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PERSONALITIES OF THE SCIENCE

TO THE EIGHTY-FIFTH ANNIVERSARY
OF NIKOLAI ALEKSEEVICH IZOBOV

January 23, 2025 is the 85th anniversary of Nikolai A. Izobov, an outstanding scientist, world-known
expert in the field of ordinary differential equations, academician of the National Academy of Sciences of
the Republic of Belarus, professor, doctor of physical and mathematical sciences, member of the editorial
board of the journal “Differential Equations”, a major organizer of science and education.

Nikolai Alekseevich was born in the village of Krasyni, Liozna district, Vitebsk region. He graduated
from high school with honors in 1958, and in 1965, completed his studies at the Mathematics Department
of the Belarusian State University, specializing in differential equations — a field to which he dedicated his
entire subsequent scientific career.. In 1966, N. A. Izobov entered the postgraduate program; and in 1967
he brilliantly defended his Ph.D. thesis under the supervision of Prof. Y. S. Bogdanov. In 1979, he defended
his doctoral dissertation at Leningrad University, the abstract of that (as one of the best dissertations) was
published in the journal “Mathematical Notes”. In 1980, Nikolai Alekseevich was elected a corresponding
member of the Academy of Sciences of the BSSR, and in 1994 — a full member of the National Academy
of Sciences of Belarus for 10 years.

Since November 1980, N.A. Izobov has been working at the Institute of Mathematics of the National
Academy of Sciences of Belarus at the following positions: senior researcher (1980—1986), head of the
stability theory laboratory (1986—1993), head of the differential equations department (1993—2010), and
chief researcher (since 2010 up to the present time). In addition, during 1996—1999, he was Head of the
Department of Higher Mathematics, Faculty of Applied Mathematics, Belarusian State University. Since
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1994, he headed the Expert Council on Mathematics of the Higher Attestation Commission of the Higher
Attestation Commission of the Republic of Belarus.

At present, Nikolai is a member of the editorial boards of the scientific journals “Differential
Equations” (in 1969—1990 he was deputy editor-in-chief of this journal), “Memoirs on Differential
Equations and Mathematical Physics”, “Vesci Natsiyanalnaia Akademi nauk Belarusi. Series of Physics
and Mathematics”, “Proceedings of the Institute of Mathematics”.

The main topics of Nikolai Alekseevich’s research activities are: the theory of Lyapunov characteristic
indices, the theory of stability by linear approximation, linear Koppel—Conti systems, Emden—Fowler
equations and linear Pfaff systems. He introduced the notions of exponential exponents and sigma
exponents of a linear system, which are nowadays called Izobov exponents.

N. A. Izobov published about 250 scientific papers, including 3 monographs, one of which was
published in Cambridge. More than 20 candidate and doctoral theses were prepared and defended under
his supervision.

Nikolai Alekseevich was awarded the Order of Francysk Skaryna (2000), the Diploma of the Council
of Ministers of the Republic of Belarus (2000), the V. M. Ignatovsky Medal of Honor of the National
Academy of Sciences of Belarus (2020), the State Prize of the Republic of Belarus for the series of
works “Investigation of asymptotic properties of differential and discrete systems” (2000), the Prize of
the International Academic Publishing Company “Nauka/Interperiodica” for the best publication in its
journals (diploma signed by the President of the Russian Academy of Sciences Y.S. Osipov (2009)), and
also the prize of the National Academy of Sciences of Belarus for the series of works “Modern development
of the first Lyapunov method: theory and applications” (2013).

We wish dear Nikolai Alekseevich good health, vigor, long active years of life and success in all his
endeavors.

Editorial Board
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PARTIAL DIFFERENTIAL EQUATIONS

MODEL PROBLEM IN A STRIP FOR THE HYPERBOLIC
DIFFERENTIAL-DIFFERENCE EQUATION
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Abstract. The paper investigates the question of the existence of a classical solution to the initial value problem
with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation. The
equation contains a superposition of a differential operator and a translation operator with respect to a spatial
variable that varies along the entire real axis. Using the Gelfand—Shilov operational scheme, a solution to the
problem was obtained in explicit form.

Keywords: hyperbolic equation, differential-difference equation, translation operator, initial problem, operational
scheme, Fourier transform
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1. INTRODUCTION. PROBLEM STATEMENT

The interest in the study of functional-differential and, in particular, differential-difference equations and prob-
lems for them is due to two reasons. First, for such generalizations of differential equations some methods “working
well” for classical equations are inapplicable, and also there appear qualitatively new effects in the solutions, that
have no place in classical cases. Secondly, such equations are encountered in a variety of applications (mechan-
ics of a deformable solid body, processes of vortex formation and formation of complex coherent spots, modeling
of crystal lattice vibrations, nonlinear optics, neural networks, etc.), including those that cannot be described by
classical models of mathematical physics. Significant results in the study of problems for functional- differential
equations of various classes were obtained by A. L. Skubachevskii [1, 2], V. V. Vlasov [3, 4], A. B. Muravnik [5],
A. V. Razgulin [6], L. E. Rossovskii [7], V. Zh. Sakbaev [8] and other authors.

We will call according to [1] a differential-difference equation containing both differential operators and shift
operators.

To date, problems for elliptic (both in bounded and unbounded domains) and parabolic differential-difference
equations have been studied in detail. Hyperbolic differential-difference equations have been studied to a much
lesser extent. In [9, 10], two-dimensional hyperbolic equations with a shift operator in the senior derivative acting
on a spatial variable are considered for the first time. The purpose of this paper is to construct explicitly, using the
known operational scheme [11], the solution of the model initial problem in the strip for such an equation.

Letusdenote by D = {(z,t) : « € R,0 < ¢t < T'} the area of the coordinate plane Oxt, where T > 0 is a given
real number, let D = {(x,t) : x € R,0 <t < T}.

We need to find the function u(z, t) € C*(D) N C?%(D), satisfying the equation

O*u(x,t)  ,0%u(z — h,t)

T =a 8.232 ’ (:Evt) € Dv (1)

where a > 0, h # 0 are given real numbers, and the initial condition

u(z,0) =0, zeR. ?2)
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Definition. We will call the classical solution of the problem (1), (2) a function u(z,t), continuous and
continuously differentiable on the variables = and ¢ in the set D; twice continuously differentiable on « and ¢ in D;
satisfying at each point of the region D the relation (1); such that for each point zg € R the limit of the function
u(xwo, t) at t — +0 exists and is equal to zero.

2. CONSTRUCTING A SOLUTION TO THE PROBLEM

To find the solution of the problem (1), (2) according to the operational scheme [11] we apply, to equation (1)
and initial condition (2) (formally), the Fourier transform on the variable x, acting according to the rule

+oo
(e, 1) = Fufu(z,t)] = / w(z, )6 da.
As a result, we obtain the problem in Fourier images
U t) | 50 ine- _
T"‘afe a(¢,t) =0, (3)
a(§,0)=0, (eR. 4)

The characteristic roots of the equation corresponding to equation (3) are determined by the formula
k1o = +iate /),
then the general solution of equation (3) has the form
a(€,1) = C1(€) cos(age"/Dt) + Cy(€) sin(age /1),

where C1 () and Cy(€) are arbitrary constants depending on the parameter ¢ € R. Substituting this function into
the initial condition (4), we obtain C(£) = 0. Since problem (3), (4) is a problem with incomplete initial data, let
us assume that

Cs(6) = (agel /)
and write down the final form of its solution:
sin(age(*h¢/2))

(g, t) = T g §eR.

Applying now the inverse Fourier transform to the found function (formally), we obtain by analogy with [12]
the following relations:

1 oo _
R0 = 5 [ a6 et =
2 J_ o
B o0 sin(a&telhé/2))
Toma ) T @
+00 o (=th&/2)¢)
L[ S e
2ma | J §
400 : ih&/2
v mrwaée““t)e-mh/msdg] -
0 §
1 [*° [sin((at cos(hE/2) + x + h/2)E)
= 3ra )y gewsmaey
sin((at cos(h&/2) —x — h/2)¢)
* gelatésin(hé/2)) o v

e e =

Remark 1. If we put » = 0 in (5), then we obtain 6(at — |z|)/(2a) — the fundamental solution of the wave
operator 92 /9t% — a20? /0x%, where 0 is the Heaviside function.

Since the obtained improper integral in (5) diverges, we introduce, according to [11], the regularizer f(&) for
expression (5) — a function satisfying the conditions:

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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1) f(€) is positively defined and continuous on the set [0, +00);

2) for any number ¢ > 0 there are the following equations

lim f(g)eatﬁsin(hﬁ/Q)ge _ 0’ lim f(g)e—atfsin(hﬁ/Q)ge _ 0; (6)

£——+o0 £——+o0

3) the integrals converge at any value of ¢ € [0, T]
+o0 . +o0 .
/ f(g)eatg sm(h$/2)d§7 / f(g)e—atg sm(h£/2)d£; (7)
0 0
4) the integrals converge at any value of ¢t € (0, T

+o0 . +oo .
/ f(g)geatfsm(hfﬂ)dg’ / f(g)fe_“tgs‘“hg/zdg. (8)
0 0

An example of such a function satisfying conditions 1)—4) is, for example, the function f(¢) = £%e(=CT%),

where 8 > 0 and C' > a > 0 are any real constants.
Remark 2. The fulfillment of the equations (6) entails [13, p. 102] the convergence of the integral integrals

e (6) até sin(h&/2) e f(g) —at&sin(h&/2)
JAS/ d LIRS dg.
/0 e 3 /O e ¢ )

3. KEY FINDINGS
Lemma. If conditions 1)—4) are satisfied, the function

Gla.t) = /O+°° {f(f) sin((at cos(h&/2) + x + h/2)¢) n f(&)sin((at cos(hE/2) — x — h/2)E)

ge*atf sin(h§/2) é’eatf sin(h&/2) 3 (10)

satisfies equation (1) in the classical sense.

Proof. The integrand in (10) is continuous on the set [0, +00) as a composition of continuous functions (there
is no singularity at the point £ = 0 due to the limit relation sin o/ — 0 at o« — 0).

Let’s investigate the convergence of the integral

oo . [T f(€)sin((at cos(h€/2) + x + h/2)E)
/O F(x,t;€)dS = /O fo-atEsnhe2) d€. (11)

In view of condition 1)

e . e & at&sin(h&/2)
/ F(x,t,@ds\ < [T g,

then by virtue of the fulfillment of condition 2) and, as a consequence, of Remark 2, the integral (11) converges.
Let us now check that function (11) satisfies equation (1). For this purpose, we differentiate (11) formally under
the sign of the integral over the variables ¢ and x up to the second order:

/ o F,(x,t;€)de = / ” £(€) cos((at cos(he/2) +  + h/2)€)e™ 5Nt/ ge; (12)
0 0

" E (et ) = / " fe)gsin(at cos(he2) + =+ b2 g,
0 0
then

/ - Fralw — h,t;§)d¢ = — / - F(€)€sin((at cos(hE/2) + a — h/2)§)e e /2 de. (13)
0 0

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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Next,

+oo +oo
/0 Fy(z,t;6)d¢ = a/o f(&)[cos(hE/2) cos((at cos(h&/2) + x + h/2)E) +

+ sin(h&/2) sin((at cos(h&/2) + x + h/2)E)] e e sn(he/2) g¢ =

—a /*Oo £(€) cos((at cos(hE/2) + x)€)etEsinhe/2) ge. "
0

+o0 +oo
/0 For(a, :€)d€ = —a? /0 F(€)€[ cos(h /2) sin((at cos(hE2) + 2)E) —
— sin(h¢&/2) cos((at cos(h€/2) + x)€)] ™€ in(he/2) ge =

= —a® / - f(&)¢Esin((at cos(he/2) + x — h)2)€)etEsin(he/2) ge (15)
0

Substituting the found derivatives (13) and (15) into the relation (1), we are convinced of its validity.
Let us examine the integral (12) for uniform convergence. We have

+oo +o0 .
/ |Fy(x,t;€)|dE g/ f(g)e(atésm(hg/Q))df.
0 0

Since the integral in the right-hand side of the inequality converges due to condition 3), and the integrand in it
does not depend on the variable x, then by virtue of the Weierstrass sign the integral (12) converges uniformly on
the variable x at any finite interval |27, 2] C R.

Similarly, from the estimation

+o0 +oo '
/ |Fmp(af — h,t; §)|d§ < / f(f)geatﬁsm(hg/Q)df’
0 0

condition 4) and the independence of the integrand from z in the right-hand side of the last inequality results in
the uniform convergence of the integral (13) on the variable « on any interval [, z2] C R. This means that the
differentiation under the sign of the integral in (11) on the variable x up to and including the second order was
legitimate.

Let us now evaluate the integral (14):

e . 0 F(E)e=Em0E) de sin (he/2) > 0,

[ 1Fsolde <a [ feeesnoer ge <
“+o0

0 0 a [ f(&)ertr&sin(he/2) ge  sin (h€/2) < 0.

0

The integrals in the right-hand side of the relations converge according to condition 3), and the integrand expres-
sions in them do not depend on ¢, hence, the integral (14) converges uniformly on any interval [¢, t2] C [0, T7.
From the assessment

- a2 [ Fe)ceet€nte2) g sin (he/2) > 0,

/ Fule,tldg <

0 a2 [ F(©)ce™ €/ e sin (he/2) < 0
0

and condition 4) it follows that the integral (15) converges uniformly on any segment [t1,¢;] C (0,7T]. Thus, the
differentiation (15) under the sign of the integral over the variable ¢ up to and including the second order is valid.
Similarly it can be shown, in view of conditions 1) and 2), that the non-singular integral converges

e i h&/2) —x—h/2
H(z,t;§)d¢ ::/ f¢) Sm((at;;i(gsf]{hgﬂ) 2~ hj2)e) dg (16)

0

—+o0

0

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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and that function (16) satisfies equation (1), differentiating directly (16) under the sign of integral on variables x
and ¢ up to the second order inclusive and substituting the found derivatives Hy(z, ¢; &) and H,,.(z — h, t; ) into
(1). In this case, by virtue of conditions 3) and 4), the integrals H, (z, t;£) and H,,(x,t; ) converge uniformly on
the variable = at any segment [z, 2] C R and the integrals H;(z, t;£) and Hy(z, t; ) converge uniformly at any
segment [t1, t2] of the sets [0, 7] and (0, T'], respectively.

Thus, it is shown that function (10) exists at every point of the domain D and satisfies equation (1) in the
classical sense. The lemma is proved.

On the basis of the lemma the following is true.

Theorem. If conditions 1)—4) are satisfied, the function

—+o00
u(x,t) = 1 G(x — 1, t)ug(r)dr, (17)

2ma J_ o

where G(x,t) is defined by equality (10), ug(x) is any integrable function on the whole number line, satisfies equation
(1) in the classical sense and the limit relation

tLITO u(@o,1) =0

for any value of zg € R.
Proof. Function (17) has the form

oo +o° sin((at cos(hé/2) + o — 7 + h/2)€)
u(xat) = % - 0(7)/0 l: (a Se{ztg)sin(fa;gﬂ; / ) +
sin((atcos(h&/2) —x + 71 — h/2)¢
[ /) st =) g,

Since ug(z) € Li(R), it is sufficient to show that |G(xz—,t)| < const, that is true, due to condition 2) and
Remark 2, for the existence of the function (17) in the domain D. In view of the proved lemma, function (17) is
a classical solution of equation (1). Note also that, by virtue of the same lemma, the function (17) belongs to the
class C*(D) N C?%(D) (the integrand in (17) is continuous), the integrals u, (x, t) and u,, (z, t) converge uniformly
on the variable x at any finite segment [z, x3] C R, the integrals w;(x, t) and uy (z, t) converge uniformly on ¢ at
any finite segment [t1, t5] of the sets [0, 7] and (0, T'], respectively (the integral u;(x, t) converges on the boundary
t =0).

Let 29 € R. In (17) we substitute the variable by the formula (z¢y — 7)/t = n and get

+oo

t
u(wo,t) = Gy G(tn, t)ug(wo — tn)dn,

whence at ¢ — 40 follows the evaluation of |u(zo,t)| < ¢ for any arbitrarily small number ¢ > 0. The theorem is
proved.
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Abstract. The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic
liquid are investigated. It is shown that for certain values of the parameters included in the equations of the
system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is
solved based on the feedback principle.
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1. INTRODUCTION. PROBLEM STATEMENT

Let D C R™ be a bounded region with boundary 9D of class C>°. Let’s consider the following model of
viscoelastic incompressible fliud flow in D x R:

A= VHu, = vV3u —Vp, Vu=0; (1)
u(z,t) =0, (x,t)€dD xR; wu(z,0)=ug, x€D,

where u(z,t) = (u1(z,t), us(z,t),...,uy(x,t)) and p are the velocity and pressure vectors, respectively. System
(1) is a linearization of the system

(A = VHu, = vV2u — (uV)u — Vp, Vu =0,

obtained by A.P. Oskolkov [1] to describe the flow of viscous liquids possessing elasticity property. Redefining Vp
by p, we write the system (1) in the following form

A= VHuy = vV3u—p, V(V)u=0. ()

Here, the parameter \ characterizes elastic properties, and v characterizes viscous properties. In [2], it was
shown that the parameter A can take negative values. In [3], a physical model of fluid flow with negative viscosity
was constructed, so we will assume further that v € R.

It has been experimentally shown that the flow of polymer solutions and melts has the property of instability
(see the review [4] and the bibliography therein). This instability can have a significant impact on the material
processing technologies and the quality of final products. One of the causes of this instability is inlet pulsations
(“inlet instability”). Note that polymer solution and melts are viscoelastic fluids. We will investigate the instability
and stability of the flow of an incompressible viscoelastic fluid described by system (2) with stochastic initial data.
As an initial condition, we choose a random variable

n(0) = o, 3)
and we will consider the system (2) as a stochastic equation of the Sobolev type
L = Mn. 4)

11
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The solution of the stochastic equation is a stochastic process that is not differentiable at any point. Therefore,
as the derivative of the stochastic process 1 we will consider the Nelson—Glicklich derivative 7 [5]. At present, a
large number of works devoted to the study of stochastic equations of Sobolev type are known. Let us note some of
them. The solvability of the Cauchy problem for equation (4) is studied in [6] (in the case of a relatively bounded
operator), [7] (in the case of a relatively sectorial operator) and [8] (in the case of a relatively radial operator). In
[9], stochastic linear equations of Sobolev type of high order are considered; in [10, 11], the “initial-finite” problem
for equation (4) is investigated; in [12], the stability of equation (4) is studied. In [13—15], numerical experiments
on finding stable and unstable solutions of stochastic nonclassical equations that can be represented in the form (4)
were carried out.

The deterministic system (2) has been studied in various aspects. The study of its solvability was started in [1]
under the condition that the parameters \, v € R.. In [16], the question of existence of solutions was solved using
the phase space method at A € R\{0} and v € R_; the existence of an exponential dichotomy of solutions was
shown. In [17], the initial-final problem for a linear system of Oskolkov equations was studied.

The purpose of this paper is to study the instability and stability of solutions of the stochastic system (2) in the
case when the parameters A, v € R\{0}, and to solve the problem of stabilization of unstable solutions. In Section
2, we give abstract results on the existence of solutions of equation (4) and their stability. In Section 3, the system
(2) in spaces of random K-values is considered, and the solvability of the stochastic system (2) is shown. In Section
4, the existence of stable and unstable invariant spaces is proved, the problem of stabilization of unstable solutions
by the feedback principle is solved.

2. INVARIANT SPACES OF THE STOCHASTIC EQUATION OF SOBOLEV TYPE

By L, we denote the space of random variables £ with zero mathematical expectation and finite variance, and by
CL; we denote the space of continuous stochastic processes 7. We fixn € CLs and ¢ € J, where J is some interval,
and through N,” we denote the o-algebra generated by n and E/ = E(-|N"). Let us define the Nelson—Glicklich
derivative of the stochastic process n at the point ¢ € J as the limit

ﬁ(.w)l{ lim E?<77(t+Atw)n(tw))+ lim E?<n(t,~)n(tﬁtw))],

2 | At—+0 At At—+0 At

if it converges in the uniform metric on R. By C'L, we denote the space of stochastic processes whose Nelson—
Glicklich derivatives are a.s. (almost surely) continuous on J up to order [ inclusive.

Let 4l and § be real separable Hilbert spaces, and let {¢x} and {v;} denote bases in &l and §, respectively.
Choose a sequence of random variables {£;,} C Lo ({Cx} C Lo), such that ||§x||r, < const (||Ck|lL, < const). The
elements of the space UgL, (FkLy) of (4l-valued (§F-valued)) random K-variables are vectors & = Y7 | Ai&rr
(¢ = Y"n2, MCrtbr), where the sequence K = {\;} C Ry satisfies Y ;- | A2 < +oo. The following holds:

Lemma 1 [18]. The operator A € L(L;F) (linear and continuous) if and only if the operator A € L(UgKs; FxLo).

Let the operators L € £(UgLy; FxkLy), M € Cl(UgLy; FxLy). Denote by

pH (M) ={peC: (uL — M)~ € L(F W)}

the L-resolvent set, and by o' (M) = C \ pL(M) the L-spectrum of the operator M. If the operator M is (L, o)-
bounded, i.e., its L-spectrum is bounded, then there exist projectors

1 1
P [l =My Ldpe L), Q=5 [ LuL =2 dp € £(FiLa). (1)

Y Y

Here, the contour v C C bounds a region containing o= (M).

The projectors (5) split the spaces Ug Lo = U} Ly & Uk Ly and FxLy = FyL, & FLa, where
UgL, (UxLy) = ker P (im P), F§Ly (FkL2) = ker @ (im Q). Let L;, (Mj,) denote the restriction of the operator
L (M) to ULy, k = 0,1. The operators Ly, (M) € L(UfLy,FiLy), k = 0, 1; there exist operators M, ' €
L(FYLy, UgLy), L7* € L£(FiLy, UxLy). Consider the operators H = Ly M, and S = L' M;. If the operator
M is (L, p)-bounded and H = Q, p = 0 or H? # Q, HP*! = Q, then it is called an (L, p)-bounded operator.

We call a stochastic K-process n € C*(J;UgLs) is called a solution of equation (4) if a.s. all its trajectories
satisfy equation (4) at all t € 7. A solution n = n(t) of equation (4) a solution of the Cauchy problem (3), (4) if
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equality (3) holds for some random L-variable 79 € UpLs. The set P C ULy is called the stochastic phase space
of equation (4) if a.s. any trajectory of the solution = 7(¢) lies in P pointwise, i.e., n(t) € Pforallt € J, and for
a.e. 19 € P there exists a solution to the problem (3), (4).

Theorem 1 [7]. Let the operator M be (L, p)-bounded, p € {0} UN. Then the group

1

Ut = _——
271

/Rﬁ(M)e“t du
5

is the holomorphic resolving group of equation (4); the subspace UxLy is the phase space of equation(4).
Definition. An invariant subspace 115(*) c P is called the stable (unstable) invariant space of equation (4) if the
condition

17 (1) oyt < Nem =0 ") (5) g,

holds for s > ¢ (t > s), *) = n*(W(¢) € I', and some N, a € R,. If the phase space splits into a direct sum
P = I' @ I2, then the solutions = 7(t) of equation (4) have an exponential dichotomy.
Let the operator M be (L, p)-bounded, p € {0} U N and the relative spectrum has the form

ot(M) = o7 (M) @ oy (M), (6)
where
ocl(M)y={uco(M):Reu<0}#2, ol(M)={pco(M):Rep>0}+a2.
Then there are projectors
1 L
Py = i / R;(M)du € L(UgLz),
Vi)

where the contour v;(,.) lies in the left (right) half-plane of the complex plane and bounds a part of the L-spectrum
of the operator M o, (M). Let us denote by 16W) = im Py,..

Let the operator M be (L, p)-bounded and condition (6) be satisfied, then UgLy = I¢ & I“. Equation (4) will
be considered as a system

Hi)’ =1, (7
Len® = Myn®, ®)
Lo = Myn®. )

Remark 1. The operator M is (L, p)-bounded, so the operator H is nilpotent of degree p. Then the solution
of equation (7) n° = 0 and the stochastic process n = n°® + n* is a solution of equation (4), where n°* and n*
are solutions of equations (8) and (9), respectively. Thus, the question of stability and instability of solutions of
equation (4) is reduced to the study of stability and instability of solutions of ® and n*.

Theorem 2. Let the operator M be (L, p)-bounded, p € {0} UN and condition (6) be satisfied, then the solutions
n = n(t) of equation (4) have an exponential dichotomy.

Proof. The solving groups of equations (8) and (9) have the form

1 1
Ul = — /(MLS — M) 'Leettdpy, U= _-— /(uLu — M) Lye!t dp.
211 271
ol

Tr

Let’s denote v = — max,,c,z(5s) Re pand 3 = min ¢,z (ar) Re pu. Then
10/ | 2oty < e / [(Ls — M)~ Ll £ qugrs) |dul < Nee™, (10)
"
1UF N e qugtay < €™ / (L = M) ™" Ly || £(ugLo) ldul < Npe. (11

Ir
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Let s > ¢. Then the solution 7° of equation (8) can be written as n°(t) = U, f*tns(s). By virtue of (10) we have
the relations

||77$(t)||UKL2 = ”UlSitns(S)HUKLz < Nle_a(s_t)Hns(s)HUKLz'
Further, let ¢ > s. Then the solution % of equation (9) is: n“(t) = Ut=*n%(s). By virtue of (11) we have

17Ol s = 1T 0" () lvse Lo < Noe® 0" (8) v o = Nee P 10%(5) U L, -

The theorem is proved.
Corollary 1. By the conditions of Theorem 2, any trajectory of the solution n**) = 1°(") () of equation (8) (equation
(9)) a.c. lies in the stable (unstable) invariant space I°(") pointwise, i.e., n°("”) (t) € I*") at all t € R.

Remark 2. IfasL(u)(M) = 2,10 P = {0}.

3. STOCHASTIC SYSTEMTYPE

We will consider the system (2) in the spaces of random K-values. For this purpose we denote by
H2 = (W2(D))", H' = (W2(D))", L2 = (Ly(D))™. The closure {uz. € C>: Vu = 0} of the lineal .2 is denoted
by H,, and there exists a splitting L2 = H, @ H,, where H,; is an orthogonal complement to H,,, and II: L? — H,
is an otroprojector corresponding to this complement. The contraction of the projector IT onto H2 NH! c L% isa
continuous operator IT: H2 NH! — H2NH!. Let us represent the space H2 NH' = H2 & H2, where ker IT = H2,
imIl = H2. Let us denote ¥ = I —1II. Letus put ¢ = H2 x H2 x H, and § = H, x H, x H,.. The element u € &
has the form v = (ug, Ur, p).

Lemma 2 [2]. Theformula A = (—V2)": H2NH! — 12 defines a linear continuous operator with positive discrete

spectrum o (A), condensing to the point +0o, and the mapping A Hi n Hi () is bijective.

The formula B: u — —V (Vu) defines a linear continuous surjective operator B: H2NH' — H2, withker B = H2.

The spaces W3 (D), Lo(D) are separable Hilbert spaces, so the spaces 4, § are separable Hilbert spaces as their
finite products. Let us construct the spaces UgL, and FgL,. The operators L, M € £(UgKz; FxLs) are defined as

S(AL+ A) 0) 0 VXA O O
L= 0 A +A4) 0|, M= O —uIA -1
0 0 0 0) B O

Then the stochastic system of equations (2) can be viewed as a stochastic linear equation (4). The following is true

Lemma 3. Operators L, M € L(UgKsy; FxLo).

Proof. Clearly, the operators L, M € L(;F), with im L = H2 x HZ x {0}, ker L = {0} x {0} x HZ, so by
virtue of lemma 1, L, M € L(UgKz; FxLs).

Lemma 4. Forany A € R\ 0(A), v € R the operator M is (L, 1)-limited.

Proof. In [2] it is shown that the operator M is (L, 1)-bounded if the operators L, M : {1 — §, so by virtue of
Ilemma 1, the statement of this lemma follows.

Theorem 3. Forany A € R\ o(A), v € R and for any random variable ny € UgLy there exists a solution to
problem (3), (4) which is of the form n(t) = Ulng, t € J.

Proof. By virtue of lemmas 3 and 4,, the stochastic system of equations (2) satisfies all the requirements of
Theorem 1. The phase space has the form

UlL, — UkLs, if A 7é v fork € N;
K2 — .
UGUKLQS <’>90k>50k =0, lf)\:Vk,

where v, is the spectrum of the operator A: H2 — H?2, that is the contraction of the operator A onto H2. The
resolving group can be represented as

vv
> eof 2o © o
t Vk#)\
U= O O O
O O O
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4. EXPONENTIAL DICHOTOMIES AND STABILIZATION OF SOLUTIONS OF A
STOCHASTIC SYSTEM OF EQUATIONS

The relative spectrum has the form o*(M) = { (U: ’fA) } Note that the spectrum o(A) = {v;} is positive
discrete finite and condensed to the point +oc (Solonnikov—Vorovich—Yudovich theorem). The following holds
Theorem 4. Forany A € R\c(A), A > vy and v € R\{0}, solutions n = n(t) of the stochastic system of equations
(2) have an exponential dichotomy.
Proof. Let A € R\c(A)and \ > vy, theno’ (M) = oF (M)Uck (M), where ot (M) = {u € oL (M) : vj, < \},

ok (M) = {u € oL (M) : v, > \}. This spectral decomposition is accompanied by invariant spaces

I'={neUkls: (-,01)pr =0, v <A}, IP={neUgls: (-, pp)pr =0, vp > A}.

The space I' is finite-dimensional, dimI' = max{k: v < A}, , and the space I? is infinite-dimensional,
codimI? = dimI' 4 dimker L.
Ifr > 0@ < 0), then U1L(2) (M) lies in the left half-plane and 02L(1)(M ) lies in the right half-plane of the

complex plane. By virtue of Theorem 2, I'(®) is a stable invariant space, I>(!) is an unstable invariant space, and
the solutions of the stochastic system of equations (2) have exponential dichotomy. The theorem is proved.

Corollary 2. If )\ < vy and v < 0, then the phase space of the stochastic system of equations (2) coincides with the
stable invariant space. If A < vy and v > 0, then the phase space of the stochastic system of equations (2) coincides
with the unstable invariant space.

