +
1

Γ(α)

∫ T0

0

(T0 − s)α−1u1(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

Λ =

(
λ 0
0 λ

)
,

does not allow us to prove the solvability of the pursuit problem, since in this case the condition −Λz011 ∈ U1 − v
is satisfied only for the zero matrix Λ.

Example 2. Consider the gameG(n, 1, z0), in which the system (1) has the form
{
(D(α))zi1 = tzi2,

(D(α))zi2 = ui − v,
zi(0) = z0i . (5)

Here zi = (zi1, zi2) ∈ R2k, Ui = V = {v ∈ Rk : ∥v∥ ⩽ 1},M∗
i1 = {(zi1, zi2) ∈ R2k : zi1 = 0}, so (i ∈ I)

M0
i1 = {(zi1, zi2) ∈ R2k : zi1 = zi2 = 0}, Mi1 = {(zi1, zi2) ∈ R2k : zi1 = 0},

Li1 = {(zi1, zi2) ∈ R2k : zi2 = 0}, πi1 =

(
E0 0
0 0

)
.

Let’s denote

p(t, τ) =
(t− τ)α−1

Γ(α)
, q(t, τ) =

α(t− τ)2α−1(t+ τ)

Γ(2α+ 1)
, r(t, τ) =

(t− τ)α(t+ ατ)

Γ(α+ 2)
.

Then [14]

Ψi(t, τ) =

(
E0 r(t, τ)E0

0 E0

)
, Φi(t, τ) =

(
p(t, τ)E0 q(t, τ)E0

0 p(t, τ)E0

)
.

Hence,

Wi(t, τ, v) = q(t, τ)(V − v), Wi(t, τ) = {0}, γi(t, τ) = 0, ξi(t) = πiΨi(t, 0)z
0
i = z0i1 + r(t, 0)z0i2,

λi(t, τ, v) = q(t, τ)
(ξi(t), v) +

√
(ξi(t), v)2 + ∥ξi(t)∥2(1− ∥v∥2)

∥ξi(t)∥2
.

Assertion. Let z0i2 = 0 for all i ∈ I and 0 ∈ Int co{z0i1, i ∈ I}. Then a capture occurs in the gameG(n, 1, z0).
Proof. In this case, ξi1(t) = z0i1 for all t > 0. It follows from [16], that

δ(t, τ) = min
v

max
i

λi(t, τ, v) ⩾ q(t, τ)δ0

for all t, τ with some δ0 > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the gameG(n, 1, z0). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.
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hence limt→+∞ F (t) < 0. So limt→+∞
∑n

i=1 hi(t, v(·)) < 0. Since
∑n

i=1 hi(0, v(·)) > 0, there exists T > 0, for
which for any admissible function v(·) the inequality

∑n
i=1 hi(T, v(·)) < 0 is true. Thus, inequality (9) is proved.

Let

T0 = min
{
t : inf

v(·)
min
i∈I

(
E1/α(aiq(i)t

α, 1)−
∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds

)
⩽ 0

}
.

It follows from inequality (7), that T0 < +∞. Let v(·) be an admissible fleeing control. Consider the sets

Ti(v(·)) =
{
t ⩾ 0 : E1/α(aiq(i)T

α
0 , 1)−

∫ t

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)λ(z0iq(i), v(s))ds ⩽ 0

}
.

Let the following be

ti(v(·)) =

{
inf{t : t ∈ Ti(v(·))}, if Ti(v(·)) ̸= ∅,
+∞, if Ti(v(·)) = ∅,

βi(t, v(·)) =

{
λ(ziq(i), v(t)), t ∈ [0, ti(v(·))],
0, t ∈ [ti(v(·)), T0].

Let’s set the controls of the pursuers Pi, i ∈ I, assuming

ui(t) = v(t)− βi(t, v(·))z0iq(i).

The solution of the Cauchy problem of the system (1) is represented in the form [19]

ziq(i)(T0) = E1/α(aiq(i)T
α
0 , 1)z

0
iq(i) +

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)(ui(s)− v(s))ds =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i) =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ ti(v(·))

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i).

It follows from the previous proof that there exists a number l ∈ I, for which zlq(l)(T0) = 0. The theorem is
proved.

Example 3. Let k = 2, I = {1, 2, 3, 4}, J = {1, 2}, Aij(t) = aijE
0, aij < 0, Ui = V = {v : ∥v∥ ⩽ 1}, z011 =

(1, 3), z021 = (−1, 3), z031 = (−1, 1), z041 = (1, 1), z012 = (0,−1), z022 = (−2,−1), z032 = (−2,−3), z042 = (0,−3).
Define a mapping q : I → J as follows: q(1) = 2, q(2) = q(3) = q(4) = 1. The conditions of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z0). Note that 0 /∈ Int co{z0i1, i ∈ I}
and 0 /∈ Int co{z0i2, i ∈ I}.

We show that if aiq(i) > 0, then condition (6) in Theorem 3 does not guarantee capture.
Example 4. Let k = 2, n = 3, m = 1, I = {1, 2, 3}, M∗

i1 = {0}, t0 = 0, z011 = (0, 1), z021 = (1/2,−
√
3/2),

z031 = (−1/2,−
√
3/2), Ui = V = {v : ∥v∥ ⩽ 1}. System (1) has the form

(D(1/2))zi1 = zi1 + ui − v.

Let’s take v(t) = 0 for all t ⩾ 0. Then we have

zi1(t) = E2(
√
t, 1)z0i1 +

∫ t

0

(t− s)−1/2E2((t− s)1/2, 1/2)ui(s)ds.

Suppose that there exist T > 0, function ul(·), l ∈ {1, 2, 3}, for which zl1(T ) = 0. Then [20, p. 120, formula
(1.15)]

E2(
√
T , 1) = ∥E2(

√
T , 1)z0l1∥ =

∥∥∥∥∥
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ul(s) ds

∥∥∥∥∥ ⩽

⩽
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ds =

√
TE2(

√
T , 3/2).

3. SUFFICIENT CAPTURE CONDITIONS IN THE LINEAR STATIONARY CASE
WITH SIMPLEMATRICES

Theorem 3. Let in the system (1) for all i, j Aij(t) = aijE
0 for any t,M∗

ij = {0}, t0 = 0, Ui = V = {v : ∥v∥ ⩽ 1},
there exists a mapping q : I → J such that aiq(i) < 0 for all i ∈ I and

0 ∈ Int co{z0iq(i), i ∈ I}. (6)

Then a capture of at least one evader occurs in the gameG(n,m, z0).
Proof. In this case

Ψiq(i)(t, t0) = E1/α(aiq(i)t
α, 1), Φiq(i)(t, τ) = (t− τ)α−1E1/α(aiq(i)(t− τ)α, α),

where Eρ(z, µ) =
∑∞

l=0 z
l/Γ(lρ−1 + µ) is the Mittag-Leffler function. Assumption 1 is fulfilled.