Let us proceed to the problem of stabilization of unstable solutions. For this purpose, we will consider equation
(4) in the form of the system (7)—(9). For definiteness, let us assume v > 0 and A > v;. It follows from Theorem
4 that I* = I' and I* = I2. The space I® is a stable invariant space, so for the solutions 7; = 7;(t) of equation (8)
the following is true

lim ||771(f) HUKLZ =0.

t—+oo

By virtue of Remark 1, consider the following stabilization problem. It is required to find such a stochastic
process Y, so that for the solutions of Eq.

Lyt = Moy + X (12)
the following condition was satisfied
Jm e () o, = 0. o)

We will find y using the inverse of x = Bn,., where B is some linear bounded operator. Equation (12) will take
the form
Lyny = M, + B, = (M, + B)n,.

Let’s find m = max uy, € o (M){u} and the number n of the obtained maximum value. Let’s put

B=—-v(e+u,)l,

where ¢ can be chosen as small as desired. Then the relative spectrum

a%w@+m:{“%_w””“}

A — Vi
lies in the left half-plane, of the complex plane and by virtue of Theorem 2, equality (13) is satisfied for the solution
of . = ny ().
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CONCLUSION

It is planned to continue studies on stability and instability of solutions for stochastic semilinear equations of
Sobolev type with a relatively spectral operator. It is planned to carry out numerical experiments on finding stable
and unstable solutions of the stochastic system (2) and stabilization of unstable solutions.

The author expresses her sincere gratitude to Prof. G. A. Sviridyuk for his interest in the work and useful
discussions.
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Abstract. In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variables method, the considered BVP is reduced to the investigation
ofthe existence conditions of solutions of initial value problems for differential equation with piecewise constant
arguments. Existence conditions of infinitely many solutions or emptiness for considered differential equation
are established, and explicit formulas for these solutions are obtained. Several examples are given to illustrate
the obtained results.
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1. INTRODUCTION. PROBLEM STATEMENT

Differential equations with piecewise constant arguments are encountered in the study of hybrid systems and
can model certain harmonic oscillators with almost periodic effects [1, 2]. A wide review of studies devoted to
ordinary equations and partial differential equations with piecewise constant arguments is given in [3, 4].

In articles [3, 6], differential equations of special kind with piecewise constant argument are studied. Periodic
(solvable) problems are reduced to a system of linear algebraic equations, all conditions for the existence of its
n-periodic solutions are described, by means of which explicit formulas for solutions of differential equations are
found.

Partial derivative equations with piecewise constant temporal argument arise naturally in the process of approx-
imation [7].

In [8], the existence, oscillation and asymptotic bounds of solutions of initial problems with piecewise constant
lags are studied for a partial derivative equation with piecewise constant argument.

Boundary and initial problems for the diffusion equation with piecewise constant arguments were studied in
[9] and [10], respectively. The equation with piecewise constant mixed arguments of the form

e (2,1) = a*Upy (2, 1) + bugy (2, [t — 1)) + cu(z, [t]) + du(x, [t + 1])

was considered in [11], where the questions of existence of solutions, convergence of solutions to zero, unbound-
edness of solutions and their oscillations were investigated.

In the paper [12], the asymptotic behavior of the solution of the diffusion equation with piecewise constant
argument of generalized form is found.

18



EXISTENCE OF SOLUTIONS OF THE BOUNDARY VALUE PROBLEM 19

In this paper, we consider a boundary value problem for the diffusion equation with piecewise constant argu-
ments of the form [ 10, 13]

e (2,1) = a*Upy (2, 1) — by (2, [t]) — cuge(z, [t +1]), 0<z<1,t>0, (1)
u(0,t) = u(l,t) =0, 2)
u(z,0) = v(x). (3)

Adapting the method of [10, 14], we first obtain the formal solution of the problem (1)—(3) in the form of a
series. Forthis purpose, after the separation of variables, we study the first order differential equation with piecewise
constant time argument, obtain the existence condition and the explicit formula for its solution. Then, applying the
method of [5, 6, 15, 16], we will find NV -periodic solutions and their explicit formulas of this differential equation.
In aspecial case, we prove the existence of an infinite number of solutions of the differential equation with piecewise
constant argument, which shows the incorrectness of the result about the uniqueness given in [13].

2. DIFFERENTIAL EQUATION WITH PIECEWISE CONSTANT ARGUMENT

Let v; be the coefficients of the sinusoidal Fourier series for the function v(x), i.e.,
+o00 1
x) = Zvj sin(jrx), v = 2/ v(x)sin(jrz)dz.
j=1 0
The solution of the problem (1)—(3) is found in the form
Z T;(t) sin(jmz). 4)
Substituting the function (4) into equation (1) and initial conditions from (3), we obtain

Z (Tj'(t) +a?m? 525 (t) + b2 52Ty ([t]) + en? 32Ty ([t + 1])) sin(jmx) =0,

ZT sin(jrx) = v(z), T;(0) =v;.

Hence, taking into account orthogonallty of functions sin(nmz), we have an infinite sequence of ordinary dif-
ferential equations with piecewise constant argument

Tj(t) + a7 52T (t) + br® 2T ([t]) + en? 5T ([t +1]) =0, t>0,j €N, (5)

with the initial condition
Tj (0) = ’Uj. (6)

Definition 1. The function 7'(¢) is called a solution to the problem (5), (6), if it satisfies the following conditions:

(i) T(t) is continuous with R ;

(ii) the derivative of 7" (t) exists and is continuous with R, except for points [¢] € R, where one-sided deriva-
tives exist;

(iii) T'(¢) satisfies (5) and (6) at R with a possible exception at [t] € R .

Let’s denote

2_2.2 b 22,2

Ej(t)=e T = —(1—eT T, Di(t) =

C —a2r2i? .

o) ?(1—6 Jt), jeN.
Theorem 1. Let a,b, ¢ be real numbers. If D;(1) # —1, then the equation (5) has a single solution represented at

the intervalst € [n,n+ 1), n=0,1,2,..., in the form of

. B,(1) ) E(1)

(Bt —n) - Di(t — i 4
56 = (Extt=m) = D= m) 720 ) s 0
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Theorem 2. 1. If D;(1) = —1and E;(1) = 0 for j > 0, then the problem (5), (6) has infinitely many solutions. In
particular, this problem has a single one-periodic and infinitely many N -periodic solutions, N = 2,3, ...

2. Let D;j(1) = —1 and E;(1) # 0. Then ifv; # 0, then problems (5), (6) have no solution. If v; = 0, then this
problem has a trivial solution.

Example 1. Let j = 1,a € R, c = a2/(e7* ™ 9" —1),b = —a2e~*" 73" J(e=""3* — 1), v; = 1. In this case,
D;(1) = -1, E;(1) = 0. Functions

a?x? 2, 2 7e—a27r2t
R < | (T Fmme ) n - e (), telo.),
(ke + e ™ D) T (1) - o, e (1,2
and
(L= e T T oy = (1 e T (), t€0,1),
Bt)={ (~&1 —e @00y @ D) 7 (1) = S(1—e @™ D)y (2), te[l,2),
— b (1= 0’2y =" (22)) Ty (2) — S (1 — 70" (D) )y, te2,3),

are two- and three-periodic solutions of the problem (5), (6) at j = 1, respectively, where 771 (1), T51(2) are
arbitrary numbers. Having chosen these constants, we give the solutions and their graphs.
The function F5(t) at 711 (1) = 3and a = % has the following form (Fig. 1, a)

—t Q(1_—t
el _30oe D e o),

Fz(ﬁ) = 1:21 t e2—t (8)
1176*1 +3 1ie + efl) ’ t )
s A a
3,0 -
2,5
2,0 -
1,5
1,0 : : : >
0 1 2 3 4 5 6 t
Fig. 1. Graphs of the function F»(t)
andat 711 (1) = —2and a =  (Fig. 1, b)
1 elt 2(1—e™ %)
pet e pe0,1),
F(t) = ifﬁ_l et € 1_6127t ) )]
e~1-1 _2(176—*— 871)7 € 1’2]
The function F3(t) at Ty1(1) = 2, T»1(2) = 3 and a = L is represented as (Fig. 2, a)
Lope ) tefo,),
Fy(t) = { 2 + <520 te(1,2), (10)
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atTh1(1) = —2,T51(2) = =2 and a = 1 (Fig. 2, b)

T

=t 6(3Z:t1_2)> t€0,1),
1—t
Fy(t) =4 2 - <Gte), te(L,2), (11)
e(pe? t—2
2(63—1) IICESY }, tel2,3],

andat 711 (1) = 3, T1(2) = —4and a = 1 (Fig. 2, ¢)

1t
Fy(t) = { 54 c0e 20 oy o) (12)
5e27t—1
eil 2 e—1 )7 te [273}

Fy a
2,0
1,8
1,6
1,4
1,2
1,0

Fig. 2. Graphs of the function F5(t)

Remark 1. In Example 1, the parameters of the equation satisfy the conditions of the singularity theorem from
[13]. It shows the incorrectness of the results of Theorem 2 of [11], which asserts the uniqueness of the solution of
the problem (5), (6).

3. PROBLEM SOLVING

Definition 2. The function u(x,t) is called a solution of the problem (1)—(3), if the following conditions are
satisfied:

(i) u(x, t) is continuous on the set Q = [0, 1] x Ry, Ry = [0, 00);

(ii) the partial derivatives of u; and u,,, exist and are continuous at 2 with a possible exception at points (x, [t]) €
), where one-sided derivatives exist on the second argument;

(iii) u(x, t) satisfies (1)—(3) at Q2 with a possible exception at (z, [t]) € §2.

Assumption. Let the function v(-) have continuous derivatives up to and including third order at the segment |0, 1]
and satisfy the conditions v(0) = v(1) = v”(0) = v"(1) = 0.

Theorem 3. Let the assumption ¢ # —a® and D;(1) # —1at j € N be satisfied. Then the problem (1)—(3) has a
single solution represented as a series

1) )( E7(1)

+00 )
u(z,t) = ; (Ej(t —n)—D,;(t— n)lf]D(j(l) 1—|—Dj(1))”vj sin(jrz), te€n,n+1),n=0,1,2,...

Theorem 4. 1. Let the assumption be satisfied, D; (1) = —1 and E; (1) = 0. Then the problem (1)—(3) has an
infinite number of solutions represented byt € [n,n+1),n=0,1,2,..., as

+oo ) En
u(z,t) = ; (Ej(t —n)—D;(t—n) 1 f]D(i)(l)> i jDil()l))”U] sin(jma) + Tj, (t) sin(jma), (12)
J#3jo
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where T} (t) is an arbitrary solution of the problem (5), (6) (see point 2 in Theorem 2).

2.IfD;,(1) = -1, E;,(1) # 0 and vj, # 0 at j = jo, then the problem (1)—(3) has no solution.

Example 2. Leta = 1/7, ¢ = 2, b = 3 in equation (1) and u(z,0) = 2?21 Sm(ii’”“) in condition (3). Then the
solution of the problem (1)—(3) has the following form (Fig. 3)

B E;(1) Er)
e =32 | (B0 it =025 ) G T

j=1 J

v]} sin(jrx), t€n,n+1),n=0,1,2...

Fig. 3. Graph of the function u(z, t)

Example 3. Leta € R, ¢ = ﬁ, b=—a2e= 73" J(e=2’™"3* _ 1), v(x) = sin(rz) + 2sin(2rz). Then
the solution of the problem (1)—(3) is defined by the formula

u(z,t) = T1(t) sin(rz) + 2T5(t) sin(27wzx).

Note that D;(1) = —1, F1(1) = 0and Dy(1) = —1, i.e., the numbers a, b and ¢ satisfy the conditions of point 1
of Theorem 2 and Theorem 1. Therefore, according to Theorem 1, the function T5(¢) has the form

Tg(t)=2(E2(t—n)—D2(t—n)), t e [n,n+1),

and the function T (¢) can be defined in many ways.

Here are the graphs of u(z,t) for Example 1. In the case when T3 (t) = F(t) and Fy(t) are defined by the
equality (8), the graph of the function w(z, t) is shown in Fig. 4, a; if F5(¢) is defined by expression (9), then in
Fig. 4, b. When T (t) = F5(t), where F3(t) is defined by equality (10), the graph of the function u(x, t) is shown
in Fig. 5, a; and if F3(t) is defined by equality (11), then in Fig. 5, b.

Remark 2. In Example 3, the parameters of the equation do not satisfy the conditions of Corollary 1 in [13],
i.e., a2 + b+ ¢ = 0. The solution of u is periodic on ¢. This means that the null solution of the problem (1)—
(3) is not asymptotically stable. Therefore, the conditions of Corollary 1 are sufficient for the null solution to be
asymptotically stable.

4. EVIDENCE FOR KEY FINDINGS

Proof of theorem 1. Let us denote by T;,;(¢) the solution of equation (5) on the interval [n,n + 1), i.e.

T;(t) =T,;(t), ten,n+1), n=0,12,...
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0,5
—2

Fig. 4. Graph of the function u(z, t)

Then

T, (t) + a®n®5° T (t) =

= —br?j%Ty;(n) — cn®?Thj(n + 1), t€[n,n+1).
The solution of the equation (13) is determined by the formula

(13)
Toy(t) = ~2Ea ) (g _ pmanteomy | (rye-eteiteem - D) ety
a a
or
T,i(t) = Ej(t —n)Tn;(n) — Dj(t —n)T,j(n+1), tenn+1). (14)
Puttingt =n + 1in (14) foralln =0,1,2, ..., we get
T,j(n+1)=E;(1)T,;(n) — D;(1)T,;(n+1).
Hence, taking into account D;(1) # —1 we have
Ej(1)Tn;(n)
Tpj(n+1) = =220 1
i+ 1) =S5 (15)
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Fig. 5. Graph of the function u(z, t)

Then we write (14) as
D;(t—
T8 = Bt = Ty () = DB () o) (16)

From the continuity of the function Tj(¢) over ¢t > 0 the following equations follow

Tiwens(n+1) =Tyl +1) = | lim T(t) = Tog(n +1).

Consequently, formula (15) can be rewritten in the form

E; Tn]‘ n
Tnni(n+1) = 4547 (i)Dj(i) ),
from where
B B B
Tyj(n) = I Dj(l)T(n—l)j(n -1)= WT(n—mj(n —2)=-= WTOj(O)’

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025
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or B ()
J
—— T, (0).
L+ D)~
Thus, the solution 7, ;(t), defined by the formula (16), is represented only via T;(0):
E;(1) ) B7 (1)

1+D;(1)) (1+ D;(1))
The equality T;(0) = v; completes the proof of the theorem.

Proof of theorem 2. 1. Let D;(1) = —1, E;(1) = 0. Construct the function 7}(t) = T,;(t), t € [n,n + 1),
n=20,1,2,...,as follows. Function

To;(t) = E;(t)To;(0) — D;(t)Coj, t€]0,1),

Ty (n) =

Ty 1) = (Ej (t —n)— Dyt —n) 70,(0).

satisfies the equation (5), where Tp;(0) = v; and Cy; are arbitrary numbers. Since D;(1) = —1 and E;(1) = 0,
there is an equality Tp; (1) = lim,_,1 T, (t) = Co,. It is easy to check that the function

le(t) = Ej(t — I)le(l) — Dj(t — 1)C1j, t e [1, 2),

satisfies equation (5), where C; is an arbitrary number.
By virtue of continuity of the function T (¢) we have

T3(1) = Th; (1) = lim To;(t) = To;(1).

The equalities D; (1) = —1 and E;(1) = 0 give T1,(2) = lim;_,o T4 (t) = Ch;.
Function
T,;(t) = Ej(t —n)Ty,j(n) — D;j(t —n)Cpj;, at(n,n+1),neN,
satisfies the equation (5), where C,,; is an arbitrary number. Clearly,

Tj(n) = Tpj(n) = lim Ti1);(t) = Tino1y; (1)-

Similarly, from the equalities D;(1) = —1 and E;(1) = 0, we obtain T,,;(n) = lim;_,,,+1 T,;(t) = Cy,;. After
the construction of the function

j‘lj(t):Tnj(t% te[n7n+1)7n:031727"'5

appears the solution of the problem (5), (6). Since the constants Cy;, Cyj,. .., Cy,;, ... are arbitrary, the problem
has an infinite number of solutions.
Let Tj;(t) be a one-periodic solution of the problem (5), (6), then it can be represented as

Tj(t) = Toj(t) = E](t)Toj(O) — Dj(t)COj, te [0, 1]

Since the function T (¢) is one-periodic and Tpj(1) = Cyj, then Tp5(0) = Toj(1), Coj(1) = Tpj(0) = v;. This
shows the uniqueness of the one-periodic solution (5), (6).
Let T} (t) be a two-periodic solution of the problem (5), (6). Then the function T7(¢) on [0, 2] has the form

() = E;(t)T05(0) — D;(t)T1j(1), telo,1),
P B (- DTj(1) = Dyt —1)Cj, te1,2),

where Tj(0) = v;, T1j(1) is an arbitrary number. From the periodicity of T} (t) it follows that T};(0) = Tyj(0) =
T;(2) = C1j. This shows that the problem (5), (6) has infinitely many two-periodic solutions.
Let 7} (t) be the N-periodic solution of the problem (5), (6). The function T7(t) on the interval [0, N] has the
form
Ej(t)vj - Dj(t)le 1)7 te [O, 1)7
E](t—l)TL](].)—Dj(t—l)sz(2)7 t e [].,2)7

Bi(t— N +2)Tix_1.5(N —2) = Dj(t— N+ 2)T(y_1.(N —1), te[N—2N—1),
Ej(t — N+ 1)T(N_1’j)(N — 1) — Dj(t — N+ 1)’(}]', t e [N — 1,N),
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where T15(1), T25(2), . .., T(n—1,;)(IN — 1) are arbitrary numbers.

2. Suppose that the function T} (t) is a solution of the problem (5), (6). Then, according to (14), the following
equality holds

T,j(t) = E;j(t —n)T,j(n) — Dj(t —n)T,j(n+1), te€[n,n+1).

Hence at t = n + 1 taking into account D;(1) = —1, we have E;(1)T,,j(n) = 0 foralln = 0,1,2,... Therefore,
T,j(n) = O0foralln = 0,1,2,..., since E;(1) # 0, i.e., the equation has only a trivial solution. Hence, if
T;(0) = v; = Tpj(0) # 0, then the problem (5), (6) has no solution.

Proof of Theorem 3. First, prove uniform convergence in any closed set A C [0, 1] x R of the following series:

ZT sin(jmz), (17)
ZT sin(jrz), (18)
Z’]T2]2T )sin(jrz), (19)

where Tj(t) is the solution of the problem (5), (6), and at [n,n + 1), n =0, 1,2, ..., the functions 7} (t), T’j(t) are
represented, respectively, as (7) and

E(l) 2 2.2 En(l)
/ - 2 J 2 —a“m 5% (t—n) J .
Ti(t) (a +b+cl+Dj(1))7T‘7 7(1+Dj(1))”vj'

According to the assumption there is equality

2,1}///

1
v; = — 7T3;3, v;”:/o " (x) cos(jma)dr, j=1,2,...

The continuity of the function v"’ (x) implies the convergence of the series Z;;OT (v!")2. Hence, taking into account

J
the Cauchy-Bunyakovsky inequality, we have

+oo 9 +oo o

2 | & 23
D3| = 5 D | < Hoe (20)
j=1 =1
Since 0 < 1 — e~9"™"3°t < 1, the inequalities are true for all ¢ € [0,00) and j € N:

0]

]

B0 <1+ 5. D0 < 5. 21
Note that lim;_,, D;(1) = c¢/a?, so given D;(1) # —1 and ¢ # —a? there exists a number p > 0 such that
L+ D;(1)| > p, jEN (22)
Using inequalities (21) and (22), we obtain uniform estimates for 7);(¢) and T7(¢):
1+l
|Tj(t)‘ < P ‘vj|7 te [nvn+1)v (23)
1+ 14
T (t)| < Co T 2j2\vj|, ten,n+1), (24)
where
b 1+
Ci=1+13 M yldita
a?z p
1+ 4

Cy = a® + [b] + ¢
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Letm =1+ SUP(, 1y b Then from (23) and (24) for all (z,t) € A, the series (17)—(19) are evaluated as follows:

[B]
ZT sin(jrz)| < C4 <1+2) Z\vﬂ

148\
> rsngnn) < (L8) 5

1+

ZWQJQT sin(jrz)| < C4 ( ) 22] v

Hence and from (20), we obtain uniform convergence of series (17)—(19) in any closed set A C [0,1] x R.

Thus, the function u(x,t) = j'(xf T;(¢t) sin(jmz) is continuous on the set Q = [0,1] x Ry ; and the partial
derivatives u; = ;roi’ Ti(t)sin(jm), gy Z+ L m252T;(t) sin(jrx) exist and are continuous on  with a

possible exception at points (z, [t]) € €2, where one-sided derivatives exist on the second argument.
Since D;(1) # —1 foreach j € N, then by Theorem 1 the problem (5), (6) has a single solution 7 (¢) for each
J € N. Hence, the function u(x,t), defined by the formula (4), satisfies the equalities (5), (6) in Q with possible
exceptions at the points (z, [t]) € §2 and is the only solution of the problem (1)—(3).
Proof of Theorem 4. 1. Let D (1) = —1 and E;, (1) = 0 for some j = jo. Then D;(1) > —1at j < j, and
D;(1) < —1atj > jo. Hence we have
14+ D;(1)] > p

for some number p; > 0 and forall j € N\{jo}.

By Theorem 1, the problem (5), (6) is solvable for j # jj and the solution of T} (t) at j # jo is of the form
(7). Since D, (1) = —1; and E;, (1) = 0, then by point 1 of Theorem 2, the problem (5), (6) has infinitely many
solutions. Let us denote by T, (-) the solution of the problem (5), (6) for j = j,. Then from (4) the solution of
the boundary value, problem (1)—(3) has the form (12). The uniform convergence of this series to a continuous
function u(z,t) in any closed set A C [0, 1] x R and the existence of continuous partial derivatives of u; and .,
on 2 with a possible exception at the points (z, [t]) € €, where one-sided derivatives exist on the second argument,
are proved similarly as in the proof of Theorem 3.

2.1f D; (1) = —1, Ej,(1) # 0 and v, # 0, then by Theorem 2 the problem (5), (6) has no solution at j = jj.
Hence, according to (4), the boundary value problem (1)—(3) has no solution.
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I. INTRODUCTION. PROBLEM STATEMENT

In this paper, we consider the initial boundary value problem for the singularly perturbed parabolic equa-
tion, that differs from the classical singularly perturbed reaction—diffusion—advection equation (see [1, 2]) by
the presence of an additional nonlinear term containing the square of the gradient of the desired function (KPZ-
nonlinearities [3, 4]):

2 2
52% - 5% — &% A(u, x) (gg) — f(u,xz,e) =0, xz€(-1,1),t€ (0,7,

ou ou
%(—1,1?,5):0, %(1,75,5):0, t € 10,7,
u(xz,0,¢) = uinit(z,¢), =€ [-1,1], (1)

where € € (0, g is the small parameter, ¢ > 0 is a given constant.

Traveling wave type solutions for quasilinear parabolic reaction—diffusion—advection equations are the subject
of intensive study (see extensive monographs [5, 6]). Attention to nonlinearities of the form A(u, z) (%)2 is due
to both theoretical interest — the square is the limit of degree at which the Bernstein conditions on the growth of
the nonlinearity are satisfied (see, e.g., [7—9]), and important applications where such nonlinearities are used in
mathematical models, in particular, population dynamics models [10], in modeling free surface growth in polymer
theory [3, 4, 11], and many others. We note the work [12], in which exact solutions of the KPZ equation are con-
structed for several physically justified nonlinearities. However, it is assumed there that (u, 2) = const f = f(x,t).
The principal difference of problem (1) is that we consider an equation, where the nonlinear terms depend ex-
plicitly on the coordinate and the desired function. In this paper, we propose an algorithm for constructing an
asymptotic approximation of the solution of the front view, with the velocity of motion being a function of the
coordinate.

Stationary solutions of problem (1) with boundary and inner layers are studied in [13, 14]. The boundary-layer
solutions of the Tikhonov-type system with KPZ-nonlinearities are studied in [15].

The paper is structured as follows. In (2), we construct an asymptotic approximation of the moving front

solution using the method of A. B. Vasilieva [16]. Note that since problem (1) is singularly perturbed, at e = 0 the
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equation of problem (1) changes its type from parabolic to algebraic with three roots (see condition 2), two of them
describe stable equilibrium positions of the system and represent the regular part of the asymptotic approximation
of zero order of accuracy. However, the regular approximation does not allow us to describe a narrow region
with a large gradient, in which the solution passes from one stable level to another. To describe the solution in
this region and to harmonize the stable equilibrium positions among themselves, the so-called transition layer
functions are constructed. In this way, a formal asymptotic approximation of the solution in the whole region
under consideration is constructed. In (3), an algorithm for finding an asymptotic approximation of the front
position is given. In (4), we give a justification of the formal asymptotics and prove the existence and uniqueness
theorem using the asymptotic method of differential inequalities of N. N. Nefedov, that has shown its efficiency in
many singularly perturbed problems [16]. The obtained results are illustrated in Section 5 by an example, that can
be used to develop and verify new numerical methods for the considered class of problems (see [17]).

The results obtained in this paper develop the studies [1, 2], in which the front motion in the reaction—diffusion—
advection equation with weak advection and smooth or modular (discontinuous at some value of the desired func-
tion nonlinearities) sources was considered, and transfer them to a new class of singularly perturbed problems with
KPZ-nonlinearities. At the same time, as in [1, 2], the existence and uniqueness theorem of the solution having
in both cases the same form of the contrast structure of the step type [16] is proved.

In the problem discussed below, it is assumed that at the initial moment of time the front is already formed. This
means that the function uini¢(x, €) has an internal transition layer in the neighborhood of some point z:op € (—1, 1),
i.e., it is close to some root ¢(~) (x) of the degenerate equation f(u,2,0) = 0 to the left of the point z(, and to
the root ¢(+)(z) to the right of this point. In the neighborhood of xq there is a sharp transition from ¢(~)(z) to
¢ ().

We will assume that the following conditions are satisfied.

Condition 1. The functions A(u, z), f(u, z, €) are sufficiently smooth in their areas of definition.

Condition 2. The derived equation f(u,z,0) = 0 has exactly three solutions u = ¢+ (z), with (=) (z) <
0O (z) < o) (z), x € [~1, 1], while the following inequalities are also valid

ful@®(2),2,0) >0,  fu(eP(x),z,0)<0, zel[-1,1].

2. CONSTRUCTION OF FORMAL ASYMPTOTICS OF THE SOLUTION

The asymptotics of the solution of problem (1) is constructed by the method of boundary functions separately
in each of the regions [—1, Z| x [0, T] and [Z, 1] x [0, T'] with a moving boundary (see [ 16]) using the effective method
developed in the scientific school of Professors A. B. Vasilieva, V. F. Butuzov, and N. N. Nefedov for constructing
the asymptotics of localization of the inner layer in the form of

U B U (x,te), (x,t,e) € [—1,2] x [0,T] x (0, 0],
(z,e) = U (z,t,e), (a,t,e) € [2,1] x [0,T] x (0, e0].

We will represent each of the functions U+ (x, €) as a sum of three summands:

UE (2,t,¢) = a® (z,6) + QE) (&, t,6) + R (D)),

where a3 (z,¢) =l (z) + eal* () + -+ is the regular part of the decomposition, functions Q) (¢, ¢,) =
gi)(g Jte) + 5Q§i>(g, t,e) + --- describe the behavior of the solution in the vicinity of the transition point

z(t,e), £ = 2=2(£) s the transition layer variable: ¢ < 0 for functions with index (=) and ¢ > 0 for functions

with index (+); functions R®) (n®) &) = R (n®)) 4+ eRF (n#)) + ... describe the behavior of the solution
in the vicinity of the boundary points of the segment [—1, 1]; n& = %1 are stretched variables near the points

x = =+1, respectively. Since the functions Rgi) (n(i)) are defined in a standard way (see, for example, [16]), we
omit the procedure of their construction. Note that these functions do not depend on the variable ¢ and thus do

not participate in the description of the moving transition layer, and the functions Réi) (n(i)) = 0 by virtue of the
Neumann boundary conditions.
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The position of the inner transition layer is determined from the condition C'*-combining the asymptotic rep-
resentations U(~)(z,t,¢) and U+ (z, ¢, €) at the transition point &(t, €):

U (@(te),t,e) = UM (@(te), t,e) = 6O (2(t,2)), )
0 0
L) — L) s
E&EU (Z(t,e),t,e) E&TU (Z(t,e),t, ). 3)
We will look for the transition point = = (¢, ) in the form of expansion by powers of the small parameter e:
E(t,e) = wo(t) +exi(t) + - 4)

The coefficients of this expansion will be determined in the process of asymptotics construction.
The regular part of the asymptotics is determined after substituting the representation for the functions () (z,¢)
into the equation.

253 o (E)
2070 e2A(a®), ) (au

Ox?

3

2
o ) — f(@®),z,e) = 0.

Inthe standard way [16], we obtain the algebraic equations for determining the functions of the regular part ﬂ,(f) (2),
k=0,1,...
Taking into account condition 2, the regular zero-order functions are defined as

(£
a5 (@) = 6 (@),
To shorten the record, we introduce the notations
J(:(Li) (:L‘) = fu(¢(i)(‘r)7 T, O)'
Functions a;i) (x)atk =1,2,...are defined from equations

F (@)al® (z) = i (2),

where the functions Béi) (x) are known at each k-step and are expressed recurrently through the functions a,(f) (x)
with indices 0, 1, ..., k — 1. The solvability of these equations follows from condition 2.