Let’s takeγiq(i)(t, τ) = 0 as selectors for all i ∈ I, t ⩾ 0, τ ∈ [0, t]. Then ξiq(i)(t) = πiq(i)E1/α(aiq(i)t
α, 1)z0iq(i).

Let
λ(z, v) = sup{λ ⩾ 0 : −λz ∈ V − v}, δ = min

v∈V
max
i∈I

λ(z0iq(i), v), a = min
i∈I

aiq(i).

It follows from condition (6) and from [16], that δ > 0. Let us show that there exists T > 0 such that for any
admissible function v(·) there exists l ∈ I, for which

E1/α(alq(l)T
α, 1)−

∫ T

0

(T − s)α−1E1/α(alq(l)(T − s)α, α)λ(z0lq(l), v(s))ds ⩽ 0. (7)

Consider the functions

hi(t, v(·)) = E1/α(aiq(i)t
α, 1)−

∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds.

It follows from [17], that for all t ⩾ 0, τ ∈ [0, t], i ∈ I the inequalities hold

E1/α(aiq(i)(t− τ)α, α) ⩾ E1/α(a(t− τ)α, α).

It follows from Theorem 4.1.1 of [18], that for all t ⩾ 0, τ ∈ [0, t], the inequalityE1,α(a(t− τ)α, α) ⩾ 0 is true.
From the last two inequalities we obtain

n∑
i=1

t∫

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(ziq(i), v(s)) ds ⩾

⩾
t∫

0

(t− s)α−1E1/α(a(t− s)α, α)max
i∈I

λ(ziq(i), v(s)) ds ⩾

⩾ δ

t∫

0

(t− s)α−1E1/α(a(t− s)α, α) ds = δtαE1/α(at
α, α+ 1),

hence

F (t) =
n∑

i=1

hi(t, v(·)) ⩽
n∑

i=1

E1/α(aiq(i)t
α, 1)− δtαE1/α(at

α, α+ 1).

Since aiq(i) < 0 for all i ∈ I, it follows from [18] that the asymptotic representation is valid at t → +∞

E1/α(aiq(i)t
α, 1) = − 1

aiq(i)tαΓ(α+ 1)
+O

(
1

t2α

)
, E1/α(at

α, α+ 1) = − 1

atα
+O

(
1

t2α

)
,

F (t) = −
n∑

i=1

1

aiq(i)tαΓ(α+ 1)
+

1

a
+O

(
1

tα

)
,
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hence limt→+∞ F (t) < 0. So limt→+∞
∑n

i=1 hi(t, v(·)) < 0. Since
∑n

i=1 hi(0, v(·)) > 0, there exists T > 0, for
which for any admissible function v(·) the inequality

∑n
i=1 hi(T, v(·)) < 0 is true. Thus, inequality (9) is proved.

Let

T0 = min
{
t : inf

v(·)
min
i∈I

(
E1/α(aiq(i)t

α, 1)−
∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds

)
⩽ 0

}
.

It follows from inequality (7), that T0 < +∞. Let v(·) be an admissible fleeing control. Consider the sets

Ti(v(·)) =
{
t ⩾ 0 : E1/α(aiq(i)T

α
0 , 1)−

∫ t

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)λ(z0iq(i), v(s))ds ⩽ 0

}
.

Let the following be

ti(v(·)) =

{
inf{t : t ∈ Ti(v(·))}, if Ti(v(·)) ̸= ∅,
+∞, if Ti(v(·)) = ∅,

βi(t, v(·)) =

{
λ(ziq(i), v(t)), t ∈ [0, ti(v(·))],
0, t ∈ [ti(v(·)), T0].

Let’s set the controls of the pursuers Pi, i ∈ I, assuming

ui(t) = v(t)− βi(t, v(·))z0iq(i).

The solution of the Cauchy problem of the system (1) is represented in the form [19]

ziq(i)(T0) = E1/α(aiq(i)T
α
0 , 1)z

0
iq(i) +

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)(ui(s)− v(s))ds =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i) =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ ti(v(·))

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i).

It follows from the previous proof that there exists a number l ∈ I, for which zlq(l)(T0) = 0. The theorem is
proved.

Example 3. Let k = 2, I = {1, 2, 3, 4}, J = {1, 2}, Aij(t) = aijE
0, aij < 0, Ui = V = {v : ∥v∥ ⩽ 1}, z011 =

(1, 3), z021 = (−1, 3), z031 = (−1, 1), z041 = (1, 1), z012 = (0,−1), z022 = (−2,−1), z032 = (−2,−3), z042 = (0,−3).
Define a mapping q : I → J as follows: q(1) = 2, q(2) = q(3) = q(4) = 1. The conditions of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z0). Note that 0 /∈ Int co{z0i1, i ∈ I}
and 0 /∈ Int co{z0i2, i ∈ I}.

We show that if aiq(i) > 0, then condition (6) in Theorem 3 does not guarantee capture.
Example 4. Let k = 2, n = 3, m = 1, I = {1, 2, 3}, M∗

i1 = {0}, t0 = 0, z011 = (0, 1), z021 = (1/2,−
√
3/2),

z031 = (−1/2,−
√
3/2), Ui = V = {v : ∥v∥ ⩽ 1}. System (1) has the form

(D(1/2))zi1 = zi1 + ui − v.

Let’s take v(t) = 0 for all t ⩾ 0. Then we have

zi1(t) = E2(
√
t, 1)z0i1 +

∫ t

0

(t− s)−1/2E2((t− s)1/2, 1/2)ui(s)ds.

Suppose that there exist T > 0, function ul(·), l ∈ {1, 2, 3}, for which zl1(T ) = 0. Then [20, p. 120, formula
(1.15)]

E2(
√
T , 1) = ∥E2(

√
T , 1)z0l1∥ =

∥∥∥∥∥
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ul(s) ds

∥∥∥∥∥ ⩽

⩽
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ds =

√
TE2(

√
T , 3/2).
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Proof. 1. We show that there exist a moment Tm and a vector um, ∥um∥ = 1, for which the equality x1(Tm) =
ym(Tm) holds, where x1(t) is the trajectory of the pursuer P1, using constant control um.

Let the pursuer P1 uses the constant control u on the interval [0, Tm]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

x1(t) = f(t)x0
1 +

∫ t

0

(t− s)α−1E1/α(a(t− s)α, α)ds · u = f(t)x0
1 + F (t)u,

ym(t) = f(t)y0m + F (t)v0.

The x1(t) = ym(t) can be represented as

F (t)u = f(t)z0m + F (t)v0.