In orderto obtain the equations satisfied by the transition layer functions Qfﬁi) (&,t,¢2), letusrewrite the differen-

tial operator of the problem in the variables (&, t). Then the equations for the functions Q,(f) (& te), k=0,1,...,
are determined in the standard way [16] by equating the coefficients at the same degrees ¢ in both parts of the
equations:

BO®  ane e G0 ) A R o) \?
90 BEA e e () -
00 gud\2 g0
_A(u(i)(65+@(t7g),g)+Q(i)(f,t,€)7€€+5€(t7€))< %g + g& ) - %t =

= f(a(i) (e€ + &(t,e),e) + QI (&, t,e), 6 + i(t,e),e) — F(@®) (e + i(t,e),e),e€ + &(t,e),e).  (5)
In contrast to the approach in [2], we will not decompose by powers of ¢ the transition point z(¢, ). This
will simplify the algorithm for constructing the asymptotics. Note that the equations from which the functions
;Ci) (&,t, ) are found contain functions depending on (¢, €), %, and that explains the presence of the argu-
ment ¢ at Q,(f)(f, t,e).
We require that the transition layer functions Q,(f)(f ,t,e), k = 0,1,..., satisfy the conditions of equality to
zero at infinity: Q,(;)(g,t,e) —0até — —oo, Q,(j)(f,t,e) —0at{ — 400, k=0,1,...,t €[0,7T].
Equating the coefficients at ¥ in the right and left parts of equations (5), we obtain equations for the function
((f)(f, t,e) at & < 0 and the function QéH (&, t,e)atg > 0:
Q) dilt.e) 995"

()12
o PP Aot + QT et e ae,e)) (P )

= f(¢'P(@(te) + Q57 (€. 1.2), 8(1,9),0). ©
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We obtain the additional conditions at £ = 0 from the continuous cross-linking condition (2) written in zero
order at «:

§700,t,8) + 6 (@(te) = QEV(0,t,6) + 6D (i(t,€)) = 9O (2(t, 2)).

We also add conditions at infinity: Qé_)(f,t,e) — 0at& — —oo, Qé+)(§,t,5) —0até — 4oo,t €[0,T].
Let’s introduce the operator D, acting by the rule

(7

and functions

A (€, te) = 9P (2(t,)) + QT (€, 1, 2), ®)

) e (Ete) + Q5 (€ te), ifE <0,
e {¢(+)(5£(t,5)) + Q47 (6 the), ifE >0,

(€ te) = %?(&t,e), ¢ <0,
o) (¢ te) = %Z(s,t,a, ¢€>0.

Remark. It follows from the form of equations (6), that in the functions Qéi)(f, t,e), u(&,t,e), P (&, t,€),
oF) (€, t, ), we can switch to another set of arguments — (£, #). In the future, we will use both sets, choosing the
most convenient for each particular case.

Let us rewrite equations (6), as well as the additional conditions, using (8):

25 (+ ~ (% (%
o2 ol )—A(ﬁ(i),g}) (au( )

2
- — f(7d 3
652 + Dz 8§ 65 ) - f(u axao)v

@ (0,2) = ¢0(z), P (Foo,i) = ¢F) (). )
Along with the problems (9), let us consider the problem

il +W@ — A(@, &) o\’ _ f(a,&,0), a(0,&) = ¢ (2), a(£oo,z) = ¢ (1) (10)
852 85 b aé- - ) b ) b - b ) - .

Let us formulate and prove the existence result of the solution of problem (10) in the form of a lemma.

Lemma. For each & € (—1,1), there exists a single value W such that the problem (10) has a single smooth
monotone solution (&, &), satisfying the estimation

(€, &) — ¢ (2)| < Cexp{—rl¢|},

where C' and r are some positive constants. In this case, the dependence W (&) is defined as

¢ (@) u
W(z) = /¢ F(u, 3,0) exp {—2/4) A(y,fc)dy} du %

(&) ) (&)
00 90 \2 a(,2) ) -1
x l | (Geea) exp{—2 / ()@)A(w)dy}dﬁ] .

The smoothness of the function W (&) coincides with the smoothness of the functions f(u, Z,0) and A(u, &).
Proof. In order to use the known result from [18], we make a monotonic transformation proposed by A. V. Bitsadze
in [19]:

w(€,%) Y
2(&,8) = 2(al€, 2), &) = /¢ exp{— / A(r,fc)dr}dy, (@,2) € [p7)(&), 6D (2)] x [-1,1].

(@) () (2)
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Let’s introduce the notations

¢(+0 () Y
ZE0(3) = / exp {—/ A(r, i‘)dr} dy.
60 (@) 6 (@)

Due to the monotonicity of the transformation z (4, ) by @ we can define the inverse function

a(E, &) = h(2(€,2),%), (z,2) € 0,27 (&) x [-1,1].

Thus, the problem (10) transforms into the problem

9%z Wa , h(m)A .
+ z,2),x,0)exp —/ r,z)dr » =0,
%6 9 — f(W(z, 2),2,0) o) (r, )

2(—00,2) =0, 2(0,2) =20(2), z(400,2) =2z (), (11)

for which, by virtue of conditions 1 and 2, the following statements are true [18].
1. Foreach & € (—1, 1), there exists a single value W, such that the problem (11) has a single smooth monotone
solution (¢, z), satisfying the estimation

2(&,3) — 2 (2)] < Cexp{—rl¢|},

where C and x are some positive constants.
2. The dependence W () is defined as

A 2 (2) o h(z,&) A ey 2 -1
W(z) :/0 f(h(z,2),2,0) exp{—/qﬁ(_)(i)A(r7 x)dr}dz [/_Oo (65 (&, )> df} . (12)

The smoothness of the function W (&) coincides with the smoothness of the functions f(u, Z,0) and A(u, Z).
Finally, returning to the function @ (&, ) using the transformation @ (¢, &) = h(z(&, &), &) and recalculating the
integrals in expression (13), we have the statement of the lemma. The lemma is proved.
Let’s condition.

Condition 3. Task
dz

dt
has a solution x = x((t), such that zo(t) € (—1,1) at¢ € [0,T]; W(x) > 0forall z € [-1,1].
The inequality W (z) > 0 in condition 3 guarantees the absence of stationary solutions for problem (13). Let
us denote by (9a) the problems (9) in which we replace z by x(t), or, otherwise, in which we put ¢ = 0.

It follows from the lemma and condition 3, that problems (9a) are singularly solvable, since the condition
Do = W (xy) is satisfied. Thus

=W(z), x(0)=xq (13)

ou) o)

Tg(o’xo t) — T§(07$0(t)) =0.

By virtue of the assumed smoothness of the functions f(u,#,0), A(u, ) (see condition 1), problems (9) are
regular perturbations of problems (9a), so they are also uniquely solvable. Note that by virtue of the representa-
tion (4)

7 () ()
8155 0,#(t,¢)) — 8?)5 (0,2(t,¢)) = O(e).

Thus, the construction of the zero-order transition layer functions is completed.
The first-order transition layer functions are found from the following problems:

920\ 90'F) - 90'F -
D7 0% e i) 2 (A6 06D + ule0) &6 =),
F0,t,e) +alP (@) =0, Q) (+oo,t,e) =0, (14)
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where the notations are defined

fu(fvt) = fu(ﬂ(fai)v £7O)7 A(f,t) = Au(ﬂ(f,.f), i)? Au(&t) = Au(a(é.ri')vj) (15)
and
(£)
9ente) = 287 (¢ 1,0) 4 2A(E 000 (6,0 (5) +

(+) _ B ) _ i oo -
- (ugi> (#) + fdzx(i))(fu(é» B+ Au(& ) ([@0(62)7) + (&) + A& D (0(6,8)) + (&, 1).

Here, the derivatives of fa(&,1), fo(&,t) are computed at the same point as the derivative of fu(&,t) in (15).
Similarly, A, (,t) is computed at the same point as A, (&,t). In all the notations introduced here, the argument £

is implied, but we omit it for brevity. The problem for the function Q(l_) (&,t,¢) will be solved on the semi-straight

£ <0, and for the function Qgﬂ (&,t,e) — on the semi-straight £ > 0. The solutions of problems (14) are written
in explicit form:

(e, )
7(F)(0, )

€
+a<i>(g,g:~)/
0

Qe te) = —a (@) =t

e (D2 T ey () (Do), (+) 6
G0 D0 8) Juw | OO DI Yo, (1)

where

¢
jE)(E,if)exp{2/0 A (y, &), )™ )(y,fc)dy}-

It follows from the expression for the functions rl (5 t,e), that they have exponential valuations [16], and
from (16) we deduce in the standard way that similar valuations are true for functions Q(li) (& t,e).

Similarly to the first approximation, one can find for any k£ = 2, 3, ... transition layer functions QSE) (& t,e):
they are determined from boundary value problems with the same differential operator as in problems (14).

3. ASYMPTOTIC APPROXIMATION OF FRONT POSITION

Let us describe the algorithm for finding an asymptotic approximation of the front position. The unknown
coefficients z;(t), i € N, of the expansion are determined from the crossing conditions (3) of the derivatives of the
asymptotic approximations. Let us introduce the function

(+) (=)
Hie,t) = e (di; Bite) — %(i,t,e)) — Ho(et) + eHi(e,t) + 2 Hale, ) +---,  (17)
where aQ(+) aQ(
Hy(e,t) = 32 (0,2) — e 0,2),
do+) dop=) 9 (+) bl (=)
Hy(g,t) = flm (z) — iblx (x)+< gg (0,t,e) — %2 (0,t,¢)
etc.

The C*-linking condition (3) is expressed by the equality H (¢, t) = 0. By virtue of the lemma and condition 3,
taking into account the decomposition of the transition point (4), this equality is satisfied in the order ¢°.
The analysis of problems (9), (10) shows that the function Hy(e, t) can be represented as

+

1 +o0 R
Hy(e,t) = (D& — W(&)) L(i)(Ox) /0 (0 (¢, 2))2ePREPE) (¢, f)ds] +O(e?). (18)
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+

Hereinafter, [ ]~ means the difference between the expressions labeled + and —.
As follows from the decomposition (17) and the representation (18), the higher order terms z;(¢), i > 1, in (4)
can be found from the following Cauchy problems:

dl’i
dt

= W'(zo(t))xi(t) = Gi(t), 2i(0) =0,

where G;(t) are known functions.

4. JUSTIFICATION OF FORMAL ASYMPTOTICS

Let’S Say
sy Xr — X (1 6)
n )

Xn(t,e) = Zeixi(t), &=
i=0

€
The curve X, (, ) divides the area D : (z,t) € [—1,1] x [0, T] into two sub-areas:

D) s (x,t) € -1, X, (t,e)] x [0,7] and DSP) : (x,t) € [Xn(t,e),1] x [0,T].

n

Let’s define the functions

U @ te) =Y e (67 @) + Q76 ) + R T)) L (@1 e DY,
=0

U (@, t,e) = > (a8 @) + QP (6 o) + RV GD)), (w,0) € DY,

=0

where Z(t, €), included in the expressions for the transition layer functions, are replaced by X, (¢, <), and denoted
by

N, t,e), (x,t) € DY
Un(@,t,2) = § (0 AH)
Un''(z,t,€), (x,t)€ Dy"’.

To prove the existence and uniqueness of the moving front solution, we use the asymptotic method of differ-
ential inequalities [16]. Let us construct continuous functions «(x, ¢, €), 5(z,t,<) in such a way that they satisfy
the following conditions.

1. Ordering condition:

(19)

a(x,t,e) < f(x,te), = el-1,1],t€[0,T],e € (0, ). (20)

2. Action of the differential operator on upper and lower solutions:

2 2
L) =290 % (g ) (gf) — f(Bme) <0<
2
< Lla] := 62% - 5%—? —2A(a, ) <gi> — fla,x,¢€) (21)

forallz € (—1,1)and ¢ € [0, T, except those x(¢), in which the functions «(z, t, ) and 3(x, ¢, ¢) are nonsmooth.
3. Boundary conditions:

da

S

ap da
— >0> —(— —_— <0< .
837( 1,t,e) > 0> (’)x( 1,t,¢), aJc(+1,t,5) <0< 8$(+1,t,5), t €10,T],e € (0,e0] (22)
4. Conditions on the initial function:
a(ac,(),a) < uinit(xvs) < ﬁ(xaovs)v S [_17 1}75 € (0750]' (23)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



36 ORLOV

5. Conditions on the jump of derivatives:

D@0~ 0,6,9) 2 2 @() +0,t,2), (4

where Z(t) is the point at which the upper solution is nonsmooth;

O
Ox
where z(t) is the point at which the lower solution is nonsmooth.

It is known (see [20]) that if the conditions (20)—(25) are satisfied, there exists a single solution of problem (1)
for which the inequalities are satisfied

(2(t) ~ 0,,€) < 9 (alt) +0,1,2), 25)

a(z,te) <wu(z,te) < Bz, te), (x,t)€[-1,1] x[0,T).

Let us prove the following existence and uniqueness theorem.
Theorem. When conditions 1—3 are satisfied for any sufficiently smooth initial function w;,(x), lying between upper
and lower solutions

(X(Z‘,O,E) S uinit(x;5) S ﬁ(x,O,E),

there exists a single solution u(x,t, €) of problem (1), that at any t € [0, T) is enclosed between these upper and lower
solutions, and for which the function U,,(x,t, €) is a uniform in the domain [—1, 1] x [0, T] asymptotic approximation
with accuracy O(e"+1).

Proof. The upper and lower solutions of the problem will be constructed as a modification of the asymptotic
series (19). Set the function

x5t e) = Xpy1(t) — e To(t),

and the positive function §(¢) > 0 will be defined below. Let us construct the upper solution of the problem in
each of the regions ﬁ(ﬁ_) : (x,t) € [-1,25(t,e)] x [0,T] and ﬁ(;) i (z,t) € [p(t,e),1] x [0,T):
B (z,t), (a,t) €Dy,
Bz, 1), (2,t) € Dy .

Blx,t,e) = {

We will connect the functions 3(~) (z, ¢, ¢) and () (x, ¢, €) at the point 2.5(t, €) in such a way, that the following
equality is satisfied

5(_)<xﬁ(t55)at75) = B(+)(xﬂ(t7€)7ta5) = ¢(0)($5(t,5)).

Note that the function 3(z, ¢, ) is not smooth. Let us introduce a stretched variable

€y = x —1‘5(1&,8).

g

Let us construct the functions (+) (z,t,e) as modifications of the formal asymptotics (19):

BN (@, t,e) = U ey + €™ (n+¢57) (€5, t8)) + ™RGS (),
(z.t) € Dy 85 <09 > 05

B (@, t,e) = U ey + €™+ a5 (€5, t6)) + €™ HIRSD (n),
(J),t) S DE-ZJr)agB > 0,7](+) < 0.

Here under the notation U,(i)l |¢, we understand the functions from (19), where the argument & of the transition
layer functions is replaced by &3, and X, — by 3.
The positive value p is chosen, so that conditions (20) and (21) are satisfied. The functions R(Bi) (n(i)) are

chosen, so that condition (22) is satisfied (their construction is not considered in this paper). The functions
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qgi) (&3, t,€) are needed to eliminate the inconsistencies that arise, when the operator acts on the upper solution.
Let us define them from the following problems:
82 q(i) o (£)

JE] B o9} ~(£) h
o2 +D$ﬁ76£ﬂ 2A(&p, )0 (&, 1)

- (Au(fﬁa t) ('E(i)(537 1‘5))2 + fu(gﬁvt))qgi) - qf(i)(§57t7€) =0,

g5 (0, t,e) + =0, ¢5” (£o0,t,¢) =0, (26)

~ - 2 ~ —
where ¢ f ) (&, 1,€) = p(Au(&s, 1) (1) (&5, 25))” + Ful8s,t) — i) (25)).
Explicit expressions for these functions can be obtained

o) (5’ $5)

(£) - _ AN-had 72

&8 n

—(Dzg)n
~(&) ¢ (%) (Dzg)o, (&) ()
to (fﬁjmﬁ)/(@(i)(ﬁ,xﬁ))Qp(i)(n,lﬂg) /’U (o,2p5)e p T (o,z5)qf " (0,t,€) dodn. (27)
0 +o0

The functions ¢(*) (&3, t, £) have exponential estimates [16].
We can simplify expressions (27) as follows:

+
q,((g )(fﬁatag) =
$p U]

—(Dzg)n
ES) ~(+£) € ~(+) (Dzg)o, (£)
=—p—pufy ()0 (€, @ / - /v o,25)e\ "8 p\E) (g, 25) do dn.
( 6) ( ’ B) 0 (’U(i)(nwxﬁ))QF(i) (77»35/3) ( ﬁ) ( B)

Using a similar algorithm, we construct the lower solution. Set the function
To(t,e) = X1 (t) +"T16(2),

where §(t) is the same function as in the construction of the upper solution.
Let’s construct the lower solution of the problem in each of the regions ﬁ&_) s (x,t) € [—1,24(t )] x [0,T]
and D\ (2,t) € [xa(t,e), 1] x [0, T]:

)

Oa.te), (a,1)eD
@ x,1,€), x, o
O[(ZC, t7 E) = (+) *(*f’

a'H(z,te), (x,t)e D, .

We will merge the functions a(~)(z,t,¢) and o(*)(, t, ) at the point x,(t, €) in such a way that the equality
is satisfied

o (xa(t,e), t,e) = o P (za(t o), t,e) = ¢O (za(t,€)).

Note that the function «(z, t, ) is not smooth. Let us introduce a stretched variable

€. = x—xa(t,s)'

g
Let us construct the functions a(+) (z,t,e) as modifications of the formal asymptotics (19):
o (,t,) = UL len — "+ 457 (Earty ) + "R (7)),
(z,t) € DS, 60 < 0,77 > 0;
o (z,t,6) = U le, — " (1 + 457 (ar t,2)) + 2" RED (),
(z,t) € DY, &0 > 0,7 <0,
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Here ;o > 0 is the same value as in the expression for the upper solution, and q((xi) (€a, t,€) are determined from
problems (26), in which the stretched variable &g is replaced by &, and g is replaced by z,.

Let us make sure that the constructed functions «(x, t, £) and B(x, t, ) satisfy the differential inequalities (20)—
(25). The ordering condition (20) can be checked similarly as it was done in [2].

Letusshow that inequality (21) holds. From the way of constructing the upper and lower solutions the following
equations follow

L[a®)] = e ) (wg)u+ OE™2), L[] = e [9) (wg)u + O

The inequalities near the boundary (22) are fulfilled due to a standard modification of the boundary-layer
functions [16] (their verification is not intended for this paper).
Let’s check the jump condition of the derivative (24)

9B
c ox

where

9B
oz

’5(0, ZL’())

. ) _ et 1 (L(xo)‘éf — L(wo)W' (20 (t))8(t) + F(xo)) +O(e"?),

=g

0 +
F(zo) = p [fl(bi)@co)/i p(o, x0)0(o, mo)e(DxU)"do] ,

“+oo
L) = / 32 (€, 20)e PP (€, wo)dE > 0.

— 0o

Here, the index at the functions 9(&, o), p(&, zo) is omitted due to their smoothness at £ = 0.
Let’s define the function §(¢) as a solution to the problem

La0) % — Lao) W (zo(1)(1) + Flw) = 5, 5(0) = by,

where o is a sufficiently large positive value and dp > 0. In this case, the solution to the problem §(¢) is a positive

function. Thus,
ap) IR
€ ="t 4 0>"?).
< =3 U(Ov J)o) ( )

ox
The expression in the right-hand side is negative due to o > 0. With the same choice of function 6 (¢), the derivative
jump inequality will be satisfied for the lower solution «(z, ¢, £). The theorem is proved.

9B
oz

T=Tg

5. EXAMPLE

Consider the initial boundary value problem

922 "ot \ox

5282u E@u 5 ((Ou
Ox? ot

>2 TR <; B e“) (1—6O(z)—e™), we(-1,1),te (0,T],

ou ou
—(—1,¢t = —(1,¢ = t T
81'( ) 75) 07 8$( ) 75) 07 S [07 ]7

u(z,0,¢) = upit(x, ), x€[-1,1].

We will assume that for all z € [—1,1], the inequality 1/4 < ¢(®)(x) < 1/2 is satisfied. The members of the
regular part of zero order are easily determined:

a7 () =0, a{”(z)=1In2.

The problem for the function @(, o) has the following form:

0% o (0u\® o (1 ;
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@(0,z0) = —In(1 — ¢V (x0)), @(—00,z0) =0, a(c0,x0)=In2. (28)
By replacing (£, z¢) := z(a(€, x0)) = 1 — e~ ™&20) the problem (28) is transformed to the form
0%z 0z 1 0 1
ng + VVa—g =z (z - 2> (z —@”(z0)), z(—00,20)=0, z(c0,z9)= 5 (29)

The solution of problem (29) is determined by the formula

" (“ <¢><io> ‘2> e"p{‘zf/i})_l'

Making the inverse substitution, we obtain the expression for the solution of the original problem (28):

u(€,zp) = —In <1 — <2+ (fb(io) —2) exp{—%%})j )

The initial problem for determining the front position in the zero approximation has the form

dzo _ V2 <¢(0)(960) - i) » 20(0) = Zoo- (30)

dt
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Abstract. In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum of
an orthogonal series. When justifying the convergence of a series, the problem of small denominators from
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1. INTRODUCTION. PROBLEM STATEMENT

Consider the wave equation
Lu = upy — a®(Ugy + 1yy) —bu=0 )

in the cylinder Q = {(z,y,t) : (z,y) € D,0 <t < T}, where D = {(z,y) : 22 + 4> < ?};a > 0,b, T > 0 and
[ > 0 are given real constants, and we set the first boundary value problem.
It is required to find the function u(zx, y, t), satisfying the following conditions:

u(z,y,t) € CHQ) N C*(Q); )

Lu(z,y,t) =0, (z,y,t) € Q; (3)

W@, Y, ) |p2 2=z =0, 0<t<Th 4)

w(z,y,0) = 1(z,y), u(z,y,T)=v(z,y), (r,y) €D, ®)

where 7(x,y) and ¢(z,y) are given sufficiently smooth functions satisfying the matching conditions with the
boundary condition (4).

It is known that the Dirichlet problem for hyperbolic type equations is incorrectly posed. S L. Sobolev showed
[1], that the study of unstable oscillations (resonances of oscillations in the liquid inside thin-walled rocket tanks
with natural oscillations) is closely related to the Dirichlet problem for the wave equation. In a better known form,
this connection isshown inthe book by V. I. Arnold [2, p. 132]. Arather complete review of the works devoted to the
study of the Dirichlet problem for hyperbolic equations is given in the monograph by B. I. Ptashnik [3, pp. 89—95]
and in the works [4; 5, pp. 112—118] by the author.

The works of R. Denchev [6—8] are devoted to the study of the Dirichlet problem for equation (1) at b = 0,
a = 1 with a non-zero right part and homogeneous conditions on the boundary of the region €2, when € is an
ellipsoid, a cylinder with formations parallel to the axis ¢, and a parallelepiped. They also establish the criterion of
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singularity and existence of the solution of the problem in the Sobolev space W (2) under certain conditions on
the right part related to the convergence of numerical series, while the arising small denominators are not studied.

In [9], fora multidimensional equation with a wave operator in the cylindrical domain D x (0, T'), the conditions
VAT # mm, where k,m € N, under which the uniqueness theorem of the solution of the Dirichlet problem takes
place, were found. Here, )\, are the eigenvalues of the corresponding spectral problem in the domain D.

In the monograph by B. 1. Ptashnik [3, pp. 95—101], the Dirichlet problem in (p + 1)-dimensional paral-
lelepiped Q = [0,7] x II, where Il = {z € R? : 0 <z, < m,7 = 1, p}, for a strictly hyperbolic equation of even
order 2n with constant coefficients is also studied. The solution of the problem is determined by p-dimensional
Fourier series. A criterion for the uniqueness of the solution in C?"(Q) is established. For a series of inequalities
expressing the evaluation of small denominators with the corresponding asymptotics, the justification of conver-
gence of the series in the specified class is given. It is not shown for what numbers of the form 7 /7" these estimates
take place, only it is noted that the set of numbers 7/T, for which they are not fulfilled, is the set of zero Lebesgue
measure.

In the paper by V. P. Bursky [10], a necessary and sufficient condition for the trivial solvability of the homoge-
neous Dirichlet problem in a unit ball B centered at the origin of coordinates in space C2(B) for an equation with
complex is obtained:

Uggy + Uyy — a2u22 =0.

Inthe works of S. A. Aldashev [11—14], the Dirichlet problem and the problem with mixed boundary conditions
in the cylindrical domain @) (where [ = 1, T' = «) for multidimensional hyperbolic equations with a wave operator
are studied; the solutions of the problems are constructed as a sum of Fourier series in the spherical coordinate
system. But because of the arising small denominators, one cannot assume that these series converge in the space
C1(Q) N C*(Q). When proving the singularity theorems, questions also arise about the uniform convergence of
the series used, since they contain small denominators.

In this paper, in the class of regular solutions of equation (1), i.e., satisfying conditions (2) and (3), the criterion
of uniqueness of the solution of problem (2)—(5) is established and the solution itself is constructed in explicit form
— sums of Fourier series. When justifying the convergence of the series, the problem of small denominators arose,
as in the well-known works of V. 1. Arnold [15, 16] and V. V. Kozlov [17], but from two natural arguments. In this
connection, we establish estimates of the separability from zero of small denominators, on the basis of which we
prove the convergence of the series in the class of functions C(Q) under some conditions concerning the functions
7(x,y) and ¥ (x, y) and also obtain estimates of the stability of the solution.

2. UNIQUENESS CRITERION FOR THE SOLUTION OF THE DIRICHLET
PROBLEM

In the cylindrical coordinate system = = rcosy, y = rsinp, t =t,0 < r <1,0 < ¢ < 2w, equation (1) will

take the following form

1 b 1 6
Upy + ;ur + ﬁutpcp + ?u = aizutt- ( )

Dividing the variables u(r, ¢, t) = v(r,¢)T'(t) in equation (6), we obtain the following spectral problem with
respect to the function v(r, ¢):

1 1
Uy + ;vr + 7“72%@ + M\ =0, (7)
v(l, @) =0, (8)

[v(0, )| < 400, v(r,¢) =v(r,p + 2m), )

where \? = a% + p?, pu is the variable separation constant.
The solution of the problem (7)—(9) is similar [18, p. 215]: we will look for in the form of v(r, ) = R(r)®(p)
and obtain two one-dimensional spectral problems:
() +p*®(p) =0, 0<p<2m, (10)

D(p) = (p+21), @'(p) = P'(p+ 27); (11)
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2
R'(r) + %R’(r) + (v - fz) R(r)=0, 0<r<l, (12)

IR(0)| < +00, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula
P, () = an cos(ne) + by sin(ne),

where a,,, b, are arbitrary constants, n = 0,1, 2, ... At p = n, the general solution of equation (12) has the form
R, (r) = cpdn(Ar) + dp, Yo, (Ar),

here ¢, and d,, are arbitrary constants, .J,,(Ar) and Y;,(\r) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that d,, = 0, and the second condition gives the equation

that, as it is known, has a countable set of positive roots ¢,.,, n = 0,1,2,..., m = 1,2,..., and eigenvalues
corresponding to them

Anm — Q’rwn m = 1 2

, 2,..., n=0,1,2,...,
l n

and eigenfunctions

R () = Jp i) = Jn (q’”” 7‘)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

D, (p) = {\/12?, % cos(ny), % sin(mp)} , (14)

orthonormalized, complete and forming a basis in the space L2 (0, 27), and the spectral problem (12), (13) — a

system of eigenfunctions

_ Q) V2 TaQumr)
||Jn()‘an)I|L2(07l) l ‘Jn—&-l(qnm) ’

Ry (1) (15)

complete and an orthonormalized basis in Ly (0, [) with weight r.

Then, the spectral problem (7)—(9) has eigenvalues A2, = a% +p2,, = ("”l'm )2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

V(7 0) = {\/lz?Ro,n(r), %an(r) cos(np), %an(r) sin(mp)} , (16)

that is complete and forms an orthonormalized basis in the space Lo(D) with weight 7.
Further, we will assume that b > 0, because if b < 0, then, starting from some numbers n > ng or m > mg,
the right part of A2, = a% + u2,,, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, ¢, t) be the solution of problem (2)—(5). Based on the system (16) we introduce the functions

Aom(t) = \/% //D u(r, o, t) Rom (r)r dr dyp, (17)
Aunlt) = = [ a0 R costungr ar . (1)
B (t) = \% //D w(r, @, t) Ry (1) sin(ne)r dr dep. (19)

Differentiating equality (18) by ¢ twice and considering equation (6), we obtain
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1
A1) = = [ [ o) o) costngyrar o =
D
2 1 1
= 737? // (urr + ~ur + 7121@,(/,) Ry (1) cos(ng)rdrde + bAp,(t) = J1 + Jo + bAnm (1), (20)
D

where

a? 1 a? [ !
J = — // (uw + u7-> Ry (1) cos(np)r drdp = —/ cos(n / Ty )t Ry (r) dr dep, (21)
=s . (r) cos(ny) =7 (w)o() (r)drde

a? 1 a? (1 2
Jy = ﬁ //D ;quan(r) cos(ny) drdp = ﬁ/o ;an(r)/o Ugy COS(np) dp dr. (22)

Let us calculate the internal integrals in the right-hand sides of the equalities (21) and (22):

! I 1 !
/ (rug ) Ry (r) dr = ruarm(r)’O — / ur Ry, (r) dr = —/ ur R (r) dr =
0 0 0

. 1 l 1
= a0, + [ w0 dr = =3, [ B4 [t g,
0 0 0

27 27
/ Uy COS(Np) dp = —n? / ucos(ny) dp.
0 0
Substituting these values in (21) and (22), and then (21) and (22) into equality (20), we obtain
AL (8) + 0 p A (£) = 0. (23)
The general solution of equation (23) is determined by the formula

Apm () = apm €OS(aftnmt) + bpm sin(afinmt), (24)

where a.,,, and b,,,,, are arbitrary constants. For their determination we will use the boundary conditions (5):

Apm(0) = % //D w(r, @, 0) Ry (1) cos(np)r dr dp = % //D 7(r, ©) Ry (1) cos(n)r dr do =: Trm, (25)

A (T) = % //D w(r, @, T) Rypm () cos(np)r dr dp = % //D (1, @) Rym (1) cos(no)r dr dp =: .

(26)
Subordinating the general solution (24) to the boundary conditions (25) and (26), we find
1
nm = Tnm; bnm = 7\ Unm — Tnm an
a T, s (¢ Trm COS(ap )
provided that
A (T) = sin(apin,, T) #0 atall n,m € N. (27)
e in(ajt (T~ 1) in(ap1n1)
SIN(Afbnm - SIN(afbnm
)= sin(apinmT) v sin(apinmT) (28)
Having differentiated equality (19) twice by ¢ taking into account equation (6), we obtain
From here (by analogy with the function A,,,,(¢)), we will find under condition (27)
_sin(apnm (T —t)) - sin(apnmt)
Bnm t) = 7 nm .7 0 29
(*) sin(aptnmT) +9 sin(aptnmT) (29)
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where )
Frm = ﬁ //D T(1, ©) Ry () sin(ne)r dr dep, (30)
Yrm = % //D (1, ) Ry (1) sin(np)r dr dep. 31

Now let us differentiate equality (17) twice by ¢ and, similarly, on the basis of equation (6) we obtain that the
function Ay,,(t) is a solution of the differential equation

From here (by analogy with the function 4,,,,,(t)), we find

sin(apom (T —t)) sin(apomt)
A n = Tom . m T 32
om(t) =10 sin(apomT) O sin(apomT) (32)
provided sin(uo,,T") # 0 for all m € N, where
1
Tom = \/—2? //D 7(r, ©) Rom (r)r dr dep, (33)
1
Vnm = \/7277'(' //D d)("”; QD)ROm(’I")T' dr d(p. (34)

Now let us prove the uniqueness of the solution of problem (2)—(5). Let 7(x, y) = ¢(z,y) = 0 and conditions
(27) be satisfied for all m € Nandn € No = NU {0}. Then, by virtue of equations (25), (26), (30), (31), (33)

and (34) all 7., = 0, Tromn = 0, Yy = 0, Yy, = 0,atn = 0,1,2,..., m = 1,2,... Hence and on the basis of
formulas (32), (29), (28) and (17)—(19) we have the following equations

//D u(r, @, t) Rpm (1) cos(ng)r dr dy = 0, //D u(r, @, t) Ry (1) sin(ne)r drdp =0

atalln = 0,1,2,...,m = 1,2,...,t € [0,T]. From these equalities, based on the completeness of the system
of functions (16) in the space Ly (D) with weight r, it follows that u(r, o, ) = 0 is almost everywhere in D at any
t € [0, T)]. Since by virtue of (2) the function u(r, ¢, t) is continuous in @, then u(r, ¢, t) = 0in Q.

Suppose for some n = ng orm = mg the expression A, (T) = 0or A, (T') = 0. For definiteness, suppose
that A,,,,,,(T") = 0. Then the homogeneous problem (2)—(5) (7(x, y) = ¢ (z,y) = 0) has a nonzero solution

Ungm (T, @, t) = Sin(afingmt) (@omRom (1) + @ngm Rngm (1) €08(10@) + bngm Rngm () sin(nep)) , (35)

where agy,, @nym and by, are arbitrary constants.
Consider the zeros of the expression A,,,,,(T"). Equality

Ap(T) = sin(apnm,T) =0
only takes place when
wk

b
a:unm

So, A, (T) goes to zero when 7' is determined by formula (36).

Thus, the criterion of uniqueness of the solution of problem (2)—(5) is established.

Theorem 1. [fthere exists a solution of problem (2)—(5), then it is singular if and only if conditions (27) are satisfied
at all n and m.

T =

k e N. (36)
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3. EXISTENCE OF A SOLUTION TO THE PROBLEM

If the conditions (27) are satisfied, the solution of the problem (2)—(5) is defined by the sum of the series
u(r, @, t) \/7 Z Ao (t) Rom (7 Z Z nm (t) €08(nw) + Bpm () sin(ng)) Rym (), (37)

where the coefficients Ag,,, (t), Anm (L), and By, (t) are found by formulas (32), (28) and (29), respectively. Since
A, (T) is the denominator of the coefficients of the series (37) and, as shown above, equation sin(agi,,,7") = 0 has
a countable set of zeros (36), the problem of small denominators arises. In this regard, estimates about separability
from zero should be established. For simplicity, in what follows we assume that b = 0. The expression A,,,,,(T) at
b = 0 is represented in the following form:

Apm (V) = sin(vgnm ), v = ?. (38)

Lemma 1. [f one of the following conditions is met:
1) the number v /2 = p is natural and odd;

2) the number v/2 = p/q is fractional-rational and the relation (2r — p)/(2q) is not an integer where r € Ny and
0<r<yg,

then there exist positive constants Coy and mq (mqg € N) such that for all m > my the evaluation is valid.
[Apm (V)| > Co > 0. (39)

Proof. For zeros g, of the Bessel function J,,(¢) at large values m > mg, where my is a sufficiently large
natural number, the asymptotic formula [19, p. 241] is valid.

qnm:g(2m+n—1/2)+O((4m+2n—1)_1). (40)
Substitution (40) into (38) gives
Apm(v) = sin (I%T(%n tn— 1/2)) +O ((4m+2m—1)71), (41)
since
sinO (4m+2n—1)"") = O (Am+2n—1)""), cosO(dm+2n—1)"") =1+ 0 ((4m+2n—-1)"")

at large m > my.
Let the number v/2 = p € N odd. Then, from equality (41) for all m > mg and n € Ny we obtain

|Apm (V)| > ‘Sin (ﬂ'p(Zm—Fn) — %)‘ — |0 (4m +2n—1)71)| =
‘Sm*"p (4m+2n—1)"")|=1-|0(4m+2n—1)" )|>} )
by virtue of
0 ((4m +2n —1)7" }<Cl<%
at large m.

Letv/2 = p/q, p,q € N, (p,q) = 1, p/q ¢ N. In this case, let us divide p(2m + n) by ¢ with remainder:
p(2m+n) =gs+r, s,r € Ny, 0 <r < ¢. Then the relation (41) will take the form

Ay (V) = sin (sw + % - ) +0 ((4m+2n—1)"1) = (~1)"sin <W2r —p

% >+O((4m—|—2n—1)_).
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If r = 0, then we have case 1) of the lemma. Then 1 < r < ¢ — 1. Hence (since the relation (2 — p)/(2¢) is not
an integer) it follows that

A ()] > sin(wQTqu>‘ 0 ((4m +2n— 1) 1)| >

2 —
sm< qu>‘clzc2cl>o, (43)
where

Cy= min |sin(m(2r —p)/2q)|.
1<r<q—1
Then, from (42) and (43) under the condition C; < Cs, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for all m > mg, n € Ny and any t € [0,T] the

following estimates are valid
| A ()] < My ([Tl + [Ynml), (44)
|Bum (1)) < M ([T + [thra]) (45)
A (O] < Maptnn (1T + [Wnml)s B (0] € Mattn ([Fam| + [thnm])

\Aiim(t)\ < MSNim(|Tnm| + anl)v ‘Bgm(t)l < M3M$Lm<|;nm| + |¢nm|)>

hereafter M, are positive constants depending on T, a and .
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

U = \ﬁ S A () Ron(r Z (AL, () cos(np) + Bl () sin(ng)) R (1),
m=1 n: m=1
1 o= :
Upy = T Z Z n? (Anm (t) €os(np) + Brum () sin(ng) ) Rum (1),
n=1m=1
1 oo
Upp = —— Y Aom(t)Rf Z Z ) co8(n) + By (t) sin(ng)) Ro,,, (1),
2 m=1 n 1m=1
which at any (r, ¢, t) € Q are majorized respectively by numerical series
4AMs i )
e /’LOm(lTOm‘ + |w0m‘)|ROm(r)| +
V2T sl
\F Z Z Unm |Tnm| + |wnm| + ‘Tnm| + W}nm|)|an( )| (46)
n=1m>mg
Z Z ‘Tnm| + W’nm| + ‘TnM| + W)nmman( )| (47)
n 1 m>mo
M o0
e O (ol [om|) B (r)] +
m>mg
IZ Z (17| + [ + Famal + S|} [ Ry (r)]- (48)

n=1m>mo

Lemma 3. Let 0 < ro < r <[, where rq is a small positive fixed constant. Then at m > mg and any fixed n € Ny
there are the following estimates

‘an(r” S M4a (49)
| Ry ()] < M i, (50)
Ry, (1) < Mg, (1)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



48 SABITOV

Proof. Based on the asymptotic formula for the Bessel function of the first kind J,,(z) at large values of the

argument z [20, p. 98]
\/7 COS (Z — Vi — I) — iSln (Z — ﬂ — E) + 0(275/2) (52)
mZ 2 4 2z 2 4

2 1 2
)] </ (1+ 50— ) =2 (53)
’/TTO/an 2T0Nnm 7T7'0[an

as 1(2rofinm) < 1 at large m.
Similarly, we obtain the estimates

2
st = )] < 20/ 2 (54)

from which follows the estimation (49).
Now find the derivative

we have

V2
R, (1) = ———piamd}(2), 2= pnmr (55)
( ) Z‘Jn—s—l(Qnm)‘ ( )
Using the equality
1
Ju(2) = 5lv-1(2) = S (2)] (56)

and formula (52), we obtain the asymptotic formula for J/, (z) at large z

I (2) = ;\/z [COS (Z— (n;l)w_ Z) — cos (z— (n—Qi—l)W_ Z)] +0(z73/?) =
= \/Zcos (z — % + %) + 0(2—3/2)’

on the basis of which, similarly to estimates (53) and (54), we find

2

|3, (b )| < 2 - (57)
TTroMnm
Then from equality (55) by virtue of estimates (57) and (54), follows estimate (50).
From (12) we calculate the second derivative
" 1 ! n2 2
Hence, taking into account estimates (53) and (57), we have
n>_ [ 2 2
|5 ()| < *2 22 Jr/u?zzmQ .
TTo lnm o TTo Mnm TToMnm
From this inequality, by virtue of (54), we verify the validity of the estimate (51).
Lemma 4. Let 0 < ro < r <. Then for large n and any fixed m € N, the following estimates are valid
| Ry (1) < M7, (59)
|R (r)] < Msn, (60)
| Ry ()| < Mgn?. (61)

Proof. To obtain these estimates, let us use Langer’s asymptotic formula at large values of order p of the Bessel
function [20, p. 103]

t
e g”K1/3< ) +0(p~/3), (62)

1
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where

2
t
w=14/1- <) , t<p, z=pArthw —w),
p
K 3(z) — McDonald’s function.
Using a power series expansion of the function

wdowWh W'

tgw=w— — 4 — — 4.
arctgw = w 3—|—5 7+ )

evaluate the expression

w? 3 arctgw  w?
—(1-Zw?) <1 <
3( 5“) w 3

Hence at 0 < w < 1 we have

2 < (1 arctg w 1/2<i
15% w /3

Then from the formula (62), taking into account the estimation (63), we obtain

1,(1)] < %Kl/?,(zx

2w
|Jp(t)| > B;Ku:s(z)-
Now on the basis of estimates (64) and (65) we have

w
T (finmr)] < ==K 3(21),

7r\/§
2 w
| T (Grm )| > B?QKl/?)(ZQ)a
where
dnmT 2
wy =+4/1— ( ] ) , 21 =n(Arthw; — wq),
n

2
qn?n
=4/1— = (n+1)(Arthws — .
wo (n 1), 29 = (n )( wWo — ws)

From inequalities (66) and (67), estimate (59) follows, since w; & w» at large n.
Based on formulas (55) and (56), we estimate the derivative R}, (r):

Gnm
[ Ry ()] < V§phh+1@nm”OJﬁfﬂunmrﬂ+¢Jh+dunmfﬂ)

Hence, taking into account estimates (66) and (67), we obtain (60).

(63)

(64)

(65)

(66)

(67)

By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function R,,,,(r) and its derivatives R/, (), R (r), starting from some number n,
tend to zero at r — 0. Therefore, in Lemmas 3 and 4 the estimates (49)—(51) and (59)—(61) are obtained at

r>rg > 0.
By virtue of lemmas 3 and 4, rows (46)—(48) are majorized by the combination of rows

o0 (o] o0
Mo > m*(froml + [om)): Mix Y D 02 (|7om| + [Yoml),
m>mgo n=1m>mg

o0 o0
My Z Z Him(‘Tnm| + W}nm| + ‘%nm| + W}an

n=1m>mqg
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Let us denote by C*4(D) the set of functions f(r, ), that have continuous mixed derivatives on r and ¢ up to
and including fourth order in the closed region D.

Lemma 5. Let 7(r, @), ¥(r, ) € C**(D), and 7 (r,0) = 709 (r, 27), i = 0,3, 7#(0,9) = 0, k = 0, 3,
YO (r,0) = O (. 27), i = 0,3, p*ED(0,0) = 0, k = 0,3. Then the coefficients of Tom, Trnm, Ynms Ynm at
[, — +00 have estimates of

1 - 1 1 - 1
T"m_o(nu%m)’ Tm_O(wiﬁm)’ w"m_0<nu%m)’ w"m_0<n/¢%m)'

Proof. Consider the coefficients 7., , ¥nm, Tnm, and zﬁnm defined by formulas (25), (26), (30), and (31), re-
spectively. Let us represent 7,,,,, in the following form:

1 l
Trm = ﬁ/o Ry (torm ) L ()7 dr, (69)

where )
I(r) = / 7(r, @) cos(ny) de.
0

By the condition 7/,(r,0) = 7/,(r,27) and 7(r,0) = 7.’(r,27), then the integral /(r) can be transformed by

%]
fourfold integration by parts into the form

1

27
I(r) = ﬁ/o 7';4) (r, ) cos(np) dp. (70)

Now let us write the integral (69), taking into account the representation (70), as

\/§ /27‘1’
Tnm = J () cos(ny) dy, (71)
Wl i@l Jy 79V e0sne) b2
where l
J(‘P) = / TLEJ4) (Tv @)Jn (:U'nmr)r dr. (72)
0
Note that the function X,,(r) = r="J,,(§), £ = unmr is a solution of the differential equation
2 1
XU(r) + XL () 4 2 X (1) = 0. (73)

Then the integral (72), taking into account equation (73), is transformed as follows:

l
J(p) = / 7—4574) (r, ‘P)Xn(T)Tn+1 dr =
0

1 /[ 2n+1
G [;ﬂﬁwwm[X£v>+ PEEXG ()| dr =
1 l
= o / Té4) (r, ) [P T X (1) + nr™ X ()] dr =
. Jo
71”” : 2.4 1
o [ 8 e ) dr-
1 l
— 72 / T7§71¢4) (r, p)r" X, (r) dr+
nm J0
n2 [l
e R T
1 1 n?
= T2 Ji— 112 J2 + 112 I3, (74)
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where

T(2 4)(T ©)r n+1Xn( ) dr,

=~
I

71(r, go)r"+1Xn(r) dr,

e
I
c\::\Lc\

Jz = To(r, go)r"“Xn(r) dr,
(1,4) (0,4)
Tr, r,e Tr r,e
nrg) = A gy - T (),

Similarly to the integral J(p) by formula (74), we transform the integrals J;, i = 1, 2:

1 1 n?
Ji = ———Jin — —5—Jin + ——Jis,
Ham, nm nm
where
; !
Tu= [ o Xy dr = [ 700 i,
o 0
D= [ AN dr = / 708 (00 5 )i,
0 0 "
Tr, T,
:/0 (24 T X (r )dr:/o %‘L@(l‘nmr)rdr7

! !
Ja1 —/ 7 (r, )" T X, (r) dr :/ 710 (7 @) T (o )7 i,
0 0

l L
JQQZ/ T1,.(r )" X (1) dr:/ MJn(unmr)rdr,
0 0

r

l l
Jog = / 71 (r, )" X, (r) dr = / I (T; 2 In ()T dr.
0 0 r
We transform the integral .J3 as follows:
I
G / (O 4)(T @)r 1Jn(ﬂ'nmr) dr =
0

I
:/ (0 4)(7“ O)r "2 LT () dir =
0

l

1 ! —_n— n
- L / d {T ? (0 4 (T 90):| +1Jn+1(/‘nmr) dr =
0 nm

1 l
- - / T7(>,1¢4) (T7 @)TﬁlJn—Q—l (}anr) dr +
0

== Tﬁa) Jn+1 (,unmr)

n+2

/ O (1 )2 1 ()

Hnm Hnm
1 n—+ 2
= - Ja1 + m J32.

After substituting (75) and (76) into equality (74), we obtain

1 2 2 2 2
(Jin + Jiz + Jo1 + Jao) — " o nn+2)

nm nm nm nm

J(p) =
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(Jis + J23) = —5—Js1 + — 35— Js2.

(75)

(76)

(77)
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If’ﬂg% )( ¢) € C*0,1] and T(k % (0,¢) =0, k = 0, 3, then the representations are fair

(4,4) 4

(O 4)(7“ p) = Tr,p (40'7410)7’ . 0<f<r
(4,4) 3

71D (1, ) = Tre (39|7<P)T ’
(4,4) 2

(2 4)(r p) = Tre (29'#/))7’ ’

T8 () = 750 (0, 9)r
By virtue of this in the integrals J3; and .J3o, the functions 7-75 ) )( roQ)r are continuously
differentiable on [0, {], so on this interval they have complete bounded variation, i.e., finite variation. Taking into
account the theorem from [21, p. 653], the integrals J3; and J3s at fi,,, — oo have the following evaluation

o) =5/2, 7.7§,1¢4)< —3/2

Ts1 = O(pol®)s Jza = Ol (78)

In the integrals Jy;, ¢ = 1,2, 3, the integrand functions T'r(‘if) (r, ), & v )(r w)r— ', and 77(.,%;4) (r,p)r—= are

continuous on the segment [0, []. Then by virtue of Young’s theorem [21, p. 654], these integrals at fpm — 00
have the following evaluation

2

Jii = Ot %) (79)
Now consider the integrals Jo;, i = 1,2, 3. In them, the functions 71,.(r, ¢), 1,.(r, ¢)r ! and 71,-(r, p)r =2 are
also continuous on the segment [0, {], so the estimates are valid
J2i = Ol ®)s pinm — o0. (80)
Then from the representation (71), taking into account equality (77) and estimates (78)—(80), we obtain
1
Tom = O < 7 > .
Tyym
Similarly, from formulas (26), (30), and (31), the rest of the estimates follow. The lemma is proved.
Numerical series (68), by virtue of formula (40), are majorized by convergent series, respectively
=1
M —, M M .
13 ) o DI Frop 5 4m+2n g
m>mgo n= 1m>m0 n=1m>mg
If for the numbers v from lemma 1, for some m = mq, ma, ..., ms < mg, Wwhere 1 < mq < mog < -+ < my,

Apm,; (v) = 0, then it is necessary and sufficient for the solvability of problem (2)—(5) that the conditions are
satisfied

Tnm; = @[]nml = 07 7~—nm1 = &nml = 07 1= 17 S. (81)
In this case, the solution of the problem (2)—(5) is defined as a sum of series:
1 mi—1 mo—1 mes—1 o
ul(r pt) = 7= S+ Y o+ Y+ D> | Aw(Rom(r) +
™ m=1 m=mi+1 m=mgs_1+1 m=ms+1
1 e’ mi—1 mo—1 ms—1 fe'e)
23 DICID MIEIEED DD Dl B
n=1 m=1 m=m1+1 m=ms_1+1 m=ms+1
X (Apm (t) cos(ng) + B (t) sin(ne)) Rym (1) +
+ Z Cnmlunml (Tv ©, t)a (82)

i=1
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here w,,m,, (r, ¢, t) are determined by formula (35), where mq should be replaced by m;, C,,,,, are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved

Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if A,.,,(v) # 0 at all m = 1, myg, then problem
(2)—(5) is uniquely solvable, and this solution is defined by row (37); if Ay, (v) = 0 at some m = my,ma,...,mg <

my, then problem (2)—(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).
Note that the fulfillment of the condition A,,,,,(v) # 0 at m = 1, m can be achieved if v # 7k /gy, (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

[w(r, 0, )L, (D) = // t)rdrde,

Ju(r,0 Do) = max futro,0),

1722 (o // 132 )P dr d,

192 (r, )12 5 = max. 1932 (r, )]

Theorem 3. Let the conditions of Theorem 2 and A,,,,,(v) # 0 be satisfied at m = 1, mq. Then for the solution (37)
of the problem (2)—(5), the following estimates are valid

lu(r, o, ) o(py < Mis(I7(r, ©) Loy + 1901, ©) | Lo(D))s (83)
lu(r, o, Dl e < Mir(ImC2 (r o)l ey + 1922 (r o)l e m)- (84)

P

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space Lo (D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

HU(T @t ||L2(D) Z A Z Anm +B72Lm( ) =

n,m=1

< oM2M? lz (17oml® + 1oml?) + 3= (ol + Fural? + [ml® + |Jnm2)] =

m=1 n,m=1

= 2M7 ME (|7 (r, )L 0y + [0 (r ) L))

Hence we obtain the estimate (83).
Let (7, ¢, t) be an arbitrary point Q. Then from formula (37), taking into account estimates (44), (45) and (49),
we have

u(r, ¢, )] < My My lZ(ImmeOmH > (Irnm+|wnm+lfnm+|zﬁnml>]- (85)
m=1 n,m=1

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient 7,,,,, as

\/i /27r
Tnm — — J cos(n d )
VT g1 (@nm)|n? Jo (¢) cos(nyp) dp
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where
l
1
‘](90) - /O T7(-2$2) (’I“, @)th(ﬂnmr)r dr = _T(J{ + Jé - 77‘2'];));
l
K= [ 78200 I e
0
1 (1,2)
Jﬁ :/ Mjn(/ian)T dr,
0 T
1,(0,2)
Ji = / Tre \LY) rgr’ ?) In ()7 dr.
0

Ifﬂggf) (r, ) e C?[0,1] and T(O 2) (0,9) = 7(1:2)(0, ) = 0, then the functions T7(-71¢2)(7“, o)l = 77(72902)(9, ®),
© 2)( Lp) = 722 @ (9 ©)/2,0 < 6 < r are continuous on the segment [0, /], then

Tryp
Mg
‘Tnm| < | ’r(L%;LQ)L
where
= =/ / (2:2) (1, 0) cO8(1p) R (1) dr i, (86)
Similarly, we obtain the estimates
[Fom| < M“‘l |
ﬁgi’f) = \f// (r, ) sin(ne) Ry (r)r dr dep, (87)
Mg 2,2
Wnm| < S0 &2,
/’l"llm
~ M-
[aml < 25 19552,

where 111(2 2) and ¢(2 %) are defined according to formulas (86) and (87), but with the replacement of 7(r, ) with
Y(r, ).

Now, continuing the estimation (85), we have

=1 2,2 2,2 = ~
u(r, o, 1) < Mg | Y —— (5221 + w2+ Y <\ @2 4722 4 [p@2 | + |92 -
m=1 /’[’Om n,m=1

Hence, using Bunyakovsky’s inequality, we obtain

I 1/2 oS 1/2 1/2
|u<w,t>|<Mzo{(Zi> KZ%&”P) +<Zw<“> +
m=1 Hom m=1 m=1
o 1/2 IS 1/2 oS 1/2
(2 ) |3 e rsem) o« (2 3 qespraan) |} <

1/2 . 1/2
ngKZ é“>|> +( > <r£%;2>|2+|%£%2>|2)> +

n,m=1
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(Zw(“) >/+<fj (052 P + 052 P ))UT <

m=1 ,m=1

oo 1/2
§M21\/§l(z (,2”2 + Z | (22)|2+7~'7(3,;2)|2)> +

m=1 n,m=1

i 1/2
(ZW“N > (|¢§?>2>|2+|w<22|)> ]

m=1 n,m=1

= V2Ma1 (|72 (1, 0) ooy + 92 (1, 9| () < Moz (IIr®2 (r,0)ll oy + 1932 (r,9) | o))

From the last inequality, the estimate (84) follows directly.
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Abstract. For a nonlinear partial differential equation of Sobolev type, generalizing the equation of oscillations
of'a hollow flexible rod, the Cauchy problem is studied in the space of continuous functions defined on the entire
numerical axis and for which there are limits at infinity. The conditions for the existence of a global classical
solution and the blow-up of the solution to the Cauchy problem on a finite time interval are considered.
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1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

5utt — Uty — Q2Utzy — Q1Uty + BQurzzx + Blurz + Tu = uxatf/(uz)a (1)

where (t,7) € Ry x R, Ry = (0,400), R = (—00, +00); the dash in the equation denotes differentiation by
Uy = O,u = du/Ox; the coefficients o, 8;,1 = 1,2, v, § are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), » € R, for which the modulus |f(r)| at » > 0 is a non-decreasing
function and the estimates are valid

sup £ (g())| < | £ ((suplg()])

z€R z€R

, 1=0,1, g(z) € C[R],

& <x(@©If(r)], £€>0, r=0, (@)

X — a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at + — +oo and the norm is ||g||c = sup,.cg |g(x)|, with initial conditions

uli—o = ©(), Ul=o = P(z), z€R. 3)

The sought classical solution u = u(t, z), (t,z) € Ry x R, R, = [0, +00), and its partial derivatives included in
equation (1), for all values of the temporary variable ¢ on the variable x belong to the space C[R]. (By a classical

57



58

UMAROV

solution of the equation we mean a sufficiently smooth function having all continuous derivatives of the desired order
and satisfying the equation at every point in the domain of its setting.)

By CM[R] = {g(z) € C[R] : ¢'(2),...,g%)(z) € C[R]}, k = 1,2,..., we denote subsets of differentiable
functions in C[R].

Recall [5, Chap. 8, § 1; 6, § 2] that in the space C[R] the differential operator 9, with domain of definition
D(0,) = CV[R] generates a compressive strongly continuous group U (7; 9, )g(z) = g(z+7), T € R, of left shifts,
and the operator 92 with domain of definition D(92) = C?[R] is the derivative operator of the strongly continuous
semigroup U(t;0%)g(z) = (2v/mt)~! f0+oc e~ /W g(x 4 €)de, t € Ry; and for the resolvents (A — 9,)~*,
(A — 92)~! the estimates ||[(A] — 0,) || < 1/Xand ||[(A] — 92)71|| < 1/Aare valid at A > 0.

Let us investigate the Cauchy problem (1), (3) according to the following plan.

1. Let us make sure that the formulation of the Cauchy problem (1), (3) is correct and its classical solution
exists locally in time. For this purpose, we find the solution of the Cauchy problem for the linear homogeneous
equation corresponding to (1).

2. Let us introduce an auxiliary Cauchy problem

5Utt — Uttgax — Q2Vtzqy — X1 V¢p + BQUmmzm + Blvmm + YU = agf(”% (4)
V)= = @' (x), vili=o = (x), xR, ®)

for which we find the time interval [0, ¢;] of existence and uniqueness of its classical solution and estimate the norm
in C[R] of this local solution.

3. Let us establish the relation between the solutions of equations (1) and (4) by assuming that on the segment
[0,1, the solution u = w(t, ) at the variable = belongs to the intersection of the subset CW[R] C C[R] with
the Sobolev space Wi (R), and the temporary partial derivatives u; = wu;(t,x) and uy = uy(t, z) belong to the
intersection C? [R] N W3 (R).

4. Let us find sufficient conditions for the existence of a single classical global (¢ > 0) solution and destruction
on a finite time interval of the solution of the Cauchy problem (1), (3).

2. CAUCHY PROBLEM FOR A LINEAR HOMOGENEOUS EQUATION

Consider the linear homogeneous equation corresponding to (1):
(61 — 02)up — (202 + 19 )uy + (B20y + B102 + yI)u = 0. (6)
Let’s introduce in (6) a new unknown function
v(t,z) = ou(t,x) — uge(t, ), 7)

assuming that the partial derivatives of ., 1, are continuous at t € R,. From substitution (7), provided that
the initial functions ¢ (), (z) belong to C)[R], we can uniquely determine the initial values of the function
v=uv(t,x):

vli=o = vo(x) = 0p(x) — ¢"(2), vili=o = v1(z) = 69b(x) — " (x),

and, using the membership of the positive semi-axis to the resolvent set of the differential operator 92, express the
solution u(t, z) of equation (6) through the new unknown function v (¢, x):

I
u(t,z) = (01 — 0%)  o(t, z :—/ e IsIVey t,x+ s)ds. 8
(t,x) = ( .,)()2\/5700 ( ) ®)
As a result of substitution (7) we obtain the equivalent (6) integro-differential equation
v + Ajvg + Agv = 0, )

in which the operator coefficients are

Ay = axl — (aVe — a)Vo(6I — 2)F — o (VI — 8,)~Y,  D(A,) = C[R],
Ay = =202 — (B2d + BT + (820 + P16 +7) (01 — 02)™!,  D(4z) = CO[R].
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The bounded operator A; generates a uniformly continuous group U(7; A1), 7 € R, represented by a degree
series
TL
Ulr; Ay) = Z AL

uniformly converging on 7 at each finite segment from R, and by virtue of the permutation of operators (\/5 I-0,)7!
and (61 — 02)~!, the representation is true

U(r; Ay) = U (—ayT; (VoI — 8x)71)U(—(0¢2\/S — oy )Vor; (61 — o)) =
_ ea”(f (—1)"0(?7'”(\/1 0,)- ) (Ji (=1)" (a6 — ag)™ 6™/ 2™ (6T — %)~ )

m)!
n=0

m=0

as well as the evaluation
|U(t; Ay)|| < eleaten/Votlaz—ea/ VoDt -y c R

In equation (9) we substitute the unknown function
w(t,x) = U(t/27A1)v(ta‘T>7 (10)

then we can uniquely determine the initial values of the function w(¢, x):

w|t:0 = wo(ff) = Uo(ﬂf)
We|p—o = w(z) = A1v20( 2) +oi(x) =

_aowg(r) Vi —ay T lslVE
2 4

Svo(x + s)ds —

— 0o

+
Y LV N
0

and express the solution v (¢, z) of equation (9) through a new unknown function w(t, ):
v(t,x) =U(—t/2; Ay)w(t, z). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

2
Wi = (i - A2> (12)

in which the operator coefficient

2
AT — Ay =B=By+B;, DB)=CHR],

where By = 3,0? and

- (,826 + 61+ Of)l - <b262 + B8+ v+ W\/S) (61 —93)~ ' —

1 2
- 0‘22“1 (VoI =0, + 7 (al(\faf —9,) 7+ (a2VE — an)VE (5T — ag)*l) .
Equation (12) can be written as an abstract ordinary differential equation
Wi = BW, teR,, (13)

where W = W (t) : t — w(t, z) is the sought vector-function defined for ¢ € R, with values in the space C[R].
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For equation (13), we consider an abstract Cauchy problem with initial conditions
Wli—o = Wo, W'|=o = W1, (14)

where Wy = wq(z), Wi = wy (x) are elements of the space C[R].

The Cauchy problem (13), (14) is uniformly correct [6, § 1.4], only when the operator B is the producing
operator of a strongly continuous cosine operator-function C(7; B), 7 € R.