Let us require that ∥u∥ = 1. For this purpose, consider the function

gm(t) = ∥f(t)z0m + F (t)v0∥2 − F 2(t) = f2(t)∥z0m∥2 + 2f(t)F (t)(z0m, v0),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(t) > 0, F (t) > 0
for all t > 0. Therefore, the equation gm(t) = 0 is equivalent to the equation

f(t)

F (t)
= −2(z0m, v0)

∥zm∥2
. (8)

Note that limt→+0
f(t)
F (t) = +∞. By virtue of Theorem 1.2.1 of [18], we have the asymptotic estimates

f(t) = − 1

atαΓ(1− α)
+O(1/t2α), F (t) = −1

a
+O(1/tα), (9)

therefore limt→+∞
f(t)
F (t) = 0. Hence, equation (8) has at least one positive root Tm. We now assume that the

control of the pursuer P1 on the interval [0, Tm] is equal to

um =
f(Tm)

F (Tm)
z0m + v0.

We obtain that at time Tm, the pursuer P1 will realize the capture of the evader Em.
2. Let us further construct a control for the pursuer P1, that guarantees the capture of Em−1. Suppose that at

[Tm, Tm−1], the pursuer P1 uses the constant control u (the moment Tm−1 will be defined below). Then, by virtue
of the Cauchy formula [19] (t > Tm),

x1(t) = f(t)x0
1 +

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds · um +

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

ym−1(t) = f(t)y0m−1 + F (t)v0.

Let’s denote

Hm(t) =

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds, hm(t) =

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds.

Note thatHm(t) + hm(t) = F (t). Then the equality x1(t) = ym−1(t) can be represented as

f(t)x0
1 + hm(t)um +Hm(t)u = f(t)y0m−1 + F (t)v0

or
Hm(t)u = f(t)z0m−1 + F (t)v0 − hm(t)um.

Consider the function
gm−1(t) = ∥f(t)z0m−1 + F (t)v0 − hm(t)um∥2 −H2

m(t).

By virtue of [20, p. 118, formula (1.4)],

E2(
√
T , 3/2) =

1√
T
(E2(

√
T , 1)− 1).

Relation (7) entails the inequality

E2(
√
T , 1) ⩽ E2(

√
T , 1)− 1,

which is impossible. Consequently, in this gameG(3, 1, z0), capture does not occur.

4. CAPTURE OF ALL EVADERS

In the space Rk (k ⩾ 2), we consider a differential gameG(1,m, z0) involving 1+m persons: one pursuer P1 and
m evaders E1, . . . , Em. The law of motion of the pursuer P1 has the form

(D(α))x1 = ax1 + u, x1(0) = x0
1, u ∈ V ;

the law of motion of each of the evaders Ej is of the form

(D(α))yj = ayj + vj , yj(0) = y0j , vj ∈ V.

Here V = {v : ∥v∥ ⩽ 1}, α ∈ (0, 1), a ∈ R1, D(α)f is the Caputo derivative of the function f of order α,
j ∈ J = {1, . . . ,m}. We consider x0

1 ̸= y0j for all j ∈ J .
Let’s denote

f(t) = E1/α(at
α, 1), F (t) = tαE1/α(at

α, α+ 1), z0j = y0j − x0
1.

Lemma 2. Let a < 0, T2 > T1 ⩾ 0,

h(t) =

∫ T2

T1

(t− s)α−1E1/α(a(t− s)α, α)ds.

Then limt→+∞ tαh(t) = 0.
Proof. By substituting t− s = τ we get

h(t) =

∫ t−T1

t−T2

τα−1E1/α(aτ
α, α)dτ.

By virtue of formula (2.32) from [20, p. 136], the inequality

|E1/α(aτ
α, α)| ⩽ M

τα
, M > 0,

is true for all t > T2, therefore

|h(t)| =

∣∣∣∣∣
∫ t−T1

t−T2

τα−1E1/α(aτ
α, α)dτ

∣∣∣∣∣ ⩽
∫ t−T1

t−T2

Mτα−1

τα
dτ = M(ln(t− T1)− ln(t− T2)).

Then
|tαh(t)| ⩽ Mtα(ln(t− T1)− ln(t− T2)) = Mtα ln

(
1 +

T2 − T1

t− T2

)
⩽ Mtα(T2 − T1)

t− T2
.

Since limt→+∞
tα

t−T2
= 0, then limt→+∞ tαh(t) = 0. The lemma is proved.

Theorem 4. Let a < 0, M∗
1j = {0} for all j ∈ J , there is v0 ∈ V , ∥v0∥ = 1, such that (y0j − x0

1, v0) < 0 for all
j ∈ J . All evaders use constant control v0, the pursuer P1 knows v0. Then a capture of all evaders occurs in the game
G(1,m, z0).
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Proof. 1. We show that there exist a moment Tm and a vector um, ∥um∥ = 1, for which the equality x1(Tm) =
ym(Tm) holds, where x1(t) is the trajectory of the pursuer P1, using constant control um.

Let the pursuer P1 uses the constant control u on the interval [0, Tm]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

x1(t) = f(t)x0
1 +

∫ t

0

(t− s)α−1E1/α(a(t− s)α, α)ds · u = f(t)x0
1 + F (t)u,

ym(t) = f(t)y0m + F (t)v0.

The x1(t) = ym(t) can be represented as

F (t)u = f(t)z0m + F (t)v0.

Let us require that ∥u∥ = 1. For this purpose, consider the function

gm(t) = ∥f(t)z0m + F (t)v0∥2 − F 2(t) = f2(t)∥z0m∥2 + 2f(t)F (t)(z0m, v0),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(t) > 0, F (t) > 0
for all t > 0. Therefore, the equation gm(t) = 0 is equivalent to the equation

f(t)

F (t)
= −2(z0m, v0)

∥zm∥2
. (8)

Note that limt→+0
f(t)
F (t) = +∞. By virtue of Theorem 1.2.1 of [18], we have the asymptotic estimates

f(t) = − 1

atαΓ(1− α)
+O(1/t2α), F (t) = −1

a
+O(1/tα), (9)

therefore limt→+∞
f(t)
F (t) = 0. Hence, equation (8) has at least one positive root Tm. We now assume that the

control of the pursuer P1 on the interval [0, Tm] is equal to

um =
f(Tm)

F (Tm)
z0m + v0.

We obtain that at time Tm, the pursuer P1 will realize the capture of the evader Em.
2. Let us further construct a control for the pursuer P1, that guarantees the capture of Em−1. Suppose that at

[Tm, Tm−1], the pursuer P1 uses the constant control u (the moment Tm−1 will be defined below). Then, by virtue
of the Cauchy formula [19] (t > Tm),

x1(t) = f(t)x0
1 +

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds · um +

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

ym−1(t) = f(t)y0m−1 + F (t)v0.

Let’s denote

Hm(t) =

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds, hm(t) =

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds.

Note thatHm(t) + hm(t) = F (t). Then the equality x1(t) = ym−1(t) can be represented as

f(t)x0
1 + hm(t)um +Hm(t)u = f(t)y0m−1 + F (t)v0

or
Hm(t)u = f(t)z0m−1 + F (t)v0 − hm(t)um.

Consider the function
gm−1(t) = ∥f(t)z0m−1 + F (t)v0 − hm(t)um∥2 −H2

m(t).
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Since sk+1(Tk+1) = sk+2(Tk+1) + hk+1(Tk+1)uk+1, then

sk+1(Tk+1) = sk+2(Tk+1) +Hk+2(Tk+1)uk+1. (11)

Using formula (10), let us write equality (11) as

sk+1(Tk+1) = f(Tk+1)z
0
k+1 + F (Tk+1)v0.

Then
gk(Tk+1) = ∥f(Tk+1)z

0
k − f(Tk+1)z

0
k+1∥2 = f2(Tk+1)∥z0k − z0k+1∥2 > 0.

SinceHk+1(t) = F (t)− ŝk+1(t), the function tαgk(t) can be represented as

tαgk(t) = tαf2(t)∥z0k∥2 + 2tαf(t)F (t)(z0k, v0) + tα∥sk+1(t)∥2−
−2tαF (t)(sk+1(t), v0)− 2tαf(t)(sk+1(t), z

0
k) + 2tαF (t)ŝk+1(t)− tαŝ2k+1(t).

It follows from lemma 2, that for any l and p

lim
t→+∞

tαhl(t)hp(t) = 0,

therefore
lim

t→+∞
tα∥sk+1(t)∥2 = lim

t→+∞
tαŝ2k+1(t) = lim

t→+∞
tαf2(t) = 0,

hence limt→+∞ tαgk(t) = −∞. Therefore, there is a moment Tk > Tk+1, for which gk(Tk) = 0. Choosing its
control uk on the interval [Tk+1, Tk] in the form of

uk = f(Tk)z
0
k + F (Tk)v0 − sk+1(Tk)/Hk+1(Tk),

the pursuer P1 at the moment Tk will catch the fleeing Ek. The theorem is proved.
Corollary. Let a < 0, there exists a hyperplane H such that y0j ∈ H for all j ∈ J , x0

1 /∈ H, v0 the unit normal
vector of the hyperplane H, directed into the half-space containing x0

1. The evaders use constant control v0. Then a
capture of all evaders occurs in the gameG(1,m, z0).

The validity of this statement follows directly from Theorem 4, since (y0j − x0
1, v0) < 0 for all j ∈ J .

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form

ẋ1 = ax1 + u, ẏj = ayj + vj , u, vj ∈ V, j ∈ J. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the gameG(1,m, z0), the pursuerP1 will realize the capture of nomore than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem4 shows that differential games described by equationswith fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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Then
gm−1(Tm) = ∥f(Tm)z0m−1 + F (Tm)v0 − hm(Tm)um∥2.

Since F (Tm) = hm(Tm) and F (Tm)(v0 − um) = −f(Tm)z0m, then

gm−1(Tm) = ∥f(Tm)z0m−1 − f(Tm)z0m∥2 = f2(Tm)∥z0m−1 − z0m∥2 > 0.

The function tαgm−1(t) can be written as

tαgm−1(t) = tαf2(t)∥z0m−1∥2 + 2tαf(t)F (t)(z0m−1, v0)− 2tαf(t)hm(t)(z0m−1, um)−
− 2tαF (t)hm(t)(v0, um) + 2tαF (t)hm(t).

By virtue of asymptotic estimates (9) and lemma 2, we obtain that the following relations are true

lim
t→+∞

tαf(t)F (t) =
1

a2Γ(1− α)
, lim

t→+∞
tαf2(t) = 0,

lim
t→+∞

tαf(t)hm(t) = 0, lim
t→+∞

tαF (t)hm(t) = 0,

so it follows from the inequality (z0m−1, v0) < 0, that limt→+∞ tαgm−1(t) = −∞, and hence there exists amoment
Tm−1 > Tm, for which gm−1(Tm−1) = 0.

Choosing now on the interval [Tm, Tm−1] control um−1 of the form

um−1 = f(Tm−1)z
0
m−1 + F (Tm−1)v0 − hm(Tm−1)um/Hm(Tm−1),

the pursuer P1 at the moment Tm−1 will catch the evader Em−1.
3. Let’s denote

hl(t) =

∫ Tl

Tl+1

(t− s)α−1E1/α(a(t− s)α, α)ds, Hk+1(t) =

∫ t

Tk+1

(t− s)α−1E1/α(a(t− s)α, α)ds,

sl(t) = hm(t)um + · · ·+ hl(t)ul, ŝl(t) = hm(t) + · · ·+ hl(t), l = m− 1, . . . , k + 1.

Suppose that the vectors um, . . . , uk+1 and the moments of time Tm < Tm−1 < · · · < Tk+1, guaranteeing
the pursuer P1 to catch the evadersEm, . . . , Ek+1, are defined, and on the interval [Tk+2, Tk+1] the vector uk+1 is
equal to

uk+1 = f(Tk+1)z
0
k+1 + F (Tk+1)v0 − sk+2(Tk+1)/Hk+2(Tk+1). (10)

Let us further construct a control of the pursuer P1, which guarantees him to catch the evader Ek. Suppose
that at [Tk+1, Tk], the pursuer P1 uses the constant control u (the moment Tk will be defined below). Then for
t > Tk+1, by virtue of the Cauchy formula [19], we have

x1(t) = f(t)x0
1+

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds ·um+

∫ Tm−1

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds ·um−1+ · · ·

· · ·+
∫ Tk+1

Tk+2

(t− s)α−1E1/α(a(t− s)α, α)ds · uk+1 +

∫ t

Tk+1

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

yk(t) = f(t)y0k + F (t)v0.

The inequality x1(t) = yk(t) can be represented as

f(t)x0
1 + sk+1(t) +Hk+1(t)u = f(t)y0k + F (t)v0 или Hk+1(t)u = f(t)z0k − sk+1(t) + F (t)v0.

Consider the function
gk(t) = ∥f(t)z0k − sk+1(t) + F (t)v0∥2 −H2

k+1(t),

then
gk(Tk+1) = ∥f(Tk+1)z

0
k − sk+1(Tk+1) + F (Tk+1)v0∥2.

It follows from the definition of the functionsHk+2(·) and hk+2(·) thatHk+2(Tk+1) = hk+1(Tk+1).
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control uk on the interval [Tk+1, Tk] in the form of

uk = f(Tk)z
0
k + F (Tk)v0 − sk+1(Tk)/Hk+1(Tk),

the pursuer P1 at the moment Tk will catch the fleeing Ek. The theorem is proved.
Corollary. Let a < 0, there exists a hyperplane H such that y0j ∈ H for all j ∈ J , x0

1 /∈ H, v0 the unit normal
vector of the hyperplane H, directed into the half-space containing x0

1. The evaders use constant control v0. Then a
capture of all evaders occurs in the gameG(1,m, z0).

The validity of this statement follows directly from Theorem 4, since (y0j − x0
1, v0) < 0 for all j ∈ J .