Inthe space C'[R], the operator B is the derivative operator of the strongly continuous cosine operator-function
C(1;By), T € R 6, § 1.5]:

C(7; Bo)g(x) = 27 [U(T/B23 0:) + U(=7+/ B3 0:)]g(x) = 27 [g(w + 71/ Ba) + gl — 7\/B2)],
for which the estimate of the norm is fair
|C(t; Bo)| <1, teRy.
The corresponding sine operator-function S(7; By), 7 € R, has the form
1 z+7v/Bz

- d
N g(§)d¢

S(T;Bo)g(x):/ C(s; By)g(z)ds

0

and the norm estimation is valid for it B
IS(t; Bo)l| <t, teRy.

The bounded operator B; generates a strongly continuous cosine operator-function C(7; By), for which the
representation [6, §§ 1.4, 4.2] is valid on an arbitrary element g(x) € C[R]

+too  _on
-
C(r;B1)g(x) = Z WB?Q(@; TER,
n=0 :

and the power series converges uniformly on 7 on each finite segment from R. Note that the operator-valued
function C(7; By) is continuous in the uniform operator topology, and the norm estimate is valid for it

+oo t2n

lcw Bl <Y

n=0

B < chiet), te TRy,

(2n)!

where C% = 2ﬁ25 —+ 261 + ")//(S + (042\/5+ a1 + |042\/(§ — C¥1|)2/(4§)

The operator B is obtained by perturbing the unbounded operator B, by the bounded operator B, but the
perturbation by the bounded operator preserves [6, § 8.2] the ability of the operator By to generate the cosine
operator-function, so B = B\ + B; is the derivative operator of the strongly continuous cosine operator-function
C(1; B), 7 € R, and hence the abstract Cauchy problem (13), (14) is uniformly correct.

The solution of the Cauchy problem (13), (14) for any initial data W, € D(B) and W, € C;[R] is defined by
the formula

W(t) = C(t; B)Wy + S(t; B)Wh,

where S(t; B) is the sine operator-function associated with C'(¢; B):
¢
SB)g= [ ClriBlgir, g€ ClR)
0

Ci[R] = {g € C[R] : C(t; B)g € CV (R, C[R])} is a linear manifold. It is obvious that D(B) = C?[R] ¢ C4[R].
In order to derive an estimate of the norm of the solution of equation (13) that is the abstract function W (¢),
we find estimates of the norms of the cosine and sine of the operator functions generated by the operator B, for
which we obtain a representation of the operator-valued function C'(¢; B) via C(t; By) and C(t; By).
Considering the derivative operator B as the result of perturbing the derivative operator B by the operator By,
that in turn gives rise to the cosine operator-function, for g(x) € D(By) N D(B;) = C®[R], we obtain [6, § 8.2]
the representation of

C{t: Bile) = Clts Bogla) + 5 [ eV T= 37, Bo)Clts Br)glo)is,
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where ji (¢, Bo)g(z) = 2 fol V1 —=1r2C(tr; Bo)g(x)dr.
For ¢t € R, we obtain estimates of the norms: ||j; (¢, By)|| < %fol V1 —1r2dr =1and
, 1
t t
IC(t; B)|| <1+ bl /Ch (c1ts)ds =1+ So0 sh(cit) = o1 (t), (15)
/ 1
1 / h
IS(t; B)|| <t+ — /T sh(cim)dr <t|1+ ¢ (czlt) = oo(1). (16)
201 261
0
Using formulas (11) and (8) of inverse substitutions we have
u(t,z) = (61 — 02) tu(t,z) = (61 — 02) " U(~t/2; A )w(t, z). (17)

Then, using the permutability of the resolvent (61 —92)~! and the semigroup U (—t/2; A;) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t,x) = U(—t/2; A1) [C(t B)g(x) + S(t; B) (Arp(w)/2 + (). (13)

Thus, there is

Theorem 1. Let the initial functions () and (x) belong to the subset C'*)[R] of the space C[R|, then the Cauchy
problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup |u(t, )| < e~ (@2=er/Vo-laz—ar/Volt/2,

z€R

% |0 (t) sup ()| + () <§g§¢<x>+am+“wgmaliggwnﬂ, e,

z€R

Remark 1. The classical solution W () of the abstract Cauchy problem (13), (14) belongs to C®) (R, , C[R])
and for it BW (t) € C(R4,C[R]), hence w(t,z) = U(t/2; A1) x (61 — 8%)u(t,z) € C*%(R,,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t,z) € C**(R,,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting u, = v (the left parts of these equations coincide).
Let’s act on both parts of equation (4) by the operator (51 — 92)~! and obtain the equivalent equation

v + Aoy + Agv = fi(v), (19)
in which the nonlinearity fi(u) = [§(6] — 8%)~' — I]f(u), and the operators A; and A, are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(—t/2; Ay )w(t, x)
Wi = BW + fo(t,U(=t/2; A1)W), (20)
where the operator B is the same as in (13) and the nonlinear operator f5 is defined by the formula
folt,-) = Ut/2; A)[8(81 = 07) ™" = 1] f (),

here f(-) is the superposition operator: f(g) = f(g(x)), g(x) € C[R].
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Givent € R, it is fair to estimate the norm of the operator f»(t, -) in the space C[R]:
|F(t g)llo < 2elexton/Vatloaar VD2 £(] gl ). 21
For equation (20) we consider an abstract Cauchy problem with initial conditions
Wlimo = W5,  W'|imo = W7, (22)

where W = (wo(x))" and W] = (w1 (x))’ are elements of the space C[R].

From the continuous differentiability of the superposition operator in the space of continuous functions and
boundedness of the operators U (/2; A1) and (61 — §%)~!, the continuous Fréchet differentiability of the operator
fa(t,-) inthe space C[R] follows and, consequently, there exists an interval [0, ¢y ), within which the abstract Cauchy
problem (20), (22) has [7, § 3] the only classical solution W = W () (provided that the initial data W, W7 belong
to the domain of definition of the operator B) that satisfies the integral equation

t
W(t) = C(t; B)W, + S(t; B)W/ + /0 S(t —7;B) fo(r,U(—7/2; A1) W)dr. (23)

From equation (23), using estimates (15), (16), (21), and (2), we derive the integral inequality

Wl < ar()IWglle +o2(D)Wille +

t
+2 / oot — T)e(a2+m/\/3+\az—m/\/Sl)T/ZX(e—(a2—al/ﬁ—laz—al/ﬁ\)fﬂ)f(HW(T)HC) dr, (24)
0

where
IW5llc =l wole)) llo = en(e) lle = sup |54 (z) — )],
Wille = s @)Y lle = @)Y llo = [Arwo(@)/2 + na (@) le <
< caViten LloaVd el g 15t (a) — ()] + sup 80/ (@) — ()]
2\/5 T€eR z€ER
Denoting

o3(t) = o1 () [Wollc + o2() [Wilic,
0-4(7—) _ 6(042+041/\/5+\042*a1/\/EDT/QX(B*(OQ*al/\/gﬂaz*al/\/g\)‘f/z)
and using the inequality

o5(t) = t(1 + ch(eit)/(2¢2) = (t — 7)(1 + ch(cy(t — 7))/ (2¢3) = oot —7), t=7>0,

let us write the integral inequality (24) in the form

W)l < os(t) +205(t)/0 as(T) fIW(7)llc)dr. (25)

From inequality (25), we derive [3] an estimate of the norm in the space C'[R] of the solution of equation (20)
on the segment [0, ¢1]:
W)l < o3(H)@7H(¥(1) = a6(t),
where

W(t) = (I)(l) +205(t)A 0'4(7-)X(0'O?;3(’(r7;))d7_

3

o) = f;o |f(s)|~tds for &,& > 0; @1 is the inverse function to @, the segment [0,¢1] C [0,t0) is defined by

those values ¢ for which the values of the function ¥(#) belong to the region of existence Dom(® 1) of the inverse
function &1
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Thus, there is

Theorem 2. Let the function f satisfy the conditions (2), and the initial functions o(x), ¥ (x) of the Cauchy problem
(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup [v(t, z)| = sup |uy (¢, )| < e~ (2mer/Volaa—on VO 250 1) — Gu(t), t e [0,t).
z€eR rER

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space Lo (R) of functions with integrable square.
Recall that the scalar product and norm in Lo (R) are defined by the formulas (¢, 1)) = fj’;j o(x)(x)dr and

1/2
lell2 = ( ijO: \ga(:z:)|2dx) , respectively, and that for functions g(x) belonging to the intersection of the space

of continuous bounded functions C(IR) with the Sobolev space W3 (R), the following estimate is valid

+oo 1/2
|g|c§|g||w21</ [<g<x>>2+<g’<x>>21dx) , (26)

— 00

and if g(x) € C®(R), then [8] the limits of the functions g(x), ¢'(x) at 2 — o0 are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t € [0,t1], of equation (4) follows the existence
of a corresponding solution of

u=u(t,z) = lim ”v(t,s)ds: . v(t, s)ds (27)
zo—=—00 Jo. o

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled
u(t,z) € CORINWL(R), w(t,z), un(t,z) € CHRINWER), tel0,t]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

Brf Ofu(t,z) =0, k=0,4;

lim 00 u(t,x) =0, n=1,2, m=0,2; tec][0,t]. (29)

r—+oo

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, ¢1]. Then, using relations (29),
we obtain the equations

/ 0idv(t, s)ds = / (0idTu(t,s))sds = 0idu(t,x) — lim 0jdIu(t,s) = djdlu(t,x).
o o s§——00
Further, by virtue of continuity of the function f’, we have

/ D2 f(v(t,s))ds = (f(uz(t,z)))s — f ( l_i>m uw(t,mo)) 1_i>m Uze (£, 00) = Uga (t, 1) f (ug(t, 1)).
— 00 Zxo —0o0 o — 0o

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, ¢;], whence it follows that function (27) is a solution of equation (1). The lemma is

proved.
Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, ), the conditions
that the initial functions must satisfy are required to follow:

() € CVRINWL(R), (z) € CORINW(R). (30)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



64 UMAROV
5. EXISTENCE OF A GLOBAL SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Consider the so-called energy integral for equation (1):

y(t) = 6(u, u) + (ug, uz) = /m(éu2 +u)dz, te0,t]. (31)

— 00

Applying the Cauchy-Bunyakovsky inequality |(¢,1)| < [l¢ll2ll¢||2 to the derivative of the energy integral
y'(t) = 2(6(ug, u) + (uge, ug)), we derive an auxiliary estimate on the segment ¢ € [0, ¢4]:

y'(t) < y(t) + 2(1), (32)
where
+oo
2(t) = 0(ug, ug) + (Uie, Use) =/ (6ui +ui,)dx, t€[0,t], (33)

is the second integral of energy for equation (1).
Theorem 3. Let the conditions of lemma and theorem 2 be satisfied and let the parameters o;, B;,i = 1,2,7,6 of
equation (1), the nonlinearity [ and the initial functions p(x), ¥ (x) satisfy conditions (30) and

+oo
Eo = ol 5+ 197115 + Balle” I3 + vliells + 2/ F(¢/())dz = Bull'll3 > 0;

— 00

meﬂMQﬂ neR; F(o(2) € L(R).

Then, there exists a single global solution of the Cauchy problem (1), (3) and for it the estimation is valid

Ve [6eIHBI2 0 <5 < 1,
t>0

sup [u(t, )] < \ﬁe(1+51)t/2 §>1, -7

z€R

where
c2 = (Eo+ (1+81)0llel3 + 1€'115)) /(1 + B1).

Proof. Multiply both parts of equation (1) by the partial time derivative u; = u,(¢, z) and integrate from —oo to
+oco. Then, integrating by parts and taking into account, by virtue of (29), the equality to zero outside the integral
summands, we obtain

6 d « +oo
\WM(WMw+wwMW—i/ (u2)oda +

2dt 2 J_ o
+62(urm7utmm) 7ﬂl(uz7ut:r) 9 dt” ||2 ( ( ),utz) = 0 (34)
Let us introduce the potential (7 fo s)ds, generated by the nonlinearity f of equation (1), and, taking
into account that f T () pdr = U \+°° = 0, we rewrite the equality (34) as
1d
——FE(t)=0 35

where
E(t) = 0llucll3 + [lucall + Balluaalls — Bulluzll +lull5 +

+00 ¢
+2/ F(um)d:C—FQaQ/ s |3dT
0

—00

is the energy functional of equation (1).
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From relation (35) it follows that the energy functional £(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) = Ey, (36)

where
—+o00

Eo = 8|[9[I3 + [1¥'13 + Balle” I3 — Billel13 +lell3 + 2 F(¢'(x))dx

— 00
is the initial energy.
Let us require that the initial energy is non-negative: Ey > 0, i.e., the inequality

“+o0
Sl 113 + 197115 + Balle”lI3 + vllll3 + 2/ F(¢'(@)dz > B3,

— 00

where the function F/(¢’(z)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

Slluell3 + llueell3 + Balluwa 3 +llull3+

—+o0 t
+2/ Flun)dz + 205 [ [ussl2ds = Eo + Bul|ua]. 37)
0

— 00

Suppose that
F(n) >0, nekR, (38)

then from equality (37), reducing the left part, we obtain

2(t) < Bo + B1(0]|ull3 + [lus]13) = Eo + Bry(t), t € [0,t1]. (39)

From inequalities (32) and (39), the integral inequality follows

t
y(t) < Ept +y(0) + (1 + Bl)/ y(s)ds, te0,t1]. (40)
0
Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral
y(t) < ( B y(0>> P! = gy (1), (41)
“A\1l+5

true on the entire positive semi-axis of t € R, and hence the classical solution of u = u(t, z) att € R belongs
to the Sobolev space W4 (R):

(1+52)y(t) < Los(t), 0<d<1,
Yy

a2 = [lull3 + [Jus|3 <
Wa 20T 6full3 + lusll3 = y(t) < os(t), 6> 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t,x), t € R of the Cauchy
problem (1), (3) in the space C[R]:

sl <5<
ullc = SUEIU(t,x)I < lulwy < { LI ’
xre

V US(t)7 52 ]-7

ensuring the existence of a global solution. The theorem is proved.
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6. DECOMPOSITION OF THE SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Let us find sufficient conditions for the occurrence of a gap of the second kind for the energy integral (31) on
the segment [0, t3] C [0, %], that we choose so that the inequality y(¢) > 0, following from the initial condition
y(0) = 8llel3 + '3 > 0, holds.

Applying the Cauchy-Bunyakovsky inequality to the square of the derivative of the energy integral y(¢) on the
segment ¢ € [0, ¢2], we have

W (1)) < dy(t)=(t).

Let us derive an estimate of the square of the norm of the partial derivative u;;, using the representation of
equation (1) in an equivalent form

ug = —Ajup — Agu + (61 — ag)*lumf/(um),

obtained by acting on both parts of equation (1) by a linear bounded operator (61 — 92)~*. For this purpose, we
obtain auxiliary estimates

+o0
2
e ()} < 500 (we))? [ e < (4 (s0plual) ) o} < 09(0) s,

where oo (t) = (f(o7(t)))* — is a continuous function on the segment [0, #1];
1A |3 < [enue — (aV/8 — an)VE(ST — 2) tuy — on (VOI — 8,) L <

g

Ve
where ¢3 = (ag + a1 /V6 + |ag — ca1 /V6])?%;

aq

2
s(agnutnw o ut||2+ﬁ|ut2) < esllwll? < es(t),

| Agu||3 < ||~ B202u — (B26 + Br)u + (8282 + 18 +~)(5] — 82) M| <
< (B2lluaellz + (820 + B1)|Jull2 + (B20 + B1 + ’7/5)||UH2)2 <

< 2(B3 w13 + (20820 + B1) +7/6) [ull3) < 283wz |3 + sy ®),

where ¢y = 2(2(B820 + 1) +v/6)>%.
Taking them into account, we have

_ 2
ueell3 < ([Avuellz + [|A2ullz + 161 = 02) ™ e f' (ua)l2)” <

1 , og(t
< 3 (vl + 1420l + g lhuen (0o 13) < 3(cos(0) + 2680l + o) + 75 s ).

whence follows the inequality
w3 < Beaz(t) + 3eay(t) + cslluae 3, ¢ € [0,22], (42)

where ¢5 = 653 + 3¢66°, ¢g = MaXyeo,¢,] oo (1)
Let’s return to the conservation law (37) and obtain the relation from it

t —+o0
2(t) + Ballusa 3 + yllull + 2&2/ luszll3ds < Eo + Bulluall3 + 2 ’/ F(ug)dx
0

— 00

. (43)

Earlier, when proving the existence of a global solution, we assumed the fulfillment of condition (38) — non-
negativity of the potential F'(1) on the whole numerical axis 7 € R. Now, when considering the destruction of the
solution, we require to fulfill the inequality for the nonlinearity f

‘/_;00 dx /Ow(w) f(s)ds

<|f T ule) )

; (44)
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where w(x) is an arbitrary function from C[R], for which the functions F'(w(x)) and w(z) f (w(x)) belong to the
space L (R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

+o00 +oo +0o0
2{/ F(ug)dz| <2 /f(ugu)du(x) = |u(m) f(ug)| T2 — / wf! (g ) gy dz| <
< 2| (uf' (ue), tze)| < 2/uf (uz) |2 luselle < lluf(ue)ll3 + lluzel3 <
+oo
< Slélﬂ'@{(f'(um))2 / uy dz + [[uge |3 < (' (o7 (0))?[ull3 + l[usl13 = oo()[[ull3 + luzll3,
x
whence follows the inequality
+oo
2| [ Flute] < olulf + sl 1€ 0] )
Applying the estimation (45) to the relation (43) under the condition
ﬁQ > 1; (46)

we obtain the inequality

Ey B1+ce 1
”uszgg 62_1 + ﬁg—lyt /82_12@)7 te [Oth]a

using which we increase the right part of the estimate (42):

w%gz%%mm%:mww@gﬁﬁmxmmﬂ

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

Y (t) 4 2(up, Uge) — 20 (upe, u) = 22(1).

Using the estimates

2(ute, Uow) < 2 (e, tow)| < Jueell? + luaal3 < 3eaz(t) + 3eay(t) + (5 + 1) luaa 3 <

< ;5+1E0+ <3C4+(C5+1)%1+Cf>y(t)+ (303— Cs+1)2’(t)7
2 — 2 —

~20(uee, u) < 20| (uee, w)| < Olluee|3 + Ollull3 < 3desz(t) + 6(3ea + 1)y(t) + des|luas|f3 <

des B1+cs Cs
< _
< ﬂ2—1E0+6<384+1+05 62_1)y(t)+5<303 BQ_l)z(t),

increase the left side of it:

Y (t) + e + csy(t) > coz(t), t€[0,ta], (47)
where
0+1 1 o0+1 1
o Ot et s et o4 (64 1)+ )Ty O el gy
B2 —1 B2 — 1 B2 — 1

Let us now reduce the right-hand side of inequality (47):

y(t)y" (t) — %g(y’(t))z + ery(t) + csy®(t) > 0, ¢ € [0,to]. (48)
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We require that the coefficient at the square of the derivative in inequality (48) be greater than one, i.e., we
require the inequality ¢9 /4 > 1 or (in the detailed notation)

6(6+1)B85 — (24 3(6 + 1)cs) B2 +3(8 4 1)(cs /0% + c3) +3 > 0. (49)
Two cases arise here: if the discriminant of the quadratic trinomial
D1 = D1(5, 03,06) = (2 + 3(5 + 1)63)2 — 72(5 + 1)((5 + 1)(06/52 + 03) + ].) < 0, (50)

then inequality (49) is valid for all values of 55 > 1; If D > 0, then inequality (49) holds at

2+3(5—|—1)C3 — D1(5, 63,66) - 2+3(5—|—1)C3—|— D1(5, 63766)

1 51
<P < 125+ 1) & 1206+ 1) 1)
From condition (50), follows the inequality
1 6 T20+1)—4
2 _1q S PSR £ Yk Ak e
9c3 2(6 (5+1)2)C‘3 7252 G112 <0, (52)
and the discriminant of the quadratic trinomial
Dy = Dy(5,c6) = 36 (6 — (6 + 1)72)° + 648(52c6 + (5 + 17/18)(5 + 1)72) > 0,
therefore inequality (52), and hence (50), is satisfied at
2 _
i i 6(6 — (0 +1)72) + v/D2(6,cq)
0<ecz=|ag+ —=+|aa— —= , 53
R ) . (53)

i.e., if condition (53) is satisfied, the inequality ¢9/4 > 1 is valid for any value of the parameter S5 > 1.
In the case of D1 > 0, inequality (49) is satisfied for parameter values satisfying conditions (51), in which the
values d, c3 and cg are related by the relation
6(6—(0+1)"?) + /Da(6, co)

(Oé2+041/\/5+|042—061/\/5|)22 9 .

Comparing inequality (48) with one of the basic ordinary differential inequalities for the energy integral [ 10,
Appendix A, § 5], we conclude that if the initial conditions are fulfilled

W%M+WWW>(

Cs 2 2 C7 2 2
Sl + 1)+ =5 ) el + 11D (54

then the time ¢, of existence of the solution of the Cauchy problem (1), (3) cannot be arbitrarily large, namely,

there is an estimate from above 1

TG R e e ©
where
2 2 /12
¢ty = 4(5||¢|(|§9+_||42,|3)C9/2 ((5(so,¢) + () - (68(5|i92_+4|“" I2) cgcj 2) (Blll3 + ||ga'||§)) >0,
and for the functionality of y(t), it is fair to estimate from below
e 2 2 1
0= |G e > e e GO

and, hence, there is no time-global solution of the Cauchy problem (1), (3).

Thus, the following theorem is proven

Theorem 4. Let the conditions of lemma and theorem 2 be satisfied and let the parameters o, B;,i = 1,2,7,6
of equation (1), the nonlinearity f and the initial functions o(x), 1y (x) satisfy conditions (30), (44), (46), (49), (54),
respectively, then the time to of existence of the solution u(t, x) of the Cauchy problem (1), (3) cannot be arbitrarily large,
namely it is bounded from above and the estimation (55) takes place, and for the energy integral y(t) the estimation from
below (56) is valid.
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Abstract. The work is devoted to the study of questions of existence and uniqueness of a continuous bounded
and positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue of
the indicated system of integral equations, with different representations of the corresponding matrix kernel
and nonlinearities, has important applied significance in a number of areas of physics and biology. This article
proposes a special iterative approach for constructing a positive continuous and bounded solution to the system
under study. It is possible to prove that the corresponding iterations uniformly converge to a continuous solution
ofthe specified system. Using some a priori estimates for strictly concave functions, we also prove the uniqueness
of the solution in a fairly wide subclass of continuous bounded and coordinately nonnegative vector functions.
In the case when the integral of the matrix kernel has a unit spectral radius, it is proved that in a certain subclass of
continuous bounded and coordinate-wise non-negative vector functions, this system has only a trivial solution,
that is an eigenvector of the kernel integral matrix.
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1. INTRODUCTION. PROBLEM STATEMENT

Consider a system of nonlinear multivariate integral equations

N
fi(.’ﬂl,...,l’n):Z/ Kij(l'l,...,iL’n,tl,...,tn)Gj(fj(tl,...,tn))dtl...dtn, iil,N, (1)

]71 R'ﬁ,
with respect to the vector-function f(x1,...,2,) = (fi(z1,...,2n)s-.., fn(x1,...,2,))T with non-negative
continuous and bounded on the set R™ coordinates f (z1,...,z,), ¢ = 1,N, where (z1,...,2,) € R”,

R = (—o0,+0), T is the transpose sign. In system (1) the matrix kernel

K({E,t) = (Kij(xl, e 7£Cn,t1, e ’t”))i,jzl,N

satisfies the following conditions:
1) Kij(fL'l, . ,$n,t1, . ,tn) > 0, (CUl, . ,l’n,tl, . ,tn) S ]Rzn, Kij S C(Rzn), Z,] = ].,N,

70
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2) there exist A5 = sup(mh___’mn)eRn fR" Kij(mla e ,.’En,tl, R ,tn) dtl A dtn < +o00, Z,] = 1, N, with
r(A) =1, A = (ai;); j_7> where r(A) is the spectral radius of the matrix A, i.e., the modulus of the
largest modulo eigenvalue.

According to Perron’s theorem (see [1, p. 260]), there exists a vector n = (11, ..., ny)" with positive coordi-
nates 7); such that

N
j=1

Let us fix the vector 1 and impose the following conditions on the nonlinearities of {G(u)} =T N (Fig. 1):

a) G; € C(R"),RT = [0, +00), G,(u) are monotonically increasing on the set R*,j = 1, N;

b) G;(0) =0,G;(n;) =n;.j =1, N;
¢) Gj(u),j = 1, N, are strictly concave (convex upwards) on R* and there exists a continuous mapping ¢ :
[0,1] — [0, 1] with properties

©(0) =0, p(1) = 1, pmonotonically increases on the interval [0, 1], 3)

 strictly concave on the segment [0, 1], 4)

such that the following inequalities hold:

Gj(O'u) > W(U)Gj(u% u € [O;Uj]vo— € [Oa 1]7] = m;

d) there exists a number » > 0 such that the functional equations G;(u) = u/e;(r),7 = 1, N, have positive
solutions d;, where

67;(7‘) = m& inf / Kij(l’h...,I",tl,...,tn)dtl...dtn G(O,].), Z':LN,
j=1,N | (z1,...,z5,) ER™\ B, R"\ B,

24

0 d; s

Fig. 1. Graph of the function y = G;(u)
The main purpose of this paper is to investigate the existence and uniqueness of a continuous bounded and

positive solution of system (1), as well as the uniform convergence to the solution of the corresponding iterative
process with the rate of decreasing geometric progression.
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The scalar analog of the system of nonlinear integral equations (1), besides purely theoretical interest, has a
number of important applications to the study of various applied problems from physics and biology. In particular,
under specific representations of the matrix kernel & and nonlinearities {G(u)},_17. the scalar system (1) is
encountered in problems from the dynamical theory of p-adic open, closed, and open-closed strings (see [2—5])
and in the mathematical theory of spatial and temporal pandemic propagation in the framework of the modified
Atkinson—Roiter and Dickman—Kaper models (see [6, p. 318] and [7, p. 121], respectively).

Mathematical investigations of the system of the form (1) were mainly carried out in the one-dimensional case
at n = 1. Thus, for example, in the case when n = 1 and the kernel K depends on the difference of its arguments,
the system (1) is studied in [8—10]. The corresponding scalar analog of system (1) (/N = 1) in the multidimensional
case is studied in [5, 11—13], when the kernel K either depends on the difference of its arguments or is majorized
by such a kernel. It should also be noted that the corresponding scalar one-dimensional equations under different
restrictions on the kernel and on the nonlinearity have been studied (by different methods) in [2, 3, 14—17].

In this paper, under conditions 1), 2) and a)—d), we will first prove the constructive theorem of existence of
a positive continuous and bounded solution of system (1). In the course of the proof of this theorem, we obtain
a uniform estimate of the difference between the constructed solution and the corresponding successive approxi-
mations, with the right-hand side of the obtained inequality tending to zero as an infinitely decreasing geometric
progression when the number of m-th approximation tends to infinity. Further, using some estimates for strictly
concave and monotone functions, we prove the uniqueness of the solution of the system (1) in a sufficiently wide
subclass of continuous bounded and coordinately nonnegative vector-functions. In the case when

Cij(l'l,...,,fbn) Z:/ Kij(l’l,...,l‘n,tl,...,tn)dtl .. dtn = aij

forall (xq,...,2,) € R"and4,j = 1, N, we show that in the above mentioned subclass of vector-functions, the
only solution of the system (1) is only the vector = (71,...,nx)7. In this paper, we give specific examples of
the matrix kernel K and nonlinearities {G;(u) },_i, satisfying all conditions of the proved statements. Some of
these examples have applications in the above-mentioned areas of physics and biology.

2. KEY NOTATIONS AND SUPPORTING RESULTS

The following lemma plays an important role in our further reasoning.
Lemma 1. Let conditions a), b), 1), 2) be satisfied, and the graphs of the functions {G ;(u) } 1. arestrictly concave

at RY. Then the inequality is true for any ordinally non-negative and bounded on R™ solution f*(x1,...,1,) =
(ff(m1, . smn), . flo(mr, .. 20)) T of the system (1):

fixe, oo zn) <miy, (x1,...,25) €R™, i=1,N,

where ) = (11, ...,nn)" is the fixed vector of the matrix A (see (2)).
Proof. Let us denote v; := sup(,, . jern fi(21,...,24),7 = 1,N. Then from system (1) by virtue of
conditions 1), 2), a) and relation (2) we will have

Gi(1) | © Gi()
fi* Liy-woy < al '7 < ax{ L ai;n; = 1; Mmax — ;
( Z P v A G z:: o =8 L 7y

(ll?l,...7 )GRH i=1,N.