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form

ẋ1 = ax1 + u, ẏj = ayj + vj , u, vj ∈ V, j ∈ J. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the gameG(1,m, z0), the pursuerP1 will realize the capture of nomore than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem4 shows that differential games described by equationswith fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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1. INTRODUCTION. PROBLEM STATEMENT

The Ackerman and Bass-Gura formulas are known frommathematical control theory [1, p. 360], used to solve
the problem of assigning the desired characteristic polynomial of a linear stationary systemwith one input and state
feedback, whose behavior is described by equations

ẋ = Ax+ bu, u = −fTx, (1)

where x ∈ Rn is the state vector, u ∈ R is the scalar control, A ∈ Rn×n, b ∈ Rn, f ∈ Rn.
The characteristic polynomial of the system (1) is the characteristic polynomial of thematrix of the closed-loop

system A− bfT. Let us denote by

a(λ) = λn + a1λ
n−1 + · · ·+ an, d(λ) = λn + d1λ

n−1 + · · ·+ dn

characteristic polynomial of thematrixA and the desired characteristic polynomial of thematrixA−bfT. Suppose
that the matrix

X(A, b) =
[
b Ab . . . An−1b

]

is nonsingular, which corresponds to the controllability condition of the system (1).
According to Ackerman’s formula the required vector f is equal to

fT =
[
0 . . . 0 1

]
X(A, b)−1d(A).

According to the Bass-Gura formula

fT = (d̄− ā)TH−1X(A, b)−1,

where

H =




an−1 an−2 . . . 1
an−2 an−3 . . . 0
...

...
. . .

...
1 0 . . . 0


 , ā =




an
an−1

...
a1


 , d̄ =




dn
dn−1

...
d1


 .
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system A− bfT. Let us denote by

a(λ) = λn + a1λ
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characteristic polynomial of thematrixA and the desired characteristic polynomial of thematrixA−bfT. Suppose
that the matrix
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is nonsingular, which corresponds to the controllability condition of the system (1).
According to Ackerman’s formula the required vector f is equal to
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PEREPELKIN
In papers [2, 3], the Ackerman formula and the Bass–Gura formula were generalized for systems with multiple

inputs and state feedback. The purpose of this paper is to obtain a generalization of the Bass–Gura formula for a
system with dynamic output feedback in the form of a first-order dynamic compensator.

It is known [4] that dynamic feedback significantly expands the possibilities of output feedback compared to
static feedback. Dynamic output feedback can include state observers as well as dynamic compensators of the
general kind. According to the seminal work [5], a dynamic compensator of ordermin{pc, po}, where pc and po are
the controllability and observability indices of the system, respectively, can be constructed for a fully controllable
and fully observable system. In the case of a systemwith one input, theminimumorder of the compensator is equal
to the observability index po.

Let us consider a linear stationary system with one input

ẋ = Ax+ bu, y = Cx,

where x ∈ Rn is the state vector, y ∈ Rl is the measurement vector, u ∈ R is the scalar control,A ∈ Rn×n, b ∈ Rn,
C ∈ Rl×n, l < n.

We will search for the control in the form of a dynamic compensator of the first order

u = −fTy − z, ż + pz = qTy,

where f ∈ Rl, p ∈ R, q ∈ Rl are the compensator parameters. The system with compensator is described by the
equations

ẋ = (A− bfTC)x− bz, ż = qTCx− pz. (2)

The characteristic polynomial of the system (2) is the characteristic polynomial of thematrix of the closed-loop
system

D =

[
A− bf⊤C −b

q⊤C −p

]
.

We will search for the compensator parameters taking into account the properties of the given characteristic poly-
nomial of the matrixD. For this purpose, it is necessary to obtain an explicit formula for the feedback parameters
similar to the Bass–Gura formula.

2. KEY FINDINGS

Let’s denote by
a(λ) = det(λE −A) = λn + a1λ

n−1 + · · ·+ an

the characteristic polynomial of the matrix A. Let us introduce a column vector g(λ) = C(λE − A)∗b, where
(λE −A)∗ is the adjoint matrix to λE −A.

Lemma. The characteristic polynomial of the matrixD is

det(λE −D) = (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)g(λ). (3)

Proof. Following simple transformations in the determinant of the matrix λE −D, we obtain

det(λE −D) = det
[
λE −A+ bf⊤C b

−q⊤C λ+ p

]
= det

[
λE −A+ b(f⊤ + (λ+ p)−1q⊤)C b

0 λ+ p

]
=

= (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)C(λE −A)∗b = (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)g(λ).

Here the det(A+ bc⊤) = detA+ c⊤A∗b is applied, where A is a square matrix, A∗ is a adjoint matrix to A, b is a
column vector, c⊤ is a row vector [6, p. 133]. The lemma is proved.

The following theorem formulates necessary and sufficient conditions for the existence of a solution to the
problem and simultaneously describes the algorithm for calculating the compensator parameters.

Theorem. The characteristic polynomial of the matrixD can be arbitrarily set by choosing the compensator param-
eters f, p, q, only when

rankX(A, b) = n, rankY (A,C) = n,
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where

X(A, b) =
[
b Ab . . . An−1b

]
, Y (A,C) =

[
C CA

]T
.

Proof. Let’s denote by
d(λ) = λn+1 + d1λ

n + · · ·+ dn+1 (4)

the desired characteristic polynomial of the matrix D. We will search for the compensator parameters from the
condition of coincidence of polynomials (3) and (4).

Let’s denote

πk(λ) =
[
λk λk−1 . . . λ 1

]⊤
, ā =

[
a2 a3 . . . an

]
, d̄ =

[
d2 d3 . . . dn+1

]
.

Then
a(λ) = λn +

[
a1 ā

]
πn−1(λ), λa(λ) = λn+1 + a1λ

n +
[
ā 0

]
πn−1(λ),

d(λ) = λn+1 + d1λ
n + d̄πn−1(λ).

Let us write the matrix (λE −A)∗ as a matrix polynomial [7, p. 91]

(λE −A)∗ = Eλn−1 +A1λ
n−2 + · · ·+An−1,

where
A1 = A+ a1E, A2 = A2 + a1A+ a2E = AA1 + a2E, . . .

. . . , An−1 = An−1 + a1A
n−2 + · · ·+ an−1E = AAn−2 + an−1E.

Note that by the Cayley-Hamilton theorem,

An = An + a1A
n−1 + · · ·+ anE = AAn−1 + anE = 0.

Let’s introduce the matrix

G =




1 a1 . . . an−1

0 1 . . . an−2

...
...

. . .
...

0 0 . . . 1


 .

Vectors g(λ) and λg(λ) can be written in the form

g(λ) = C(λE −A)∗b = C
[
b A1b . . . An−1b

]
πn−1(λ) = CX(A, b)Gπn−1(λ),

λg(λ) = Cbλn + C
[
A1b A2b . . . Anb

]
πn−1(λ) =

= Cbλn + CAX(A, b)Gπn−1(λ) + Cb
[
a1 ā

]
πn−1(λ).

The characteristic polynomial (3) of the matrixD is equal to

det(λE −D) = λn+1 + a1λ
n +

[
ā 0

]
πn−1(λ) + pλn + p

[
a1 ā

]
πn−1(λ)+

+fTCbλn + fTCAX(A, b)Gπn−1(λ) + fTCb
[
a1 ā

]
πn−1 + (fp+ q)TCX(A, b)Gπn−1(λ). (5)

The given polynomial (4) and the polynomial (5) coincide if and only if

a1 + p+ f⊤Cb = d1, (6)
[
ā 0

]
+ p

[
a1 ā

]
+ f⊤CAX(A, b)G+ f⊤Cb

[
a1 ā

]
+ (fp+ q)⊤CX(A, b)G = d̄. (7)

Let us denote r = fp+ q. From equation (6) express p and substitute it into (7). Then (7) takes the form
[
r⊤ fT

]
Y (A,C)X(A, b)G = d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

]
. (8)

Let f and r be solutions of equation (8). Then from relation (6), we obtain p = d1−a1−fCb, and q = r−fp.
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Equation (8) has a solution with respect to the unknowns f and r for any vector d̄, if and only if
rankY (A,C)X(A, b)G = n. The matrix G is nonsingular. The matrices X(A, b) and Y (A,C) have the dimen-
sions n × n and 2l × n, respectively. Hence, rankY (A,C)X(A, b)G = n if and only if rankX(A, b) = n and
rankY (A,C) = n. The theorem is proved.

Remark. It follows from the theorem, that the necessary condition for the existence of a solution to the problem
is the condition 2l ≥ n. Consequently, the problem has a solution at a sufficiently large number of output variables.
For example, at n = 5 the number of output variables should be at least 3. This is a significant limitation of the
considered output feedback.

If the conditions of the theorem are satisfied and 2l = n, then the solution of equation (8) is unique. If 2l > n,
then equation (8) has infinitely many solutions.

In the case of a unique solution
[
rT fT

]
=

(
d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

])
G−1X(A, b)−1Y (A,C)−1. (9)

Formula (9) can be considered as an analog of the Bass-Gura formula for a system with state feedback.
Let the conditions of the theorem be satisfied and 2l > n. Then we can find a partial solution of equation (8):

[
rT fT

]
=

(
d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

])
G−1X(A, b)−1(Y (A,C)TY (A,C))−1Y (A,C)T.

3. NUMERICAL EXAMPLE

Let n = 6, l = 3,

A =




−1.68 0.64 1.53 −1.5 −1.45 −0.22
0.89 1.48 2.35 0.78 −2.21 −0.08

−0.74 0.96 1.28 −2.04 1.61 1.6
0.35 −1.78 0.74 −1.54 −0.16 −0.06
0.15 −1.05 −1.19 0.65 −0.22 −0.54

−0.53 0.37 0.7 −0.09 0.15 −0.41



,

b =




−0.47
−0.53
1.87
0.79

−0.56
0.46



, C =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


.

Let us set the desired characteristic polynomial of the system (2):

d(λ) = (λ+ 0.3)(λ+ 0.4)(λ+ 0.5)(λ+ 0.2 + 0.7i)(λ+ 0.2− 0.7i)(λ+ 0.1 + 0.3i)(λ+ 0.1− 0.3i) =

= λ7 + 1.8λ6 + 1.9λ5 + 1.34λ4 + 0.5979λ3 + 0.17482λ2 + 0.03367λ+ 0.00318.

The conditions of the theorem are fulfilled. The parameters of the compensator are determined uniquely:

fT =
[
0.0891861 −1.5061263 14.434942

]
,

qT =
[
7.3744718 −10.250088 53.52229

]
, p = −3.0716998.

The verification shows that the characteristic polynomial of the matrixD coincides with the given one.
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1. INTRODUCTION. PROBLEM STATEMENT

In sub-Riemannian geometry [1,§ 9.2], the Grushin plane is well known as the simplest example of an almost
Riemannianmanifold (such amanifold is Riemannian in complement to a special submanifold of dimension one).
A natural generalization of this example is α-the Grushin plane when the degeneracy on a special set is of order
α ≥ 1. Extremal trajectories for such a case were parameterized in [2], and their optimality was investigated based
on this in [3]. In this paper, an independent study of the optimality of extremal trajectories is carried out using a
qualitative approach that does not use the parameterization of these trajectories.

The optimal control problem for the classical Grushin plane is posed as follows [1, § 9.2]:

q̇ = u1X1 + u2X2, q = (x, y) ∈ M = R2, u = (u1, u2) ∈ R2, (1)

q(0) = q0, q(t1) = q1, l =

∫ t1

0

(u2
1 + u2

2)
1/2dt → min, (2)

whereX1 = ∂
∂x ,X2 = x ∂

∂y .
A natural generalization of this problem (α-Grushin plane) [2, 3] is posed similarly, but for vector fields:

X1 =
∂

∂x
, X2 = |x|α ∂

∂y
, α ∈ R, α ≥ 1. (3)

Problem (1)–(3) is called an almost Riemannian problem on the α-plane of Grushin.
Let us denote the cost function in this problem– the almost Riemannian distance – as d(q0, q1) = inf{l(q(·)) :

q(·) the trajectory of system (1), (2)}. A special set is the set of points q ∈ M , where the set of admissible velocities
{q̇ = u1X1 + u2X2} is not full-dimensional: Z = {q = (x, y) ∈ M : x = 0}. If q0 ∈ M \ Z, then the problem
locally becomes Riemannian, so the case q0 ∈ Z, that is considered in this paper, is of special interest.

1
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1. INTRODUCTION. PROBLEM STATEMENT

In sub-Riemannian geometry [1,§ 9.2], the Grushin plane is well known as the simplest example of an almost
Riemannianmanifold (such amanifold is Riemannian in complement to a special submanifold of dimension one).
A natural generalization of this example is α-the Grushin plane when the degeneracy on a special set is of order
α ≥ 1. Extremal trajectories for such a case were parameterized in [2], and their optimality was investigated based
on this in [3]. In this paper, an independent study of the optimality of extremal trajectories is carried out using a
qualitative approach that does not use the parameterization of these trajectories.

The optimal control problem for the classical Grushin plane is posed as follows [1, § 9.2]:

q̇ = u1X1 + u2X2, q = (x, y) ∈ M = R2, u = (u1, u2) ∈ R2, (1)

q(0) = q0, q(t1) = q1, l =

∫ t1

0

(u2
1 + u2

2)
1/2dt → min, (2)

whereX1 = ∂
∂x ,X2 = x ∂

∂y .
A natural generalization of this problem (α-Grushin plane) [2, 3] is posed similarly, but for vector fields:

X1 =
∂

∂x
, X2 = |x|α ∂

∂y
, α ∈ R, α ≥ 1. (3)

Problem (1)–(3) is called an almost Riemannian problem on the α-plane of Grushin.
Let us denote the cost function in this problem– the almost Riemannian distance – as d(q0, q1) = inf{l(q(·)) :

q(·) the trajectory of system (1), (2)}. A special set is the set of points q ∈ M , where the set of admissible velocities
{q̇ = u1X1 + u2X2} is not full-dimensional: Z = {q = (x, y) ∈ M : x = 0}. If q0 ∈ M \ Z, then the problem
locally becomes Riemannian, so the case q0 ∈ Z, that is considered in this paper, is of special interest.