It follows that o

i < 1 max {j(%)}, i=1,N. (3)
J=L,N 7;

Obviously, there exists an index j* € {1,2,..., N} such that
max {Gj(%)} _ Gir(e), (6)
j=LN j Ui

Replacing in inequality (5) the index ¢ by the index j*, we obtain y;« < G,«(7;~). Let ussee that the last inequality
implies the evaluation of v;« < 7;-. Assume the opposne Vi > 1 By v1rtue of conditions a), b) and the strict
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Gj* (u)

u

concavity of the graph of G- (u), it follows that the function

G’;(zj D G n("f) = 1. The latter inequality contradicts the inequality v;- < G« (7;,-) obtained above. Thus,
J

J
v+ < m;-. By virtue of this evaluation, relation (6) and conditions a), b), we arrive from (5) at the inequality
v; < m;,i =1, N. The lemma is proved.
The following is also useful

is monotonically decreasing at (0, +00). So

Lemma 2. Let conditions a), b), d), 1), and 2) be satisfied and f(x1,...,x,) be an arbitrary generically non-
negative and continuous on R™ solution of system (1). Then if there exists an index jo € {1,2,..., N} such that
05 i= inf(y, o yerm\B, fio(®1,. .., 2n) > 0, theninf,, . yern fi(21,...,2,) > 0,4 = 1, N, where the num-

ber r is defined under condition d).
Proof. First of all, note that it follows from conditions a), b), d), 1) and, 2) that

N
fl(xl,,xn)EZ/ \ Kij(xl,...,l'n,tl,...,tn)Gj(fj(tl,...,tn))dtl...dtn2
j=1 R\ B

Z / Kij()(l'la ey CBn,tl, ‘e ,tn)Gjo(ij(tl, AN ,tn))dtl ‘e dtn Z
R™\ B,

szo(éj )/R 5 Kijo(xl,...,l‘n,tl,...,tn)dtl...dtn, (J}l,...,.’L‘n) c R"™. 7

Next, let us consider the functions

Cijo(l‘l,...,.’l,‘n> Z:/ Kijo(.’l,‘l,...,$n,t1,...7tn)dt1...dt»,“ (3’)1,...,37n)E]R",Z':l,]\[7
R\ B,

and the following possible cases: A) (x1,...,2,) € R"\B,, B) (x1,...,2,) € B;.
In case A), considering the definition of numbers ¢;(r) in condition d) and inequality (7), we obtain

fi(z1, ... xn) > Gy (8,)ei(r),  (21,...,2,) € R™\B,,i =1,N. 6))

Let us now consider the case B). It immediately follows from conditions 1), 2), that éijo e C(R™),
Cijo(x1,...,2) > 0, (z1,...,2,) € R", ¢ = 1, N. Given the compactness of the ball B,, according to the
Weierstrass theorem, we can assert that foreach i € {1,2,..., N} there exists a point z° = (z%,...,2%) € B, such
that

i Cii R =C;; i,...,’;",b > 0.
(wl,..r.r,la:lil)eBr{ Jo(xl Z )} Jo(xl T ) )

From (7)—(9) we conclude that

( lnf) R fi(xla"'vxn) Zmln{gl(r)véljo(xlla7sz)}G]0(6jo)? (1:17~'-3I71,) GR”7Z:17N
T1,...,Tpn)ER™

The lemma is proved.
Now consider the functions C;;(x1, ..., z,),%,j = 1, N and suppose that
e) there exist a point (z1,...,x,) € R" and indices i1, j; € {1,2,..., N} such that

Ciy i (T15 0 0) < @4y, -

Lemma 3. Let the conditions of Lemma 1 and ¢) be satisfied. Then, any continuous bounded and coordinate
non-negative solution f(x1,...,x,) of system (1) satisfies the inequalities f;(x1,...,2,) < 0, (21,...,2,) € R,
i=1,N.

Proof. Accordingtolemma 1, the solutionis f;(z1,...,x,) < n;,¢ = 1, N. Letusverifythat f;(x1,...,2,) Z 7,
i =1, N. Indeed, otherwise, from (1) with condition b) we obtain

N
> Cijlarommy =m, i=TN.

Jj=1
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Taking into account (2), we come to the equality

N
> ni(Cijlar,. .. ) —ay) =0, i=TN. (10)
j=1

Since Cjj(x1,...,x,) < ai;,nm; > 0,4,7 =1, N, we arrive at a contradiction in (10) by virtue of condition e).
Hence, there exists a point (z7,...,z}) € R and an index j* € {1,2,..., N} such that f;-(z7,...,2}) < n;-.

*

Hence, by continuity of the function f;- it follows. That there exists a neighborhood O;(z7, . .., z},) of the point
(z7,...,2}) such that
fi=(x1, ..o xn) <nj=,  (21,...,2,) € Os(a],...,x}). (11)

By virtue of (11), relation (2) and inequality C;;(x1, ..., z,) < a;; from (1), taking into account conditions a), b)
we will have

fi(.’L‘l,...,.’L‘n) = Z Ki]‘(l‘l,...,$n,t1,...,tn)Gj(fj(tl,... ,tn))dtl dtn +
]#J* R’!L

+/Kij*(l'1,...,.Tn,tl,...,tn)Gj*(fj*(tl,...,tn))dtl dtn S
Rﬂ

< ZCij(xh...,xn)nj—&— / Kij*(fl'}l,...7.’1?7“7517...,tn)Gj*(fj*(tl,...,tn))dtl...dtn+
373" R™\O5 (2} ,...v23)

+ / Kij*(.’th...,$n,t1,...,tn)Gj*(fj*(tl,...,tn))dtl...dtnS

Os(x7,...,27%,)

< ZC’ij(ccl,...,;vn)nj+nj* / Kij*(zl,...,ZCn,tl,...,tn)dtl...dtn+
I#I” R\Os (23 ,...,a%)

+ / Kij*(l'l,...,Jjn,tl,...,tn)Gj*(fj*(tl,...,tn))dtl...dtn<

Os (a7, o27,)

< ZC’ij(xl,...,xn)nj—&—nj* / Kij*(xl,...,il'n,tl,...,tn)dtl...dtn+
J#I* R™\Ogs (275 ,...,z%)

+77j* / Kij*(Il,...,In,tl,...7tn)dt1...dtn:

Os(x7,...,x%)

N
= Z Oij('rlv s 73%)773' + Cij*(xla s 7$n)7]j* S Zat_]n_] = i, Za.] = 1a N.
j=1

J#I*

The lemma is proved.

3. THEOREM OF EXISTENCE OF BOUNDED SOLUTION

Let us now consider the following successive approximations for system (1):

N
fi(erl)((El, e 71‘n) = Z/ Kij(xl, e ,l’n,tl, . 7tn)Gj(f](m)(t1, e ,tn))dtl . dtn,
j=1"%"

fﬁo)(xl,...,xn) =n, (r1,...,2,) €ER"i=1,Nm=0,1,2,... (12)

7
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Suppose that conditionsa)—d), 1), and 2) are satisfied. By induction on m, it is not difficult to check the validity
of the following statements:

F™ (x4, ..., 2,,) monotonically decreasing onm, m = 0,1,2,..., i =1, N, (13)
£ e cr), i= TN, (14
F @y, ) >0, m=0,1,2,...,i=1,N. (15)
Let us prove that for all (x1, ..., z,) € R™\B, the following lower bound estimates hold:
™ @ wn) > diy, m=0,1,2,...,i=1,N, (16)

where the numbers d; are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions GG;(u)/u are monotonically decreasing at
(0, 4+00),i = 1, N, then from the estimation of

Gi(ni) L Gildy)
M = ei(r) d;

1=

we get that d; < n; = fi(o)(xl,...,xn),i =1,N.
Suppose now that for (z1,...,z,) € R™\B,, inequality (16) holds for some natural /. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

N
fi(7n+1) (1’1, e ,mn) Z Z/ Kij($17 ey In,tl, e ,tn)Gj(f](lm) (t17 e ,tn))dtl e dtn 2
Rn\BT

j=1

N
ZZG](CZ])/ Kij(l‘l,...,xn,tl,...,ﬁn)dtl...dtn ZGi(di)Ei(T)Zdi, izl,N.
=1 R"\ B,

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

fi(m)(l'lv...,xn)<7]i7 m:1,27...,2‘:1,N,(m1,.,.,xn)ERn. (17)

Taking into account (14), (15) and the compactness of the ball B,., we can say that for every i € {1,2,..., N}
andm € {0,1,2,...}, there exists a point (™" ... z{") € B, such that

min fi e, ) = f (2, Y) >0, (2, .., 2,) € B (18)

(z1,...,Tn )EB,

Thus, it follows from (16) and (18) for (z1,...,z,) € R™, that

fi(m)(xl, R min{fi(m)(xgm’i), ™Y iy >0, m=0,1,2,...,i=1,N. (19)
@) _

Let us now consider the functions y;(x1,...,z,) = S (@) 5 TN on the set R™. From (13), (14),

fl( )(wlx--wxn)

and (19) we have

XiEC(Rn), i=1,N,

%Sxi(xlv"wxn)glv (Ila"'vxn)eRnai:]-aNa (20)
i

where by virtue of (17), (19),

0< ;= min{fi(z)(xgw), Lz dy <mi, i=1,N.

Let us denote by oy = min,_75(;7;). Obviously, oy € (0, 1).

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



KHACHATRYAN, PETROSYAN

Consequently, considering (20) and (12) and conditions 1), a), we will have

N
Z/ Kij(l‘l,...,l‘n,tl,...,tn)Gj(O'of;l)(tl,...,tn))dtl dtn S
=1 R

N
<@y, ) < Z/ Kij(@1, - @n by )G () (b))t dty =
j=17R"

= fi(z)(xl,...,xn), (1,...,2n) ER"i=1,N.

Hence, by virtue of condition c), we arrive at the inequalities

o) [P @y, ) < FP, . wn) < fP (@0, a), i=1,N. Q1)
Now, using (21), (12), conditions 1), a), and c), let us write down
@(@(UO))fi(g)(xla v vxn) < fi(4)(x17 S vxn) < fi(g)(xlv ) 7xn)7 1= ]-7 N.
Continuing this reasoning, at m-step we obtain the following estimate:
Fm(oo)fi(m+1)(x1, ey Xp) < fi(m+2) (T1,...,2n) < fi(m+1)(x1, cey X)),
(X1,..yzn) ER"m=1,2,...,i=1,N,Fp(0) :=p(p...0(0)),0 €0,1]. (22)
———
m times
Then, using properties (3) and (4) of the function (, we prove the validity of the inequality
Fm(do) kaJo-f—].—km, m:1,2,..., (23)
where ) o
k:= L(U?) €(0,1), o0p= min {ai} € (0,1). (24)
-5 i=1L,N (T

For this purpose, consider the line y = ku + 1 — k, passing through the points (1, 1) and (%, ¢(%)), where
the number £ is given according to formula (24). From properties (3) and (4), it immediately follows that (Fig. 2)

w(og) > koo + 1 — k. (25)

Since kop 4+ 1 — k € (0, 1), then taking into account the properties of concavity of the graph and monotonicity
of the function ¢ from (25) we will have

Fy(og) = p(p(o0)) > koo +1—k) > k(koo+1—k)+1—k= Klog+1— k2.

Continuing this process, at m-th step we obtain inequality (23).
Thus, in view of (22), (23), (17) and (13) we arrive at the following uniform estimate for successive approxima-
tions of (12):
0 S fi(m-‘rl)(mla ce. 7xn) - fi(m+2)(a717 e 7:6%) < 77@(1 - Uo)kma

(1,...,2n) ER", m=1,2,...,i=1,N. (26)
From (26), we obtain uniform convergence of the sequence of continuous vector functions f (™) (T1,...,zn) =
( 1(7")(3:1,. )y s ](Vm)(xl, conxn))t,m=0,1,2,..., onthe set R™:

lim fi(m)(xl,...,wn):fi(xl,...7a:n)7 (z1,...,zn) ER"i=1,N,

m—o0

and f; € C(R"),i =1, N.
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YA
y=Fn(u)

©(00/2) t---

24

e O‘ 0'0/2 (o) 1

Fig. 2. Graph of the function y = ¢(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1,...,2,) = (fi(x1,...,Zn), ..., fn(21,...,2,))7 satisfies the system (1) and the evaluation from
below

fi(xl,...,xn) Zd“ (xl,...,a:n) GRn\BT,i:m. (27)

Given the estimate (27) and lemma 2, we conclude that

inf  fi(zy,...,2,) >0, i=1,N. (28)

(T1,..ymn ) ER™

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

filze, ..o xn) <niy  (21,...,2,) ER™i=1,N. (29)

Now in evaluation (26), instead of m, we take m + 1, m + 2,..., m + p. As a result, we obtain the following
inequalities:

0< fi(T’L+p+1)(:c1, B fi(m+p+2) (1, 2n) < ni(1 — 0g) K™ TP,

(z1,...,2n) ER"pm=1,2,...,i =1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0< D @y, a) — L @y ) < ni(1— o0) (™ 4 R 4 R,

(z1,...,2n) ER"pm=1,2,...,i =1, N. (30)
From (30), in particular, it follows that

m

0< fi™ D (@r,oan) = [P @, ) < il = 00) 7 =

1)
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Fixing the index m and decreasing p — oo in (31), we obtain

m
0< f" D (@r, oo wn) = fil@r, o wa) < i1 = 00) 7 (32)
Note also that if the functions {C;; (21, ..., zn)}; ;77 satisfy the additional condition
aij—CZ-j(xl,...,xn) ELl(Rn), i,7=1,N, (33)

then, reasoning similarly to the proof of the main theorem (on the integral asymptotics of the solution) from [13],
we can assert that there exist positive constants Dy, Ds, ..., Dy such that

og/ (i — f™ (@, wn))day . dey, < D;; m=0,1,2,....i=1N.

Hence, according to the theorem of B. Levi, we conclude that n; — f; € L;(R™),i =1, N, and
/ (ni — fi(z1,...,xp))dxy ... dx,, < D;y, 1 =1,N.

Based on the above, the following is true

Theorem 1. Ifconditionsa)—e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has an
ordinally positive continuous and bounded on R™ solution f(x1,...,2,) = (fi(x1,...,20), .., n(@1, ..y 20)) T,
that is a uniform limit of successive approximations (12). Moreover, the estimates (27)—(29) and (32) hold. Ifin addition
condition (33) is satisfied, then n; — f; € L1(R™),i =1, N.

4. SINGULARITY OF THE SOLUTION OF THE SYSTEM (1)

Let us consider the following subclass of continuous nonnegative and bounded vector functions on R™:

H := {f(xlv"wxn) = (f1($17"'7xn)a"'7fN(xla~~';xn))T: fZ S CJVI(Rn)v

filzr, ... xn) >0, (21,...,2,) €R", i =1,N,

there is such jo € {1,2,..., N} that inf Fiol@t, .. ) > o}, (34)
(xlw--,afn)e]Rn\Br

where the number » > 0 is defined in condition d), through C;/(R™), the space of continuous and bounded
functions on the set R” is denoted. The following holds

Theorem 2. If conditions a)—e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has
no other solutions in the class H except for the solution f, constructed by means of successive approximations (13).

Proof. Suppose the converse: the system (1) besides the solution f € H, constructed by means of successive
approximations (12), also possesses another solution f* € H. Then, using lemmas 2 and 3, we conclude that

fi*(xla"'axn)<nia (zla"'axn)ERnai:laNa (35)
of = inf fi(xy,...,xn) >0, i=1,N. (36)
(z1,...,xn ) ER™

Applying the method of induction by m, it is easy to verify the validity of the following inequalities:

fi(xy, ..o xn) < fi(m)(zl, o), (x1,...,zn) €ER",m=0,1,2,...,i=1,N. (37)
In (37) by decreasing m — oo, we arrive at the inequality

[z, ..o xn) < fi(zr, .o ),  (21,...,2,) €ER™i=1,N. (38)
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Consider the functions B;(x1,...,x,) = fi(x1,...,z0)/fi(z1,. . 20), (x1,...,2,) € R", ¢ = 1,N.
. Since f, f* € H, then by virtue of (28), (29), (35), (36), (38), we have that B, € C(R"),i =1, N, and

Y < Bilwreewa) €1, (21,0..,30) ER™i =T, .

i

Let us denote o* = minieL—N{a;‘/ni}. By virtue of (35) and (36), the number o* € (0, 1). Thus, we obtain the
inequality

o filxr, . .y xn) < iz, ) < fi(zr, .o xn),  (z1,...,m,) €R™ =1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

ngz(xl,,xn)—fz*(xl,7xn)§171(1—0*)k*m, (m177xn)eanm:17277Z:17N7 (40)

_ 1ze(7)
where k, = ——== € (0,1).

In (40), by deczzreasing the number m — oo, we arrive at the equality f;(x1,...,2,) = fF (21, ..., 25),
(z1,...,2,) € R" i =1, N. The theorem is proved.

Similarly, the following is proved

Theorem 3. Let the conditions a)—d), 1), 2) be satisfied and the following relations hold

Cij(l‘l,...,l'n) = Qij, (,T1,...,.%‘n) S Rn,i,j = 1,N.

Then the system (1) in the class H possesses only a trivial solution n = (1, ..., nn)T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernel X and nonlinearities

{G (W)} 1w

Core K examples:

pl) Kij(fljl,o...,l’n,tl,...,tn) = IO{ZJ(,’El—tl,ZEQ t27.. Qin tn) ($1,...7$n)7(f1,...7tn) € R”,2z’,j = 1,
where Kij(Tl,TQ,... ) > 0 K” S CR” f]R" ij Tl, ..,Tn)d’rl...d’]’n = Qjj < ]., Z,] = 1,
r(A) =1, A= (aij); j—17 (T1,..., 7 )GR"

P2) Kij(21,eosntryestn) = Nij(|2)Kij(m1 — t1,00 — toyeosn — o)y (X1, %0), (t,..oitn) € R”,
|z = /a3 4+ ...+ 22,0 < infy>0 Aij(v) < Xij(v) <1,v>0,1—X\;; € L1(0,+00),i,j =1, N.

p3) Kij(xl,...,xn,tl,...,tn) = C;‘j(xl,...,xn)f(ij(ml — tl,...,xn — tn), (xl, e ,xn), (tlv e ,t )
inf(wl,“.,mn)ER" O:](zla s ,In) >0, C?k' € C(Rn)7 sup(xl,...,:l;n)E]R" C;j(zlv cee 737”) =1, Z7.7 = 17N

Here are also examples of functions KZJ, Aij, Oy 1,5 =1, N:

q1) Io(ij(Th . ,Tn) = Wﬁn/zaijei(Tij"'JrTi), T(A) = ]., A= (aij)i7j=1,N, Tj e R, Z7j = ]., N,

Q) Kij(11,...,7m) = fab e~ (ml+HmDs 40, (s), 7, € R, 4,j = 1, N, where Q;;(s) — are monotonically
increasing functions on [a,b), 0 < a < b < 400, wWith

271

S} \e-
z‘ =
Q.
L
<
—
=
I
=
NS
\’®
<
Il
\'H
=

as) Aij(jz))=1- 57;j€_(mf+"'+xi'), 0 < &;; < 1 — are parameters, (z1,...,x,) € R", 4,5 =1, N,

d4) ij(xh ceyTy) =1-— sije_(‘wl““""”"‘), (x1,...,2n) ER™, 4,5 =1, N.

Let us now turn to examples of nonlinearities {G ; ()} =T

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



80 KHACHATRYAN, PETROSYAN
rl) G]( )*Uﬁ”ll 6J,u€[0,+00),ﬂjE(O,l),j:]_,N;

rs) Gj(u) = L(1—e™"),u € [0,400), B; € (0,1),1; = m;/(1 = exp{—n,’}), j = L, N.

Let us elaborate on examples p3), q1), r3) and verify that conditions 2) and d) are satisfied. First of all, note
that in this case

sup / Kij(xl,...,xn,tl,...,tn)dtl...dtn:
(z1,...,xn)ER™ JR™

= sup <C:J(£L'1,,.’En) I%ij(Tl,...,Tn)dTl...dTn> =
)ER™

[C R7

:aij sup C*v(xl,...,xn):aij, Z,j:].,N

Since r(A) = 1 (see Example q;)), condition 2) is satisfied. For completeness, let us give an example of the
matrix A = (a;;) TN with unit spectral radius and with elements a;; € (0,1), i,j = 1, N (in the case when

N =2):
A 7/9 1/3
\1/3 1/2)°
Let’s check condition d). First evaluate the integral of the function Io(ij (r1 — t1,..., 2, — t,) over the set
R™\B,:

/ I%—ij(itl—th...,xn—tn)dtl...dtn:

R"\ B,

Z/f(ij(xl—tl,...,]}n—tn)dtl...dtn—/f(ij(ml—t1,...,$n—tn)dtl...dtn:
B,

r
:aij—/f(ij(xl—tl,...,xn—tn)dtl...dtnZaij—/ / IO(—ij(l'l—tl,...,xn—tn)dtl...dtn:
B,

—r ]R"_l

T Ty +T

= Qj5 — /@Z](xn — tn) dtn = Q5 — / (I)ij(Tn) dTn,

—r Tp—T

where @, (7 fRn VKt oty T)dE Ly
Cons1der the functions Fj; (Jin) = ff”j: ®,i(m,)dry, 1,5 =1,N, z, € R. Since Fy;(z,,) — 0at |z,,| — oo,

for every fixed i, j € {1,2,..., N}, there exists a number o > 0 such that at |x,,| > rg

s
Fpi(z,) < =L,
.7(37 ) < B

But since F;; € C'(R) and Io{l-j(tl, coytn) >0, (t1, ..., ty) € R™, then for x,, € [—7¢,70]

Ty +T
Fij(zn) < max {/ (Pij(Tn)dTn} =: 8;j < ajj.
Ty €[—T0,70] P

Hence, F;;(z,) < max{a;;/2,0;;} < aij, z, € R, 4,5 =1, N.
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Thus, we have

inf / Kij(x1 —t1, ... xn — tp)dty ... dt, >
(1., 20 ) ER™\ B, R"\ B,

> inf / Io(ij(:cl—tl,...,xn—tn)dtl...dtnZaij—max{aij/2,5ij}>0, i,j:17N7
(@1,.w0) ER™ JRny\ B,
whence it follows that 0
ei(r) > min {CF;(a;; — max{ =%, 8;})} > 0,
j=1,N 2

where ) :=inf,, o yern O (1, 20).

On the other hand, it is obvious that &;(r) < a;; < 1,4,5 = 1, N.

We now verify that, for Example p3), the equations G, (u) = u/e;(r) have positive solutions d;. Indeed, since
Gi € C(R+), Gz(nz) = N, lil’nu_H_o Gz(u)/u = 400, lll’l’lu_H_oo Gl(u)/u = O, 1= 1, N, and 6,;(7‘) € (0, 1), and
G;(u)/u decreases monotonically at (0, +00), then for every ¢ € {1,2,..., N}, there exists a single d; > 0 such

The verification of conditions 2) and d) for the rest of the examples is done in the same way.

Now let us give a specific example of a nonlinear multidimensional integral equation having an application in
the theory of p-adic string (see [5]):

EACTI S :7r_”/2/ e~ (@t bt @n=ta)®) oyt VAt L dt,, (24, ...,20) € R,

where p > 2 is an odd number. Using the notation f(z1,...,x,) = ¢P(x1,...,x,), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(l'l, e ,,’En).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(z) = a/jO Kz —t)(1—e'®)dt, zeR,

where @ > 1 is a numerical parameter, the kernel K(z) > 0, z € R, ffooo K(xz)dx = 1 (see [6, p. 318] in the
formulation of Theorem 1 (f(z) = —x(2))).
The authors would like to thank the reviewers for helpful comments.
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Abstract. The problem of dynamic reconstruction of input actions in a system of ordinary differential equations
and the problem of tracking a trajectory of a system by some trajectory of another one influenced by an un-
known disturbance are under consideration. An input action is assumed to be an unbounded function, namely,
an element of the space of square integrable functions. Two solving algorithms, which are stable with respect
to informational noises and computational errors and oriented to program realization, are designed. Upper es-
timates of their convergence rates are established. The algorithms are based on constructions from feedback
control theory. They operate under conditions of (inaccurate) measuring the phase states of the given systems
at discrete times.
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1. INTRODUCTION. PROBLEM STATEMENT
We consider a system of ordinary differential equations

y(t) = f(t, (1)) + Bu(t), teT =I0,9], (M

with the initial condition
y(0) = yo. ()

Here 0 < 9 < 400,y € RY, u € R" isthe input influence, f (¢, y) is a Lipschitz (with Lipschitz constant L) vector
function over a set of variables, B — a stationary matrix of dimension N x r, n,r € N.

It is assumed that the system (1) is subjected to an unknown input influence u(-) € Lo(T;R"). At discrete,
sufficiently frequent, moments of time ;, € A = {Ti}z‘:m (o = 0, 7y, = ¥, 7,31 = 7; + 0) the phase states
y(1i) = y(7i;yo,u(-)) of system (1) are measured. The states y(7;), ¢ = 0, m — 1, are measured with error. The
measurement results are vectors £ € RY | satisfying the inequalities

ly(ri) — &|w < b, )

where h € (0, 1) is the level of measurement error, | - |y denotes the Euclidean norm in the space RY.

It is required to specify an algorithm for approximate restoration of the input impact based on the results of
inaccurate measurements y(7;). For this purpose, we consider the problem consisting in the construction of an
algorithm that, based on the current measurements of values y(7;) in “real time”, forms (according to the feedback
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principle) the function u = u”(-), that is an approximation (in the space metric Ly (7; R")) of some input influence
generating the solution y(-) of equation (1).

The formulated problem is a problem of dynamic recovery (reconstruction). One of the approaches to its
solution was developed in [ 1, pp. 7—87; 2, pp. 400—415; 3, pp. 13—93; 4—12]. In [1—10], the case of instantaneous
constraints on perturbations was considered; the case of absence of such constraints is described in [3, pp. 41—64;
6; 11; 12]. The approach is based on a combination of methods of the theory of positional control [13], according
to which for dynamic, realized at the rate of “real time”, restoration of the perturbation acting on the system
(1), one proceeds as follows: some controlled system, quite often called a model, is introduced; after that, the
restoration task is replaced by the task of forming the control of this model according to the feedback principle
in such a way, that at a suitable matching of the measurement error h, the value of the measurement interval §
(as well as, perhaps, some other parameters, e.g., regulation parameter), the control u” (.) — in one or some
other metrics — approximates some input influence that induces a measured solution y (.) of system (1). Usually,
when speaking of approximation, one means uniform (space metric C') or mean-square (space metric Lo) metrics.
When implementing this approach, in many cases the right-hand side of the model has the same structure as the
real system (system (1)). However, instead of the phase vector of the model in its right part there are the values £,
i.e., the results of measurements of phase states of the real system instead of the states of the model. Quite often
(see, for example, [1, p. 23; 4; 5]) the model has the following form:

J"(t) = f(r;,€8) + Bul' atae. ted; =[r,m41), i=0,m— L (4)
In this case, the control u"(-) in the model is formed according to some rule U in the form of feedback:
ul(t) = ul = U(r, €8y (1)) atae. ted;, i=0,m— 1L (5)

In mathematical control theory, one of the “classical” problems is the so-called tracking problem, the study
of which began in the fifties of the XX century and was caused by practical problems arising in aviation and as-
tronautics. This problem has not lost its relevance nowadays, in particular, due to the needs of flight dynamics
development. The tracking problem is also in demand when analyzing processes arising in control problems of
mechanical systems [14, 15], as well as systems functioning under uncertainty [16]. It also plays an important role
in the framework of positional differential games [13].

The essence of the tracking problem in the simplest case is as follows. There is a system (1) with an unknown
input influence u(-), satisfying usually the instantaneous constraint «(t) € P ata.e. t € T, where P C R" isa
compact set. Along with the system (1) there is another system of the same type

&(t) = f(t,z(t)) + Bo(t), teT, 6)

z(0) = zo

and control v(-), that obeys the same constraints as the function u(-). At moments 7;, the phase states of systems
(1) and (6), y(7;) and z(;), respectively, are measured (with error). The measurement results are vectors £# € RV
and ! € RV, satisfying the inequalities

& —y(m)In < h, [ —a(m)|y < h

The essence of the tracking task consists in designing such an algorithm for forming the control of v = v"(-) system
(6) according to the feedback principle

o (t) = ol = Vi, Er ) atae. ted;, i=0,m—1, (7)

that, at appropriate coordination of values h and ¢ the solutions of systems (1) and (6), will be close, as a rule in
uniform metric (in case of proximity of initial states of these systems), whatever the admissible realization of input
influence v(-) is. Thus, when solving the tracking problem, it is necessary to construct such a law V" of control
formation (7), that whatever the number ¢ > 0, the numbers k. and §, are specified, such that forall » € (0, h..)
and § € (0, 0.), the inequality is true

sup j(t; 20,0 (-)) = y(ts yo, u()) | < e,
te
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if the value |z — yo| v is small enough. Here (-; 29, v"(+)) is the solution of the system (6) generated by the control
v"(-) of the form (7). Note that both in the reconstruction problem and in the tracking problem, the input influence
of the given system is unknown.

Ifthe algorithms for solving the reconstruction problem described in the papers cited above allowed us to obtain
for an arbitrary measurable input influence u(-) (possibly constrained by some specified instantaneous constraints)
estimates of the convergence rate (to u(-)) of u”(-) (in model (4) formed according to rule (5)) in a uniform or
mean-square metric, then, while solving the reconstruction problem, we would simultaneously solve the tracking
problem. Unfortunately, however, such estimates can be obtained only for special classes u(-), for example, for
functions with bounded variation. In the case when u(-) is not such a function, the algorithms from these works
guarantee only convergence of the controls u” (-) to u(-).

A question naturally arises: can we choose not the system of the form (4), but the system of the form (6), i.e., a
complete copy of the system (1), as a model in reconstruction algorithms? Then, while solving the reconstruction
problem in accordance with the described approach, we would simultaneously solve the tracking problem. Unfor-
tunately, for arbitrary f and B, even if smooth enough, it is not possible to give a positive answer to it. The purpose
of this paper is to specify two classes of systems of the form (1), for which the answer to the question is positive.
For each of these two classes, a different rule of control formation will be specified. The first class is a system
being linear both in phase variables and perturbation; the second is a system with a monotonic function in phase
variable f. It should be noted that the approach to solving problems of dynamic reconstruction developed, in this
paper, was applied when solving problems of reconstruction of unknown structural characteristics of a bioreactor
with recharge [3], the problem of formation of flight telemetry using indirect data [3], and problems of modeling
of pollution spreading processes [17].

Thereafter, for each h € (0, 1), we fix a family A}, of partitions of the segment T by control time instants 7, ;:

Ap ={hiticom Tho =0, Thm, =V, Thit1="7ni+0(h), d(h)€(0,1). (8)

It should be noted that the same solution of the system (1) can be conditioned by more than one influence. Let
U(y(+)) be the set of all input influences from Ly (7'; R"), generating the solution y(-) of system (1), i.e.,

Uly(-)) = {al() € Lo(T3R") - () — f(E,y(t)) = Bu(t) atae. t € T}
By the symbol u.(-) we denote the minimal element of the set 2/ (y(-)), i.e., by Lo(T; R™)-norm.

Uy (+) = ar; min u(- R
()=are min = fu()|Lycre

Such an element exists and is unique. Following the approach adopted in the theory of incorrect problems, we will
recover u, (-). Hereinafter ¢, ¢, ... co,c1,..., K0 k@) . . ki ko,... denote positive constants that can be
written out explicitly, (-, -) is the scalar product in the corresponding finite-dimensional Euclidean space, and | - |
is the modulus of a number.