1

2. BASIC CONCEPTS AND PROPERTIES

2.1. Symmetries

The problem (1)–(3) has obvious symmetries – reflections

(x, y) �→ (−x, y), (x, y) �→ (x,−y), (x, y) �→ (−x,−y). (4)

Vector fieldsX1, X2 are independent of y, so parallel translations are also symmetries

(x, y) �→ (x, y + a), a ∈ R. (5)

Another one-parameter group of symmetries is given by the flow of the vector field

V = x
∂

∂x
+ (1 + α)y

∂

∂y
, (x, y) �→ etV (x, y) = (etx, e(1+α)ty), t ∈ R, (6)

since [V,X1] = −X1, [V,X2] = −X2. So the optimal synthesis and, in particular, the distance d are invariant with
respect to symmetries (4), (5) and homogeneous of order 1 with respect to symmetry (6): d(etV (q0), etV (q1)) =
etd(q0, q1), qi ∈ M , t ∈ R. Given the symmetry (5), we will further assume q0 = (0, 0).

2.2. Existence of solutions

System (1) is completely controllable in each of the Riemannian half-planes {q ∈ M : signx = ±1}, since in
them, the set of admissible velocities is full-dimensional. It is possible to move between these half-planes along
the fields±X1, so system (1) is quite controllable. Note that at the points q ∈ Z, the condition of the Rashevskii-
Chow theorem [4, § 5.3; 5, § 2.2.4] is satisfied only at α ∈ 2N. All conditions of Filippov’s theorem [4,§ 10.3; 5,§
3.1.2] are satisfied, so optimal trajectories exist.

2.3. Extreme trajectories
As usual in sub-Riemannian geometry, we pass from length minimization (2) to energy minimization

J = 0.5
∫ t1
0
(u2

1 + u2
2)dt. We apply Pontryagin’s maximum principle to the resulting problem [4, § 3; 5, § 5.2; 6, §

12.4; 7, § 3.2.2]. The abnormal trajectories are constant and non-strictly anormal. To parameterize the normal
extremal trajectories, we put X3 = ∂

∂y and denote the Hamiltonians linear on the layers of the cotangent bundle
T ∗M : hi(λ) = 〈λ,Xi〉, i = 1, 3, λ ∈ T ∗M . Then the maximized Hamiltonian of the Pontryagin maximum
principle isH = h2

1 + |x|2αh2
3 ≡ 1 and the Hamiltonian system for the normal extremals is of the form

ḣ1 = −α signx|x|2α−1h2
3, ḣ3 = 0, ẋ = h1, ẏ = |x|2αh3. (7)

The Hamiltonian H is the first integral, so at each h3 �= 0 the independent subsystem of equations (7) for the
variables h1 and x has a phase portrait of type center.

If h3 = 0, then h1 ≡�= 0, x = h1t, y = 0. Let h3 �= 0. When integrating the system (7) by the method of
separation of variables, we obtain the equation

dx√
H − h2

3|x|2α
= ±dt,

in which the left part integrates in the general case into a hypergeometric function 2F1. On the other hand, in
[2], the system (7) is integrated in terms of some generalizations of trigonometric functions. However, we will not
use explicit parametrization of the extremal trajectories and investigate the optimality of the extremal trajectories
relying only on qualitative methods.

Considering the symmetry (h3, y) �→ (−h3,−y) of the system (7), further we consider that h3 > 0. After
change of variablesX = xh

1/α
3 , Y = yh

1+1/α
3 ,H1 = h1, s = th

1/α
3 , the Hamiltonian system (7) will take the form

H ′
1 = −α signX|X|2α−1, X ′ = H1, Y ′ = |X|2α (8)

OPTIMAL TRAJECTORIES IN THE GRUSHIN α-PLANE
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with the first integralH = H2
1 + |X|2α ≡ 1. SinceH = 1, we haveH1(0) = H0

1 = ±1. Taking advantage of the
symmetry (H1, X) �→ (−H1,−X), we obtainH0

1 = 1. The first two equations of system (8) have a phase portrait
of type center in the plane (H1, X), so for any α ≥ 1, there exists a unique number s∗ = s∗(α) > 0 such that

X(s) > 0 at s ∈ (0, s∗), X(s∗) = 0. (9)

Then the first positive root of the function x(t) is t∗ = s∗h
−1/α
3 .

3. MAIN RESULTS

Theorem 1. 1. If h3 = 0, then the extremal trajectory q(t) is optimal on any segment [0, t1], t1 > 0.
2. If h3 �= 0, then the extremal trajectory q(t) is optimal at any segment [0, t1], t1 ∈ (0, t∗], and not optimal for

t1 > t∗, where t∗ = s∗|h3|−1/α.
Proof. Let us first study case 2. Let h3 �= 0. Consider an exponential mapping

Exp : (λ, t) �→ q(t), Exp : Ñ → M, Ñ = (T ∗
q0M ∩ {H = 1})× R+,

λ = (h3, h
0
1), h3 ∈ R \ {0}, h0

1 = ±1.

At any h3 �= 0, the extremal trajectories Exp(h3, 1, t) and Exp(h3,−1, t) are symmetric w.r.t. the axis y and
intersect this axis at t = t∗. Therefore, the intersection point Exp(h3, 1, t∗) is a Maxwell point [5, § 3.3.5] and
these trajectories are not optimal under the condition t > t∗.

Let us now prove that any trajectory Exp(h3, 1, t) is optimal at t ∈ [0, t1], t1 ∈ (0, t∗). Given the symme-
tries of the problem, we will assume that h0

1 = 1 and h3 > 0, and denote by Exp(h3, t) := Exp(h3, 1, t). Let
N = {(h3, t) ∈ R2 : h3 > 0, t ∈ (0, t∗)}, D = {(x, y) ∈ M : xy > 0}. Let us show that Exp : N → D is a
diffeomorphism by using the following theorem of Adamar on global diffeomorphism.

Theorem 2 [8; 9, § 6.2]. Let F : X → Y be a smooth mapping between smooth manifolds of the same dimension
such thatX,Y are connected, Y is one-connected, F is nondegenerate and proper. Then F is a diffeomorphism.

Let us first prove that Exp(N) ⊂ D. Since h3 > 0 and t ∈ (0, t∗), then x(t) > 0 by virtue of inequality (9). It
follows from the ordinary differential equation (8) that y(t) > 0. Therefore Exp(N) ⊂ D.

Obviously, N and D are connected, and D is one-connected. Let us show that Exp |N is nondegenerate,
i.e., the Jacobian of ∂(x, y)/∂(t, h3) is different from zero in the region N . We have ∂x

∂t = H1, ∂y
∂t = h−1

3 X2α,
∂x
∂h3

= −α−1h
−1−1/α
3 X + ( ∂s

∂h3
)H1h

−1/α
3 , ∂y∂h3 = −(1 + 1

α ) h
−2−1/α
3 Y + ( ∂s

∂h3
) X2αh

−1−1/α
3 , whence J =

h
−2−1/α
3 α−1J1, J1 = X2α+1 − (α + 1)Y H1. Differentiating by virtue of (8), we obtain J ′

1 = αX2α−1J2, J2 =
H1X + (α+ 1)Y. Differentiating again, we have J ′

2 = H2
1 +X2α > 0, so J |N > 0, i.e., Exp |N is nondegenerate.

Now let us show that the mapping Exp : N → D is proper. This is equivalent to the following condition: if the
sequence {(hn

3 , t
n) : n ∈ N} ⊂ N is not contained in any compact set inN , then its image qn = Exp(hn

3 , t
n) is not

contained in any compact set in D. Let the sequence {(hn
3 , t

n) : n ∈ N} ⊂ N be not contained in any compact
set in N , we’ll denote sn = (hn

3 )
1/αtn ∈ (0, s∗). Then it contains a subsequence for which one of the following

conditions is satisfied: 1) hn
3 → h̄3 ∈ (0,+∞), sn → 0; 2) hn

3 → 0, sn → 0; 3) hn
3 → 0, sn → s̄ ∈ (0, s∗);

4) hn
3 → 0, sn → s∗; 5) hn

3 → h̄3 ∈ (0,+∞), sn → s∗; 6) hn
3 → +∞, sn → s∗; 7) hn

3 → +∞, sn → s̄ ∈ (0, s∗);
8) hn

3 → +∞, sn → 0.
We’ll show that for each of them, the sequence qn = (xn, yn) contains a subsequence on which one of the

following conditions is satisfied: xn → 0, xn → +∞, yn → 0, yn → +∞, i.e., qn is not contained in any compact
set inD.

Given 1) we haveX(sn) → X(0) = 0, so xn = X(sn)/(hn
3 )

1/α → 0.
If condition 2) is satisfied, the sequence tn = sn/(hn

3 )
1/α > 0 contains a subsequence of one of the following

kinds: tn → 0, tn → t̄ ∈ (0,+∞), tn → +∞. If tn → 0, then xn = x(hn
3 , t

n) → x(0, 0) = 0. If tn → t̄ ∈
(0,+∞), then yn = y(hn

3 , t
n) → y(0, t̄) = 0. Let tn → +∞. Passing to the subsequence if necessary, we can

assume that {sn} is decreasing. There exists a numberK ∈ N such that sK < s∗/2, soH1(s) > 0 for all s ∈ [0, sK ].
Hence,H1|[0,sK ] ≥ ε := min[0,sK ] H1 > 0 and

X(sn) =

∫ sn

0

H1(s)ds ≥ εsn = εtn(hn
3 )

1/α, xn =
X(sn)

(hn
3 )

1/α
≥ εtn → +∞.
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For the remaining conditions, we have: 3)X(sn) → X(s̄) ∈ (0,+∞) and xn = X(sn)
(hn

3 )
1/α → +∞; 4) Y (sn) →

Y (s∗) =
∫ s∗
0

|X(s)|2αds ∈ (0,+∞) and yn = Y (sn)
(hn

3 )
1+1/α → +∞; 5) X(sn) → X(s∗) = 0, from where xn =

X(sn)
(hn

3 )
1/α → +0; 6) X(sn) → X(s∗) = 0, from where xn = X(sn)

(hn
3 )

1/α → +0; 7) X(sn) → X(s̄) ∈ (0,+∞), from

where xn = X(sn)
(hn

3 )
1/α → +0; 8) X(sn) → X(0) = 0, from where xn = X(sn)

(hn
3 )

1/α → +0. Therefore, the mapping
Exp : N → D is proper. By Theorem 2, this mapping is a diffeomorphism. By the existence of optimal trajectories,
any trajectory Exp(h3, t), h3 �= 0, t ∈ [0, t1], is optimal for any t1 ∈ (0, t∗).

At t = t∗, two trajectories arrive at the point Exp(h3, t∗) that are symmetric about the axis y and have the same
value of the time functional, so both are optimal.

Now consider case 1. If h3 = 0, then the extremal trajectory is the line q(t) = (h0
1t, 0). From the above proved

inclusion of Exp(N) ⊂ D, it follows that for h3 �= 0 and t > 0, the extremal trajectories do not intersect the
coordinate axis y = 0, so at each point of this axis comes the only (up to reparameterization) extremal trajectory
– the straight line q(t) = (h0

1t, 0). By virtue of the existence of an optimal trajectory, it is optimal on any segment
[0, t1], t1 > 0. The theorem is proved.

Corollary. 1. For any trajectory Exp(λ, t), λ = (h3, h
0
1) ∈ T ∗

q0M ∩ {H = 1}, the cut time (time to loss of
optimality) is tcut = t∗ = |h3|−1/αs∗ ∈ (0,+∞].

2. The cut locus is

Cut = {Exp(λ, tcut(λ)) : λ ∈ T ∗
q0M ∩ {H = 1}} = {(x, y) ∈ M : x = 0, y �= 0}.

Remark. The optimality of extremal trajectories on α-Grushin plane was first investigated in [3] on the basis
of similar reasoning, but using explicit parameterization of extremal trajectories obtained in [2]. The novelty of
this study consists in the qualitative use of only the property of the Hamiltonian system (7), but not its explicit
integration.

For the Grushin 2-plane, Fig. ?? shows an almost Riemannian sphere of radius 2: {q ∈ M : d(q0, q) = 2} and
its radii (optimal trajectories arriving at points on this sphere), andFig. 2 shows thewavefronts {Exp(λ,R) : λ ∈ N}
for different values of R.

Fig. 1. Sphere of radius 2 and its radii Fig. 2. Wavefronts

CONCLUSION

This paper presents a qualitative study of optimal trajectories on α-Grushin plane, that does not use explicit
integration of theHamiltonian systemof Pontryagin’smaximumprinciple. To the best of our knowledge, this study
is the first one in optimal control theory. For example, even in the sub-Riemannian problem on the Heisenberg
group, optimality is studied on the basis of explicit integration of the Hamiltonian system [1, §13.2]. We hope

OPTIMAL TRAJECTORIES IN THE GRUSHIN α-PLANE
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that the qualitative approach to the construction of optimal synthesis presented in this paper can be useful for
other optimal control problems where explicit integration of the Hamiltonian system of the Pontryagin maximum
principle is difficult or impossible. This approach can be applied to problems of small dimension and with a large
symmetry group.
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