2. SOLUTION ALGORITHM IN CASE OF A LINEAR SYSTEM

Let us consider the case when the system (1) is linear, i.e., has the form
y(t) = Ay(t) + Bu(t) + f1(1). ©)

Here, A and B are constant matrices of corresponding dimensions, f1(-) € Lo(T;RY) is a given function. The
model is a copy of the system (9):
g (t) = Ay"(t) + Bul(t) + fi(t) (10)
initialized
y"(0) = &

Let’s fix the function a(h) : (0,1) — (0.1). In the future we will need the following

Condition A. With  — 0, we have a(h) — 0, §(h)a=2(h) — 0, h?(a(h)d(h)) ™t — 0.

Let us denote by Y(¢) the fundamental matrix of the system of equations ¢(¢) = Ay(t). The inequality

V()] <exp{xt}, t=>0,
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where y = || A, ||A]| is the Euclidean norm of the matrix A, is true.

Before the algorithm starts, we fix the value i € (0, 1), the partition A;, = {Th’i}i:m of the form (8) and
the number o = «(h). The algorithm operation is divided into a finite number of steps of the same type. At the
i-th step, carried out at the time interval §; = [, T;+1), 7; = 754, the following operations are performed: at the

moment 7;, the vector uf is calculated according to formula (5), in which

U(ri, & y" (1)) = o~ texp{—2x7i+1} B (& — y" (7)) (11)

(here dash means transpose); then the input of system (10) at all ¢ € §; is given control u"(¢) of the form (5),
(11), under the action of which the system (10) passes from the state y" (7;) to the state 3" (7,4 1). The work of the
algorithm ends at the moment .

Let’s introduce the functional

A(t) = exp{=2xt}|y"(t) — y(t)|%-
In the future, we’ll need the following

Lemma 1 (Gronwall’s discrete inequality [18, p. 311]). Let¢; > 0, f; > Oatj = 0,m and f; < fj41 at
j = 0,m — 1. Then from the inequalities

J
¢j+1ScOéz¢i+.fj7 jzlam_17

i=1
inequalities follow
¢j+1 S fj eXp{coj(S}, ] = O7m - 17

ifco >0, ¢1 < fo.
Lemma 2. Let condition A be satisfied. Then it is possible to specify such a number h, € (0,1), that for all
h € (0, h.) the inequalities are true.

max_ A(7i1) < dif{a+ 6+ h*6 1}, (12)
1€0,mp—1
9 9
/|uh(s)\zds <a +d25a_2)/\u*(s)|3ds+d3h2(a6)_l, (13)
0 0

where d;, j = 1,2, 3 are positive constants independent of h, é and c.
Proof. Let’s estimate the change in the value of

e(t) = A(t)+04/0 (1" (P = Jus(T)[7)d7.

Here o = a(h), 6 = §(h). It is easy to see that the inequality is true
Ti+1
c(rien) e(m) 4t pmita [ (WOR - () (14)

where

Ti+1
Ai =2 (sﬁ, | Y - 0Bt - u*m)dr) ,
’ Ti+1

1 = Sexp{—2xTi1) / 1Y (7141 — T) B (7) — ua(7) 3y,

St = exp{-2xm Y (D)sh, sl =y (7) — y(m).
Note that at ¢ € [0, d.], d. € (0,1),

”y(t)_IH <oty e :c*(é*)>
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where [ is a unit matrix of dimension N x N. Therefore
S} — exp{—2xTit1}s} v < benexp{—2xTip1}s] v < deuls]|n- (15)
In this case, taking into account (15) and the inequality |S? |y < |s?|x, we have
(S}, Y(8) Bu) — exp{—2x7i41} (s}, Bu)| <

< |SPINIV(8) = IIn|Buln + (S}, Bu) — exp{—=2x7i41 }(s}', Bu)| < 26¢\[s}|n|Buly. (16)
Further, by virtue of (16), the inequality is true

Ti4+1

At < 2exp{—2xTit1} (yh(ﬂ‘) - y(Tz‘)>/ B{u} — U*(T)}dT) + L,

i

where

Ti+1

B =6V stl [ ful ()l

i

It is not difficult to see that there is an estimation
Ti+1
Bi £ 80+ @5 [ (ul o+ ) D (17)
Considering (17) and the rule for choosing the control u”(-) (see (5), (11)), we obtain

Tit+1
Mita [ (O] - fun (s <

3

< 8\(m) + 0(3)h/

+1 Ti+1
(Jui' | + e (s)lr)ds + 0(2)5/ ([l [7 + us(s)[?)ds. (18)

In addition, the estimates are correct

Ti+1
11; < e / (a2 + [ua (7)),

Tit1 Tit+1
C(S)h/ (Juf |y + s (s)]r)ds < 50(5)/ (Juf 7 + [u(s)|7)ds + D n?. (19)

From (14), using (18), (19), we establish the validity of the inequality

Ti+1
[u"(s)[7ds <

Y(Tit1) = A(Tiv1) + a/

Ti

Ti4+1 Tit1
< (14 8)\(m) + a/ |y (1) 2d7 + ¢V / (Jun(7) |2 4 [ul|2)dT + D b2, (20)
In turn, by virtue of (3), (11) we have
|} < a2 (0 + |y" (1) — y(1)[%)? < a2V (A7) + 1) < a2V (y(m) + h7). 1)
From (20), (21) follows the estimation of
Ti+1
Y(7i1) < (14 )y (7) + (a+ D) / |un(s)|7ds + OB + D62a2(y(7;) + h?). (22)

i

Taking into account condition A, we conclude that it is possible to specify the number 2, € (0, 1) such that the
inequality holds
sup d(h)a"2(h) < 1.
he(0,h1)
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From (22), we derive in the standard way (see, e.g., [13, p. 59—64]) the relation

Ti4+1

A(ri) < (<a +es) [

i

. (s)|2ds 4+ D h26~1 + c(g)h2> exp{d(1+ Do)} (23)

Note that 6(h)a=2(h) — 0at h — 0. Therefore, we can specify a number c(**) > 0, such that forall h € (0, h;)
the inequality is true
exp{6(1+ a9} <1+ 6c19(1 4+ a72).

Then from (23) follows the relation
9 9
/ [ul(s)2ds < (1 + Va1 (1 + cD6a(1 4+ a~2)) / . (5))2ds + YR (5a) 7, (24)
0 0

By virtue of condition A, there is such a number h.. € (0, hy) such that for all ~ € (0, h.)
(14 M50 (1 + c196(1 4+ a~2)) <1+ dyda2. (25)

Inequality (13) follows from (24) and (25). In turn, inequality (12) follows from (23). The lemma is proved.
Remark. If 6(h) = dsh, a(h) = dsh'/?>~¢, where d, and d5 are positive constants, ¢ € (0,1/2), then the
inequalities hold
max )\(Ti+1) < dﬁhl/zie,

i:O,mh, —1

9 v
/ lu"(s)|2ds < (1 +d7h25)/ |uy (s)|2ds + dgh'/?*=.
0 0

It follows from lemma 2

Theorem 1. Let the conditions of lemma 2 be satisfied. Then there is convergence u”(-) — w.(-) at h — 0.

The proof of this theorem follows the standard scheme (see, for example, the proof of Theo-
rem 1.2.3 in [3, pp. 21-27]).

Under some additional conditions, an estimate of the convergence rate of the algorithm can be obtained. To
justify it, we need the following

Lemma 3 [3, p. 29]. Let 21(-) € Loo(T4; R™), y1(-) € W(T:; R™), T = [a,b], —00 < a < b < +00,

/:xl(T)dT

Then the inequality is true for all t € T,:

<e, |y, <K, teT..

n

/ (21(r), 31 (7)) dr| < (K +var(Ty; i ()).

Here, var(T,; y1(-)) denotes the variation of the function y; (-) on the segment T, and W (7; R™) denotes the
set of functions y(-) : 7. — R™ with bounded variation.

Lemma 4. Let u.(-) be a function of bounded variation, B be a matrix independent of t and y (stationary) matrix,
N > r,rank B = r. Let the conditions of Lemma 2 also be satisfied. Then we can specify a number dy > 0 such that
Jorall h € (0, h.) the inequality is true.

9
/ [u (7)) — s (7)|2dr < do(a*/? + h?(ad) ™! + da~2 + h'/2 + ho~1/?), (26)
0
Proof. Note that forany ¢1,¢5 € T, t1 < to, the following relation is true

/ () — i(r) — AW r) — y(r)]dr| <

t1 N

/:2 B{u"(t) — u*(t)}dt’N —

1

to
< Jn(ts) — (b)) + kD / an ()|,

ty
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where pup,(t) = y"(t) — y(t). Itis not difficult to see that the inequalities are true at ¢ € §;

(03 < KOA(T) + kO

/‘ Y (t — s)B(u"(s) — u.(s))ds| <

N

< k@X(7) + k@ /t(luh(s)r + [ (5)]r)ds.

Ti

In turn, by virtue of (12) and (21) at ¢t € §;, we have

t
/ [u(s)|rds < kD sa™*(AV2(1) + h) < kO sa™ (al/? + 612 + he—1/?).

27)

(28)

Given the convergence of §(h)a=2(h) — 0 at h — 0, we conclude that at h € (0, h..), the following estimates

are valid
50571/2 S k(7)()[3/27 63/20171 S k_(S)OéQ7 h51/2a71 S k_(Q)h

Moreover, in view of (28) and (29) at ¢ € §;, the following estimates are true
t
[ ©)lds < k1O (h+ 3,
it
/ s (8)|rds < KAD§Y2 < (12 q,

From (27), taking into account (30), we derive the following relation, which is valid at ¢ € §;
()% < kPX() + k33 (b + ).
In this case, by virtue of (12), from (31) we obtain

sup |pn(t)| v < k(o + b + 267 1)1/2,
teT
Hence we deduce

< k(15)

r

/t S () — ua (8))dt

N
Again using lemma 2 (see (13)), we set
/19 \uh(T) - u*(7)|2d7 = /19 \uh(T)\2dT — 2/ﬁ(uh(7') uy(7))dT + /19 |u (7')\2d7’ <
0 " 0 " 0 ’ o T
0 0
<(2+ dga_25)/ |u*(7')|$d7' - / (uh(T),’u,*(T))dT + d3h2(a5)_1 =
0 0

9 9
= 7uh7' Uy (T T 2072 Uy (T 2 T 2oz 71.
f2/0 (s (r) — (), wa (7)) dr + d 5/0 () b + dsh? (ad)

Considering lemma 3 and also (32), we obtain

t
/ (a(7) — (1), s (7)) dr| < KD (@12 4 B2 4 po=1/2),
0

sup
teT

Thus, inequality (26) is true for all h € (0, h,), t € T, by virtue of (33), (34). The lemma is proved.
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3. SOLUTION ALGORITHM IN CASE OF NONLINEAR SYSTEM

Let us specify the algorithm for solving the problem under consideration in the case when the system is nonlinear
in phase variable. Let the system (1) have the following form:

y(t) = f(t,y(t) + Bu(t), (35)

where B is a constant matrix of dimension N x r. Let us assume that the function f is continuous on ¢, monotone
onz, i.e., at some w > 0 the inequality is satisfied

(f(t,x)—f(t,y),x—y)S—w|x—y|?v, t€T7x7yeRNa
and satisfies the growth condition
|f(tvx)‘N§C(1+‘x|N)7 t€T7ZL'€RN,

where ¢ => 0. If these conditions are satisfied, it is known that at any u(-) € Lo(T;R"), there exists a single
solution of the system (35), understood in the sense of Carathéodory. As a model, we take a copy of (35), namely
the system
§"(8) = f(t,y" () + Bu"(t) (36)
with initial state of
y"(0) = &

The algorithm for solving the problem, in this case, is similar to the algorithm described above for the linear
system. First of all, we select some family Aj (8) of partitions of the segment 7', as well as the function
a(h): (0,1) = (0,1).

The values h € (0,1), @ = «(h) and the partition Ay, = {74, },_g7,- of the form (8) are fixed before the
algorithm starts. The work of the algorithm is divided into m — 1, m = m;, steps of the same type. At i-th step,
carried out at the time interval §; = [r;, 7;+1), 7» = T, the following operations are performed. First (at the
moment 7;), the vector u? is calculated according to formula (5), in which

U(ri, &8 y" (1) = o B/ (€] — y" (1)) (37)

Then, the control u"(t) of the form (5), (37) is applied to the input of the system (36). Under the action of this
control, the system (36) changes from the state y"(7;) to the state y"(7;,1). The operation of the algorithm ends
at the moment ).
As in the linear case, it turns out that at a certain agreement of the values h, §(h) and a(h) the function u"(-)
is an approximation of u. (-). Before proceeding to the proof of this fact, we give a lemma that will be needed later.
Lemma 5. ¢ is possible to specify such a number do > 0, such that the inequality is satisfied uniformly over all
teT,yo € RY, u() € Ly(T;R").

t t
[ttt < <|yo|?v - |u<s>|£ds) .
0

Here y(-; yo,u(-)) is the solution of system (1) with initial state (2) generated by u(-) € Lo(T;R").
Lemma 6. Let a(h) — 0, 5(h)a=2(h) — 0 at h — 0. Then we can specify such a number hy € (0, 1), such that
Jorallh € (0,hy), t € T forsome positive dy1,d12, d13, the inequalities are true.

max_ e1(r;) < dyp(a 46+ h2671), (38)
i=0,m}—1
9 9
/ (1) [2dr < (1 + dmaor?)/ o (7) 27 + dus (B2(08) " + 5a1), (39)
0 0

where £1(t) = |y"(t) — y(t)|%, a = a(h), § = §(h).
Proof. Consider the change in the value of 1 (¢) at ¢t € T. Fort € 6; = [7;,T4+1), ¢ = 0,m — 1, we have

d€1 (t)

i 2(y" (1) —y(t), F(t,y" (1)) = F(t,y(1) + Blu] —u.(t))) <
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3
< —2wer (8) + 2(y" (1) — y(1), Buf — u. (1)) < —2wer(t) + > Lis(b), (40)

where
Ii(t) = 2" (1) — &, B(u} — u.(1))),
Ioi(t) = 2|| Bl|A(|uf! | + |ux(8)],),

Ti+1

Bi(®) =2 B (ul -+ s (Olw) [ 13(6) = (s) s

Ti

From (40) follows the inequality

e1(Tit1) < ei(m) — Qw/ h e1(s)ds +/ " lei(s)ds. (41)

t
< 95,(t) + 25 / 19 (s) — ()| 2ds,

therefore .
—weq (1) > —2weq (t) — 2w§/ |yh(s) - y(s)ﬁvds

Thus, at ¢t € §; the inequality is true
t
—2we (t) < —we(m;) + 2w5/ 19" (s) — y(t)|Ads.

Hence, after integration at ¢ € [r;, 7;1+1], we obtain

t t
o / e1(s)ds < —wdey (73) + 2062 / 157 (5) — 5(s) 2 ds. 42)

i

From (41), (42), considering in (42) t = 7;,1, we deduce
~ 3 Ti+1
61(7'7;+1) S (]. - w§)€1(7'i) + Ili + Z/ Iji(s)ds, (43)
j=1"7i

where _—
fii = 4ws? / 15 () 3 + 9(5) 3 )ds.

2

Further, taking into account the definition of ul? (see (5), (37)), we conclude that the following inequality holds

/ T (1) + ol 2 Jun(8)P))dt < 0. (44)

It’s not hard to see that .
/ Lo (t)dt < coh® + Iy, (45)

where .
L= / (b2 + s (1)]2) .

In turn, by virtue of (5), (37) and (3), the inequality is true

[ull, < a ter(h+e1(r)),
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therefore .
5/ [ul(s)|%ds < 262022 (h? + e1(T3)), (46)
hence,
Tit1 i
5/ |u(s)2ds < 26%a~2¢2 Zel(Tj) +OR* | . (47)
0 =0
Considering (47), we obtain
i _— i
Y h<s / |u. (5)[2ds + 20c0h*a 2 + 230%™ Y " ei(r)). (48)
=0 0 =0
Then we have .
/ Iy (t)dt < In; + I, (49)

where Tis1
B = IBI75 [ (5" (6)fk + loGo) .

7

By virtue of lemma 5, for all i = 1, m, the following relation is correct

/Ofi(lyh(s)l?v +15(s)[%)ds < e (1 +/0

T4

<w%gi+m4$%@>. (50)

Then,

i

jlj SCg(g 1+ ij s Zf3j§04 5+Zj2j .
7=0 7=0 7=0

In this case, taking into account (49), we conclude that the inequality holds

% Tit1 % ~
Z/ Igj(s)ds < C55+CGZIQj. (51)
j=0"Ti j=0

Then from (45), (47), (48), and (51), we obtain

Jj=0

i ~ i1 i
> <11j +/ (I (t) + Igj(t))dt) < erh?57 4 egd + ¢ (52a—2 > eilr) + §h2a_2> (52

=0 i =0

In turn, from (43), taking advantage of (44) and (52), we derive the estimation

Ti+1
aﬁwﬁ+a/ (u ()2 — [ (3)]2)ds <
0

< e1(0) + erh?07 ! + es6 + codh®a™? + co8?a Y e (7). (53)
§=0
By virtue of the discrete Gronwall inequality (see lemma 1) from (53), we have

Tit+1 h
Am)ta [ i) <
0

Tit1
< (50(0) + erh?67 1 + cgd + codh?aT? + a/ | (s)%ds) exp{co(i + 1)6%a?}. (54)
0
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Note that
£1(0) < B2, exp{eo(i 4+ 1)6%a2} < exp{co¥a—?}.
Furthermore, if §(h)a~2(h) — 0 at h — 0, then the inequalities are satisfied at b € (0, hy), hy € (0,1)
exp{co¥da 2} < 1+cipda™2, da~? < e,
where Cci90 = ClO(hl) >0,c11 = Cll(hl) > 0.
Thus, in view of (54) at h € (0, hy), i = 0,m — 1, the inequality is true
-

Ti+1 Ti
e1(Tig1) + a/ |uh(s)|3ds <oa(l+ 012(5&_2)/ |u*(s)|fd8 + 013(h2(5—1 —+0),
0 0

from which inequalities (38) and (39) follow. The lemma is proved.

By means of lemma 6, it can be proved that

Theorem 2. Let the conditions of lemma 6 be satisfied. Suppose also h?(a(h)§(h))~t — 0 at h — 0. Then, there
is convergence of u (-) — u.(-) at h — 0.

As in the case of a linear system, we can write out an estimate of the convergence rate of the algorithm.

Lemma 7. Let the conditions of Theorem 2 be satisfied. Let also the function y — f(t,y) be a Lipschitz function,
r < N,rank B =r. Then at h € (0, hy), the following estimate of the convergence rate of the algorithm takes place:

9
/ [u"(s) — uy(s)2ds < dig(a/? + 62 + h67/2 4 ha™ V% + 6072 + h2(ad)Y). (55)
0

Proof. The proof of the lemma is similar to the proof of Lemma 4. Indeed, let L be the Lipschitz constant of
the function f. It is easy to see that at a.e. ¢t € d;, the following relation is true

él(t) < —2w51(t) + 141'(75) + Igi(t) < I4i(t) =+ Igi(t), (56)

where
Lis(t) = 2(y" (1:) — y(7:), B(ul! — w.(1))).
Note that the inequality is true at ¢ € §;

t
/ 141(8)(13

therefore (see (49)) for all t € §;, the estimate is true:

< e1(r) + 2||B||* I,
N

t
[ 0l + Buo)ds| < ea(r) + B+ (1421 B (57)
Ti N
Under the conditions of Theorem 2, we can consider that at h € (0, hq ), the following relations take place:
max 51(7’1‘) < kl, 50[72 < kg. (58)
1=0,mp,
Using (39), we obtain
9
/ [u"(s)[3ds < ks(1+ a2+ K25 ta™h). (59)
0
In turn, by virtue of (46), (50), (58), (59) and lemma 6, the inequalities are true at h € (0, hy)
Ini < kyd + k5627 2(h? + e1(1)) < ke, (60)
Toi < ko6 + kg(s/ Jul(5)[2ds < kod + k(2 + 6%a~2) < k11(6 + h2a~ V). 1)
0

In view of (58)
a ™l < ko2 < kgt
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In this case, taking into account (57), (60), (61), from (56) we obtain the relations valid at ¢ € ¢;
e1(t) < 2e1(1) + k11 (0 + h2a™1) < 2e(7y) + k(6 + A2571). (62)
Hence, by virtue of (38) and (62) at ¢ € ¢, there is a chain of inequalities
t t
[ 6 = wods| < s | [ G = 906) ~ S50 + Tl uo))is| <
0 r 0 N
t
< kis (s}”(t) +e1?(0) + L/ a}/z(s)ds) < Eigla+ 8+ h251 + h2a~ )2,
0
In addition, similarly to (33), (34), the estimates are established
9
[ 1)~ wa(o)s <
0
9 9
<9 / (1 (5) — u(5), wa (5))ds + drada—2 / . ()[2ds + dis (B*(a8) ! + 0 1), 63)
0 0
t
sup / (u"(5) — un(s), us(s))ds| < krg(a+ 6 + h26~1 + h2a~H)1/2, (64)
teT |Jo
Lemma 3 is used to derive inequality (64). Inequality (55) follows from inequalities (63) and (64). The lemma
is proved.
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Abstract. In a finite-dimensional Euclidean space, the problem of pursuing of a group of evaders by a group
of pursuers is considered, described by a linear non-stationary system of differential equations with fractional
Caputo derivatives. Sets of admissible players’ controls — compacts, terminal sets — origin of coordinates.
Sufficient conditions have been obtained for the capture of at least one evader and all evaders under the condition
that the evaders use the same control. In the study, the method of matrix and scalar resolving functions is used as
a basic one. It is shown that differential games described by equations with fractional derivatives have properties
that are different from those of differential games described by ordinary differential equations.
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1. INTRODUCTION

One of the directions of development of the modern theory of differential games is the study of pursuit-evasion
problems with participation of a group of participants [ 1—4], and besides deepening of classical methods of inves-
tigation the search of game problems to which previously developed methods are applicable is actively conducted.

Differential games with fractional derivatives were first considered in [5], where the method of scalar resolv-
ing functions was used for the study. Differential games with fractional derivatives based on the Hamilton-Jacobi
equation were studied in [6]. In [7], the problem of pursuit by a group of pursuers of a single evader in differential
games described by equations with fractional derivatives was considered. The problem of conflict interaction be-
tween a group of pursuers and a group of evaders in games with fractional dynamics was considered in [8], scalar
resolving functions were used for analysis. A. A. Chikrii, in his paper [9], notes that scalar resolving functions
attract a terminal set with images of some multivalued mappings that occur in a cone stretched over this set, which
limits the possibilities for the pursuer’s maneuver, and also proposes to use matrix resolving functions to analyze
two-person pursuit games. In [10], matrix resolution functions were applied to study the problem of pursuit by a
group of pursuers of a single evader described by a stationary linear system with fractional Caputo derivatives.

In [11], the problem of pursuit by a group of pursuers of a group of evaders in linear stationary differential
games with simple matrices under the condition that all evaders use the same control was considered. Sufficient
conditions for catching at least one evader were obtained. The pursuit problem in which all evaders use the same
control will be referred to as the coordinated evaders pursuit problem.

In this paper we consider the problem of conflict interaction between a group of pursuers and a group of evaders
in a differential game described by a nonstationary linear system of differential equations with fractional Caputo
derivatives. Underthe condition that the evaders use the same control, sufficient conditions for catching at least one
evader are obtained, using matrix or scalar resolving functions. The study of the nonstationary case is supplemented
by some results for games described by linear stationary systems with a simple matrix.
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ON THE PROBLEM OF PURSUING A GROUP
1. PROBLEM STATEMENT
In the space R¥ (k > 2) we consider a differential game of n +m persons: n pursuers P, . . ., P, and m evaders
FEy, ..., E,,, described by a system of the form
(D(a))zij =A;;j(t)zj +ui —v,  z;(to) = z?j, u; € Us,v €V. (1)

Here,i € I = {1,...,n},j € J = {1,...,m}, zij,u;,v € RF, U;, V are compact sets R*, a € (0,1), D™z is
Caputo derivative of the function x of order « [12], A;;(t) are continuous matrix functions of order k x k. Terminal
sets M; of the form

M5 = M;; + M),

177

where M;; is a linear subspace of R¥, M are convex compact sets from L;; — the orthogonal complement of M;;
to R*. We consider z; ¢ M; foralli I jeJ.
The actions of the evaders can be interpreted as follows: there is a center that, for all evaders E, ..., E,,,

chooses the same control v(-).
Let v : [tg, +00) — V be a measurable function, which we will call admissible. The prehistory of v.(-), at the
moment ¢ of the function v(-), will be called the contraction of the function v at [tg, t].

2. SUFFICIENT CATCHING CONDITIONS

Definition 1. We will say that a quasi-strategy I/; of the pursuer P; is defined, if a mapping U?, that puts the
measurable function u; (t) with values in U; in accordance with the initial positions of 20 = (2;,7 € I, j € J), the
moment ¢, and an arbitrary control prehistory v;(-) of the evader E;, j € J, is defined.

Let’s denote this game by G(n,m, 2°).

Definition 2. A capture of at least one evader occurs in the game G(n,m, 2°), if there exist moment 7' > 0,
quasi-strategies Uy, . . . ,U,, of pursuers Py, ..., P, such that for any measurable function v(-), v(t) € V.t € [to, T],
there exist moment 7 € [to, 7] and numbers p € I, ¢ € J, for which z,,(7) € Mp,.

Let us introduce the following notations: E° is a identity matrix of order k x k, ;; : RF — L;; is an orthogonal
projection operator,

+o0 t
F(ﬂ)Z/O 7l ds, Tth(t)Zﬁ/ (t—5)"" f(s)ds

0 (t T)OHI 0
Gij(th) F(a) E ’
Gt 7) =+ J(A (DG (7)), 1=0,1,..., ®(t,7)= ZG
GU(t,m) = E°, GU'(t,r) =+ Jy(Ai ()Gt 7)), 1=0,1,..., Ty(t71)= ZG

Wij(t, T, ’U) = ﬂ-ij(bij(tv T)(UZ - ’U), Wij(t, ’7') = m Wij(t, T, ’U),
veV
Int A, co A are the interior and the convex hull of the set A, respectively.
Assumption 1. There exists a mapping q : I — J, such that forall i € 1,t > to, T € [to, t] the following condition
is satisfied
W?q(?) (tv T) 7é (Z)

Remark 1. Fulfillment of assumption 1 will allow further organizing the pursuit of evaders, so that each pursuer
will carry out the capture of “its” evader.
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It follows from the measurable choice theorem [13, Theorem 8.1.3], that for every ¢ € I for any > t(, there
exists at least one measurable selector ;4 (£, 7) € Wigq(t,7) forallt > to, 7 € [to,t]. Let us choose arbitrary
measurable selectors v;,¢; (¢, 7), fix them and denote

t

Eiq(i)(t) = Tig(iy Yiqi (£, tO)Z?q(i) +/t Yiq(s) (t, T)dT.
0

Theorem 1. Let Assumption 1 be satisfied, and there exist T > to,1 € I such that §,)(T) € Ml%(l). Then a

capture occurs in the game G(n,m, 2°).
Proof. Let’s consider the multivalued mapping (7 € [to,T],v € V):

Ul(T,7,v) = {w € Up : mqy@igy (T, 7) (w — v) — 90y (T, 7) = 0}

By assumption 1, U;(T,7,v) # 0 forall 7 € [tg,T],v € V. It follows from the measurable choice theorem
[13, Theorem 8.1.3], that there exists a measurable selector u} (7,v) € U;(T, ,v). We assume the control of the
pursuer P, is equal to

w(r) =uj(r,v(r)), T € [to,T].
The controls of the other pursuers are set arbitrarily. The solution of the Cauchy problem for the system (1) is
represented as [14]
T
Zlq(l)(T) = ‘Illq(l)(Ty tO)Z;)q(l) +/ (plq(l) (T, S)(UZ(S) — v(s))ds,
to

therefore
T
Tiq) 21g() (1) = &gy (T) +/ (T1g) Piq() (T, 8) (wi(s) — v(5)) =Ygy (T, 8))ds = &gy (T) € My
to

This means that a capture of at least one evader occurs in the game G'(n, m, 2°). The theorem is proven.
In the following, we will assume that &;,(;)(t) ¢ MZ.Oq(Z.) isforalli € I,t > t,.
Consider an arbitrary diagonal square matrix A; of order k; x k;, where k; is the dimension of L;,(;), of the

form

i1 0 ... 0
0 Ao ... 0 .

Ai = : - . = diag(\i1, iz, - -+ Aik, )-
0 0 ...

We will identify the matrix A; with the vector (A1, ..., Az, ). We will understand the inequality A; > 0 coor-
dinatewise. Let us introduce multivalued mappings

Due to the properties of the parameters of the conflict-controlled process, the mappings M; (¢, 7,v) are (7, v)
measurable mappings [15]. Let us define the scalar functions

MN(t,7,0) = sup  min\y(t,7,v), Ji={1,... k}. ()
AiEMi(t}T,’U) leJ;

Assumption 2. Forall t > to, T € [to,t],v € V, an exact upper bound is achieved in (2).
We consider this assumption to be satisfied. Let us define the set

M (t,7,0) = {Ai(t, 7,0) € My(t,7,0) : N(t,7,0) = En}]n Xi(t, ,0)}.
€J;
It follows from [15], that under the assumptions made, M (¢, 7, v) is measurable by (7, v) and closed-valued
at any ¢ > 0. By the measurable choice theorem [13, Theorem 8.1.3], for each ¢ € I in M (¢, 7,v), there

exists at least one selector measurable by (7,v) at any ¢ > 0. Let us fix these selectors and denote them by
Aj(t,7,v) = diag(A\j, (£, 7, v), . . ., Ajy, (¢, 7,v)). Let further

S(t,T) = vlg‘f; r?gx?gijn A (t, 7,0).
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Lemma 1. Let assumptions 1, 2 be satisfied,
t

lim o(t, s)ds = +o0. (3)

t—+oo to

Then, there exists a moment T’ > t( such that for each measurable function v(-), v(t) € V, t € [to, T, there exists a
number | € I, such that for all p € J; the inequalities are true:

T
/ Aip(Ty5,0(s))ds > 1.
to

Proof. Let v(-) be an arbitrary admissible function. Then forall ¢ > g, s € [to, ], € I, p € J;, the inequalities
are true:

Ip(t,s,v(s)) 2 A (t, s, v(s)). “4)
In addition, relations are true,
t 1 t
max [ A(t,s,0(s)) / AL (t, s, 0( / max Aj (t,s,v(s))ds = — [ 0(t,s)ds
lel /to ! ‘o g ! 1 L€l i( n Jy,

It follows from condition (3) that there exists a number 7' > tq, for which
1 /7
= / 0(T,s)ds > 1
n Ji,

T
ma&x/ AT, s,v(s))ds > 1,

T
/ AT, s,v(s))ds > 1
to

From the last inequality and inequality (4), the validity of the statement of the lemma follows.
Let’s find the number

Hence,

so there is a number [ € I, for which

t
To=inf<t >ty : infmaxmin [ N\ (¢ ds>15.
0 { = v(:) 1€] pEJL Jy, lp( -5,0(s))ds > }

Considerthe sets (i € I, p € J))

Let’s determine the values

. _Jinf{t :t € Tip(v(-)}, i Tip(v(-)) #
tip(v()) = {+oo, if Tip(v()) =

0,
0.

Assumption 3. 1) Forall T € [ty,Ty],v e V,l € I, J) C J, selectors B;(Ty, 7,v) = diag(B1(To, T,v), ...
-y Bk, (To, 7,v)) where
Al (To,m,v), ifp € JP,

T =
ﬁlp( 07T7U) {0’ ifp¢=]l07

satisfy the condition By(Ty, T,v) C My(Ty,T,v).

2) f B (Ty, s, v(s ))Ml%(l)ds C Mlq(l)

Theorem 2. Let assumptions 1—3 and condition (19) be satisfied. Then, at least one evader is captured in the game
G(n,m, z°).
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Proof. It follows from lemma 1, that T, < +oc0. Let v : [to,Tp] — V be an arbitrary admissible function. Let
us introduce the functions B} (7o, t,v) = diag(8;; (1o, t,v), . .., By, (To, t,v)), where

/\zkp(TO’ta'U)v ift € [to,tzkp(’l}('))),

Brp(To, t,v) = {07 ift € [t},(v(")), To)-

By assumption 3, B} (Tp, ¢, v) is a measurable selector of M;(Tp, ¢, v). Consider multivalued mappings
Ui(To, t, 'U) = {ul S Ul . ﬂ_iq(i)q)iq(i)(TOa t)(ul — ”U) — PYiq(i) (To,t) S B:< (To,t, U)(MSI(Z) — Eiq(i) (Tg))}
Then U;(Tp,t,v) # @ foralli € I,t € [to, To], v € V, and hence by the measurable choice theorem [13,
Theorem 8.1.3], U;(1y, t,v) has at least one measurable selector u; (1, ¢, v). We define the pursuers’ controls by
assuming u; (t) = u} (7o, t,v(t)). We’ll show that this evaders’ control guarantees the capture of at least one evader.
The solution of the Cauchy problem of the system (1) has the form [14]

t
Zig(i) (1) = Wyg(e) (8, to)z?q(i) +/ Qg0 (L, 8)(ui(s) — v(s))ds,

to

therefore

To
Tiq(i)Zia(i) (T0) = Tiq(i) Yiq() (Tos to) 25y + / Vig() (To, s)ds +

to

+/t O(Wiq(i)@iq(i) (To, 5)(ui(s) — v(s)) — Yigi)(To, 5))ds =

To
= &iq(i)(To) +/t (Tiq(i) Piq(i) (To, 8) (wi(s) — v(8)) — Yig(s) (L0, 8))ds €

To
€ &iq(iy(To) + B} (Ty, s, U(s))(Mz%(i) — &iqi)(To))ds =

to

To To
= &iq()(To) <E0 — B} (T, s,v(s))ds) + B} (T, s,v(s))MZ-O )ds.
t

q(i
to 0

From the definition of B} (T, s, v) and lemma 1, it follows that there exists a number [ € I, for which

To
B} (Ty, s,v(s))ds = E°.

to

Then,
7o * 0 0
qu(l)zlq(l)(To) = / Bl (T(), S, ’U(S))Mlq(l)ds C Mlq(l)'

to
The theorem is proved.
Remark 2. Scalar resolving functions are a special case of matrix resolving functions, since they are represented
in the form AE°, where ) is a non-negative real number.
Example 1. Let the system (1) k = 2, n = m = 1,tg = 0, Aj1(t) = Oforallt, V = {0}, 2{; = (2,1),
My, = {0}, U1 = {(u1,u2) s ug =0,uz € [—1,1]} U {(ug,u2) :us = 0, ug € [—-1,1]} U {(u1,u2):uy =
= ug € [-1,1]}. Then

)a—l (t _ S)a—l

Ui (t,to) = B, @u(t,s) = s ()

NGO
Let’s take 711 (¢, s) = 0 forall (¢, s), then &1 (¢) = 29,

Ml(t,s,v):{<8 SQ),AQZW,AG[OJ]}U
U{(A2o/2 8>,A2:W,AE[O,1]}U{(/\QO/2 f),&:W,Ae[m]},

Wn(t,s,v) = Wu(t,s) = Ul.
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Al(t,s,v) = su min Ay (¢, s,v) = w
1% 9 - AEMl(IZSJ)) leJq 1\by o, - 2F(O[)
Hence,
) (t _ S)Oz—l (t _ 8)01—1 (t _ S)a—l
M7 (t =d S(t _
1(ts,v) 1ag( () T(a) . O(t,s) 2T (a)
We have lim;_, o f(f §(t,8)ds = +00,50 Ty = (2T (v + 1))/, Let T} = Ty — (T'(a + 1))/ The control of

pursuer P; has the form

B (_]_7_1), te [O,Tl)v
uy(t) = {(_170)7 t e [Ty, Tol,

then [14]
21(To) = 27 +

1 7o a—1 _
@A (To — 8)* uy(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

A0
=0 %)
does not allow us to prove the solvability of the pursuit problem, since in this case the condition —A2Y;, € U; — v

is satisfied only for the zero matrix A.
Example 2. Consider the game G(n, 1, "), in which the system (1) has the form

(D) 21 = tz;0, 0
{(Dm))m cu—w,  AO=E ©)

Here Zi = (Zil,ZiQ) e R2k, Uz =V = {U S Rk : ||'U|| g 1}, Mi*l = {(Zﬂ,zig) € RQk L Zi1 = 0}, SO (Z S I)
M = {(zi1, 2i2) € R 2 2y = 20 = 0}, My1 = {(2i1, 2i2) € R* 1 251 = 0},
0
Lit = {(zi1,2i2) € R¥* 1 25 =0}, 1 = (EO 8) )

Let’s denote

B (t—7)t B alt—7)22 "t +71) _(t=1)*(t+ar)
p(t,7) = T(a) q(t,7) = (20 + 1) ;o Tt T) = T T(at2)
Th 14
en [14] (B r(t,7)E° _ (pt,T)E° q(t,T)E°
\I’i(taT) - < 0 EO ) ) q)i(taT) - < 0 p(t,7’)E0> .
Hence,

Wi(t,1,v) = q(t, 7)(V —v), Wi(t,7) ={0}, ~(t,7) =0, &) =mPT;(t,0)z) =20 +r(t,0)z,
(&), v) + V(&@), )2 + &P = Jv]?)
1€ @)1 ’

Assertion. Let 2%, = 0 foralli € I and 0 € Int co{z,,i € I'}. Then a capture occurs in the game G(n, 1, 2°).
Proof. In this case, &1 (t) = 29 forall ¢ > 0. It follows from [16], that

Ai(t,T,0) = q(t, 7)

0(t,7) = minmax \;(t, 7,v) > q(t, 7)dg

for all ¢, 7 with some &g > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the game G(n, 1, 2°). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.
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3. SUFFICIENT CAPTURE CONDITIONS IN THE LINEAR STATIONARY CASE
WITH SIMPLE MATRICES

Theorem 3. Let in the system (1) for all i, j A;;(t) = a;; E° for any t, M ={0},to=0,U; =V ={v:|v] <1},
there exists a mapping q : I — J such that a;q;y < 0 foralli € I and

0 € Int co{z) .y,i € I}. (6)

iq(i)”

Then a capture of at least one evader occurs in the game G(n,m, 2°).
Proof. In this case

Vi) (t,t0) = Erjalaigit®, 1), Pige(t,7) = (t = 7)* 7 By ja(aiym (t — 7)%, a),

where E,(z, 1) = Y2 2! /T(lp~1 + p) is the Mittag-Leffler function. Assumption 1 is fulfilled.
Let’s take v;4(;) (¢, 7) = Oasselectorsforalli € I,¢ > 0,7 € [0,t]. Then&;q;)(t) = Tiq(iy £ /a(@igit®, 1)z?q(i).
Let

AMz,v)=sup{A>20: - zeV —v}, = Eél‘r/lr?eax)\( iq(i)) V), a= rlnei}laiq(,»).

It follows from condition (6) and from [16], that § > 0. Let us show that there exists 7" > 0 such that for any
admissible function v(-) there exists [ € I, for which

T
Eyjo(aiqyT*,1) — / (T = 8)* 7 By ja(aigy (T — 8)*, @) Mz ), v(s))ds < 0. (7
0

Consider the functions

t
hi(t,v(-)) = E1ja(aigat®, 1) — /0 (t — s)"‘_lEl/a(aiq(i)(t —5)%, a))\(zioq(i), v(s))ds.
It follows from [17], that for all ¢ > 0, 7 € [0,¢], ¢ € I the inequalities hold

En o (@i (t —7)% a) 2 Eyala(t —7)% a).
It follows from Theorem 4.1.1 of [18], that forall ¢ > 0, 7 € [0, t], the inequality E4 ,(a(t —7)%, ) > Oistrue.
From the last two inequalities we obtain
Nt
Z/ (t—s) El/a(aiq(i) (t —8) )M 2ig(iy, v(s)) ds >
=10

i=1

"Eyja(a(t —5)%, @) max Mzig(iy, v(s)) ds >

>0 El/a(a(t —5)% a)ds = 6t" By (at”, a + 1),

t
/t—s
0

t

/t—s

0

hence
n

F(t) =Y hi(t,v(-)) <Y Eijalaig@t®, 1) — 6t By o (at®, a + 1).
1=1 1=1
Since a;4(;) < 0 forall ¢ € 1, it follows from [18] that the asymptotic representation is valid at t — +oco

1 1 1 1
E ot 1) =——F—— 4+ 0 E t )=——+0|
l/a(azq(z) 3 ) aiq(i)taf(a T 1) + <t2a), l/a(a O ) ate + (tz()‘)’

F(t>=—im +O<ta>’
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hence lim;_, o F(t) < 0. So limy_, 400 Y i hi(t,v(-)) < 0. Since > ., h;(0,v(+)) > 0, there exists ' > 0, for

which for any admissible function v(-) the inequality Y """, h;(T, v(+)) < 0 is true. Thus, inequality (9) is proved.
Let

t
Ty = min{ inf min (El/a( aig(i)t*, 1) — /0 (t =) E1 o aiqn)(t — $)%, a)/\(z?q(i),v(s))ds) < O} .

v(-) i€l

It follows from inequality (7), that T, < +oco. Let v(-) be an admissible fleeing control. Consider the sets

¢
Ti(v(+)) = {t > 0: Eyja(aiginTy, 1) — /0 (To — 8)* ' B o (@i (To — s)a,a))\(z?q(i),v(s))ds < 0} .

Let the following be

(0()) = inf{t : t € T;(v(-))}, ifT;(v()) #0,
. ())_{m itT,(0()) = 0,
o A(zz-qw(t)), € 0,1:((),
ot {07 € [t:(v()), To).

Let’s set the controls of the pursuers P;, ¢ € I, assuming

ui(t) = v(t) — ﬁi(t,v())z?q(i).
The solution of the Cauchy problem of the system (1) is represented in the form [19]

To
Zig(i)(To) = E1/a i) Ty, 1)2’?,1@) +/O (To — ) ' E1 o (aiq) (To — 8)*, @) (ui(s) — v(s))ds =
To
= (El/a(a'iq(i)TOav 1) - /0 (TO - 8) El/a (azq(z)( 0 — 5) Q)BL(S,U(S))dS> Z?q(z) =

ti(v(-))
= <E1/a(aiq(i)T§‘, 1) — /o (T — s)“‘lEl/a(aiq(i) (To — 5)%, @) Bi(s, v(s))ds) z?q(i).

It follows from the previous proof that there exists a number [ € I, for which z,;)(To) = 0. The theorem is
proved.

Example3 Letk=2,1=1{1,2 3 4}, J =11, 2} Aij(t) = ai; E° i <0,U; =V ={v: ||v|| 1}, 29, =
(1,3), 28 = (=1,3), 281 = (=1, 1), 2§; = (1,1), 295 = (0, =1), 255 = (=2, 1), 28, = (=2, -3), 24, = (0, -3).
Define a mapping ¢ : I — J as follows: ¢(1) = 2, ¢(2) = ¢(3) = ¢(4) = 1. The condmons of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z°). Note that 0 ¢ Int co{z%,i € I}
and 0 ¢ Int co{2%,i € I}.

We show that if a;4(;y > 0, then condition (6) in Theorem 3 does not guarantee capture.

Example 4. Letk = 2,n =3, m = 1,1 = {1,2,3}, Mj; = {0}, to = 0, 20, = (0,1), 23, = (1/2,—/3/2),
29 =(-1/2,-v3/2),U; =V = {v: Hv|| <1} System(l) hasthe form

(D(l/Q))Zil = zj1 +u; — 0.
Let’s take v(t) = 0 for all ¢ > 0. Then we have

zi(t) = Ea(Vt,1)2% +/O (t — s)"Y2Ey((t — 5)'/2,1/2)u;(s)ds.

Suppose that there exist 7' > 0, function w;(-), [ € {1,2, 3}, for which z;; (T") = 0. Then [20, p. 120, formula
(1.19)]

Es(VT,1) = |[Es(VT, 1)z} | =

<

/ ) TV2E (T — 5)'%,1/2)w(s) ds
0

/ $) V2B, (T — 5)Y/2,1/2) ds = VT E»(VT,3/2).
0
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By virtue of [20, p. 118, formula (1.4)],

1

Ey(VT,3/2) = 77

(B,(VT,1) —1).

Relation (7) entails the inequality
Ey(VT,1) < B2(VT,1) — 1,

which is impossible. Consequently, in this game G(3, 1, V), capture does not occur.

4. CAPTURE OF ALL EVADERS

In the space R* (k > 2), we consider a differential game G(1,m, z°) involving 1 4+ m persons: one pursuer P; and
m evaders F1, ..., E,,. The law of motion of the pursuer P; has the form

(DNzy = azy +u, 21(0)=2Y, weV;
the law of motion of each of the evaders E; is of the form
(D)y; = ay; +v;,  y;(0) = yJQ» v; € V.

Here V = {v : |lv|| < 1}, a € (0,1), a € R, D(®)f is the Caputo derivative of the function f of order «,
jeJ={1,...,m}. We consider z{ # y? forall j € J.
Let’s denote
f(t) = Eyjq(at*,1), F(t) =t"Ey /o (at®, a+1), zjo- = y? — 9.

Lemma?2. Leta <0, T, > T >0,
T>
h(t) = / (t — ) By jalalt — 5)* a)ds.
T

Then limy_, o, t*h(t) = 0.
Proof. By substituting ¢ — s = 7 we get

t—T1
h(t) = / T By o (ar®, a)dr.
t—T5

By virtue of formula (2.32) from [20, p. 136], the inequality
M

a?

|E1/a(at®, a)| < M >0,

2

is true for all t > T'2, therefore

()] = < /tt_Tl MT:_ldT:M(ln(t—Tl) —In(t — Ty)).

—Ts T

Ty
/ To‘_lEl/a(aT(’, a)dr
t

— T2

Then

T, — T Mt(Ty — T
|t0‘h(t)<Mta(ln(t—Tl)—ln(t—Tg)):Mt“ln(l—i— 2 1>< (1 =T)

t— 15 t—"1T5
Since lim;_, 4 o, % = 0, then lim;_, o, t*h(t) = 0. The lemma is proved.
Theorem 4. Let a < 0, M{; = {0} forall j € J, thereis vy € V, ||vol = 1, such that (y§ — 29, v0) < 0 for all

j € J. All evaders use constant control vy, the pursuer Py knows vy. Then a capture of all evaders occurs in the game
G(1,m, 2%).
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Proof. 1. We show that there exist a moment 7,,, and a vector w,,, ||u, || = 1, for which the equality 4 (7,,) =
ym(Tr) holds, where 21 (¢) is the trajectory of the pursuer Py, using constant control .

Let the pursuer P; uses the constant control « on the interval [0, 7},,]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

t
i (t) = f(B)21 + / (t=5)" " Byja(alt — )%, a)ds - u = f(t)a) + F(t)u,
0
Ym(t) = f(O)ym + F(t)vo.
The 21 (t) = ym (t) can be represented as
F(tyu = f(t)22, + F(t)vo.
Let us require that ||u|| = 1. For this purpose, consider the function

g (t) = [ f(O)zm + F()vol* = F2(t) = £2() 201> + 2f () F (£) (2, vo),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(¢) > 0, F(t) > 0
for all ¢ > 0. Therefore, the equation g,,(t) = 0 is equivalent to the equation

(@) 2(28,,v0)

S . (8)
F(t) ll2m 12
Note that lim;_, ¢ % = +o00. By virtue of Theorem 1.2.1 of [ 18], we have the asymptotic estimates
1 2a 1 o
f(t)=—m+0(l/t ), Ft)=——+0@1/t%), ©)

therefore lim;_, | % = 0. Hence, equation (8) has at least one positive root 7,,,. We now assume that the

control of the pursuer P; on the interval [0, T,,,] is equal to
f(Tm)

_ 0
Um = F(Tm)zm + vg.

We obtain that at time T7,,, the pursuer P; will realize the capture of the evader F,,.

2. Let us further construct a control for the pursuer P, that guarantees the capture of F,,, 1. Suppose that at
[T, Trn—1], the pursuer P; uses the constant control « (the moment T;,,_; will be defined below). Then, by virtue
of the Cauchy formula [19] (¢ > T},,),

T t
o1(0) = 128+ [ (0= 9" Byalalt - 9% a)ds [ (6= 5" Byalat - )%, )ds
0 T

Ym—1(t) = [(t)yp—1 + F(t)vo.
Let’s denote

H,(t) = / (t—s)* "By jalalt —5)*, a)ds, hp(t) = /0 " (t—s)* "By 0(alt — 5)%, a)ds.

T

Note that H,,(t) + hy,(t) = F(t). Then the equality z1(t) = y,,—1(t) can be represented as
f(t)x? + hin (O + Hp (u = f(t)y?n—l + F(t)vo

or
H,,(tH)u = f(t)zg%l + F(t)vg — hp ()t
Consider the function
gm—1(t) = || f ()21 + F(t)vg — hm (t)um|* — Hy, (1)
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Then
Im—1(Tm) = ||f(Tm)ZEn—1 + F(Trm)vo — hm(Tm)“mH2~
Since F(T,,) = by (T)) and F(Ty,)(vo — tr) = —f(T)n)2Y,, then

Gn—1(Tm) = 1 (T)zm 1 = F (L) 2 I* = f2 (Tl 21 — 2l > 0.
The function t*g,, 1 (t) can be written as

tgm—1(t) =t f2() |71 |7 + 26 F () F(£) (21, v0) — 26 F () o () (2,1, ) —
— 2LYF () o (8) (V0 Uy ) + 26 F (£) By (8).

By virtue of asymptotic estimates (9) and lemma 2, we obtain that the following relations are true

: o o 1 : o £2 _
t—ll?oot f(t)F(t) - agr(l _ 04)7 tggloot f (t) - 07

lim () hm(t) =0,  lim t“F(t)hn(t) = 0,

t——+oo t—+oo

so it follows from the inequality (29, _;,vo) < 0, that lim;_, o, t“g,,—1(t) = —o0, and hence there exists a moment

Tn—1 > Ty, for which g,,—1(T,,—1) = 0.
Choosing now on the interval [T}, T},,—1] control ., of the form

Um—1 = f(Tmfl)qufl + F(Tmfl)vo - hm(Tmfl)um/Hm(Tmfl)a

the pursuer P; at the moment 7,,,_; will catch the evader E,,,_1.
3. Let’s denote

t

T;
hl(t):/ (t— 5)* By jalat — 5)* a)ds, Hk+1(t):/ (t— ) Eyjalalt — 5)* a)ds,

Tyt Trt1

sl(t):hm(t)um+~-~+hl(t)ul, §l(t):hm(t)+~~-+hl(t), l=m-—1,...,k+ 1.

Suppose that the vectors w,,, ..., ur+1 and the moments of time 7,,, < T;,—1 < --- < Tj41, guaranteeing
the pursuer P; to catch the evaders F,,,, ..., Fx1, are defined, and on the interval [T} 2, T)1] the vector w1 is
equal to

ki1 = f(Thr1) 241 + F(Tir1)vo — skt (Thsr)/Hrr2(Thr)- (10)

Let us further construct a control of the pursuer P;, which guarantees him to catch the evader E;. Suppose
that at [Tj41, T%], the pursuer P; uses the constant control u (the moment T}, will be defined below). Then for
t > Ty 1, by virtue of the Cauchy formula [19], we have

Tm, T7n—1
21(t) = f(t)a) + / (t = )" Eyjalalt— )%, 0)ds -ty + / (t= )" By jaalt — )%, a)ds -ty 4+
0 T

t

Trt1
S / (t — s)a_lEl/a(a(t —8)*, a)ds - ugy1 + / (t— s)o‘_lEl/a(a(t —5)%, a)ds - u,

Trt2 Tita
ye(t) = fF(t)yy + F(t)vo.
The inequality x4 (¢t) = y(¢) can be represented as
F@O2] + spa(t) + Hia (u = fO)yR + F(tyog mma - Hypa ()u = f(1)z — sp41(t) + F(t)vo.

Consider the function
gr(t) = [ F(t)2 = sk (t) + F(t)ool|> — Hiyy (8),
then
91(Tit1) = £ (Tre1)2 = 841 (Thra) + F(Thoga ool

It follows from the definition of the functions Hyo(+) and hgy2(-) that Hyyo(Tky1) = hgr1(Thy1)-
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Since sg41(Th+1) = Skt2(Trt1) + hkr1(Tkt1)uk41, then
Skt 1 (Tht1) = Sig2(Tit1) + Herz(Th1) g1 (11)
Using formula (10), let us write equality (11) as
k1 (Thr1) = f(Tig1) 2041 + F(Thg1)vo.

Then
91 (Tis1) = 1f Tes1) 2 — F(Tes)zp i I” = F2(Tos) 122 — 2044017 > 0.

Since Hy11(t) = F(t) — Sk+1(t), the function t* g, (¢) can be represented as

tgu(t) = t* PO RN + 26 F @) F (£) (2R, v0) + 2 |swr1 (£)]1*~
=2 (t)(sp41(t), vo) — 26 (t) (341 (1), 2) + 2" F(£)3p41(t) — 17851 (1).

It follows from lemma 2, that for any [ and p

lim %hy(£)h,(t) = 0,

t——+oo
therefore
. «@ 2 : a2 _ . @ r2 _
Jim s (1 = Jim 540 = lim 12720 = 0,
hence lim;_, . t*gi(t) = —oc. Therefore, there is a moment T}, > T} 1, for which g, (T%) = 0. Choosing its

control uy, on the interval [T}, T)] in the form of
up = f(Ti)zp + F(T)vo — sir1(Tk) /Hir1 (Th),

the pursuer P; at the moment 7}, will catch the fleeing F),. The theorem is proved.

Corollary. Let a < 0, there exists a hyperplane H such that y;? € Hforallj € J, 29 ¢ H, vy the unit normal
vector of the hyperplane H, directed into the half-space containing x%. The evaders use constant control vo. Then a
capture of all evaders occurs in the game G(1,m, 2°).

The validity of this statement follows directly from Theorem 4, since (y? —29,v9) < Oforall j € J.

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form
I =ary +u, Y;=ay; +vj, u,v; €V, je. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the game G(1,m, 2°), the pursuer P; will realize the capture of no more than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem 4 shows that differential games described by equations with fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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Abstract. In this paper, we solve the problem of assigning the desired characteristic polynomial of a linear sta-
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1. INTRODUCTION. PROBLEM STATEMENT

The Ackerman and Bass-Gura formulas are known from mathematical control theory [1, p. 360], used to solve
the problem of assigning the desired characteristic polynomial of a linear stationary system with one input and state
feedback, whose behavior is described by equations

t=Ax+bu, u=—flz, (1)

where x € R” is the state vector, u € R is the scalar control, A € R™"*", b € R™, f € R".
The characteristic polynomial of the system (1) is the characteristic polynomial of the matrix of the closed-loop
system A — bfT. Let us denote by

aN) = A"+ a4 ta,, AN =N G 4+ d,

characteristic polynomial of the matrix A and the desired characteristic polynomial of the matrix A—bfT. Suppose
that the matrix
X(A,0) = [b Ab ... A"flb]

is nonsingular, which corresponds to the controllability condition of the system (1).
According to Ackerman’s formula the required vector f is equal to

ff=10 ... 0 1] X(4,b)"'d(A).
According to the Bass-Gura formula

ff=(d-a)'H'X(A,0)",

where
Ap—1 Qp—o ... 1 an d,
ap—2 Op-3 ... 0 An—1 - dnfl
H = . . . o a= . ) d=
1 0 0 ai dy

109
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In papers [2, 3], the Ackerman formula and the Bass—Gura formula were generalized for systems with multiple
inputs and state feedback. The purpose of this paper is to obtain a generalization of the Bass—Gura formula for a
system with dynamic output feedback in the form of a first-order dynamic compensator.

It is known [4] that dynamic feedback significantly expands the possibilities of output feedback compared to
static feedback. Dynamic output feedback can include state observers as well as dynamic compensators of the
general kind. According to the seminal work [5], a dynamic compensator of order min{p., p, }, where p. and p, are
the controllability and observability indices of the system, respectively, can be constructed for a fully controllable
and fully observable system. In the case of a system with one input, the minimum order of the compensator is equal
to the observability index p,,.

Let us consider a linear stationary system with one input

i=Arx+bu, y=~Cux,

where x € R” is the state vector, y € R is the measurement vector, u € R is the scalar control, A € R"*", b € R”,
CeR>" | <n.
‘We will search for the control in the form of a dynamic compensator of the first order

u=—fly—z Zi+pz=q'y,

where f € R!, p € R, ¢ € R are the compensator parameters. The system with compensator is described by the
equations
b= (A—bfTC)x —bz, z=q"'Cx—pz. 2)

The characteristic polynomial of the system (2) is the characteristic polynomial of the matrix of the closed-loop

system
A-bfTC —b}
D= .
{ "C —p

We will search for the compensator parameters taking into account the properties of the given characteristic poly-
nomial of the matrix D. For this purpose, it is necessary to obtain an explicit formula for the feedback parameters
similar to the Bass—Gura formula.

2. KEY FINDINGS

Let’s denote by
a(\) =det(AE — A) = A" + a1 A" 4+t ap

the characteristic polynomial of the matrix A. Let us introduce a column vector g(A\) = C(AE — A)*b, where
(AE — A)* is the adjoint matrix to A\F — A.
Lemma. The characteristic polynomial of the matrix D is

det(AE — D) = (A +p)a(X) + (fT (A +p) + a7 )g(N). 3)

Proof. Following simple transformations in the determinant of the matrix A\E' — D, we obtain

det(AE — D) = det

NE—A4bfTC b ] PE—A+T O +p) 0 b ]
—'C Ap| 0 Atp|

= (A+p)a\) + (fT(A+p) +¢")COAE — A)'b = (A +p)a(A) + (f T (A +p) + 4" )g(N).

Here the det(A + bc™) = det A 4 ¢ T A*bis applied, where A is a square matrix, A* is a adjoint matrix to A, bisa
column vector, ¢! is a row vector [6, p. 133]. The lemma is proved.
The following theorem formulates necessary and sufficient conditions for the existence of a solution to the
problem and simultaneously describes the algorithm for calculating the compensator parameters.
Theorem. The characteristic polynomial of the matrix D can be arbitrarily set by choosing the compensator param-
eters f,p, q, only when
rank X (A4,b) =n, rankY (A4,C) =n,

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



BASS—GURA FORMULA FOR LINEAR SYSTEM 111
where
X(Ap)=[b Ab ... A"], Y(A,C)=[C CA]'.

Proof. Let’s denote by
d\) = A" A e d (4)

the desired characteristic polynomial of the matrix D. We will search for the compensator parameters from the
condition of coincidence of polynomials (3) and (4).
Let’s denote
ﬂ'k()\)z[/\k M=o 0a 1 s (_12[(12 as ... an}, d= [dg ds ... dn+1}.

Then
a(A) = X"+ [a1 a] w1 (A), Aa(A) = A"+ a N+ [@ 0] o1 (M),

d()\) = /\n+1 + dl)\n + d_ﬂ'nfl(/\).
Let us write the matrix (A\E' — A)* as a matrix polynomial [7, p. 91]
AE —A)* =BEN" P+ A N2 4 4 A,y

where
Al :14-‘1-C£1E7 A2:A2+a1A+a2E:AA1+a2E,

L] An—l = An71 + 0/11477‘72 +tap B = AAn—2 +an1E.
Note that by the Cayley-Hamilton theorem,
Ay =A"+ @ A" Vo 40, B = AA,_1 + anE = 0.

Let’s introduce the matrix

1 a ... Qap-—1
1 B . )
G =
0 0 ... 1

Vectors g(\) and Ag(\) can be written in the form
gA) =CAE—-A)b=C1[b Aib ... Ay_1b|m_1(N) = CX(Ab)Gmu_1(N),
Ag(A) = CbA" + C [A1b Agb ... Apb] w1 (N) =
= CbA" + CAX (A, b)Grn1(N) + Cb [a1 @] mue1(N).

The characteristic polynomial (3) of the matrix D is equal to
detAE — D) = X"+ a A"+ [@a 0] o1 (N) +pA" +p a1 @] o1 (V) +
+fTCOA™ + fTCAX(A,0)Grnoy(N) + fTCb[a1 @] oy + (fp+ ¢)"CX (A, 0)Grp1 (V). (5)
The given polynomial (4) and the polynomial (5) coincide if and only if
a1 +p+f1Cb=d, (6)

@ 0] +plar a]+f CAX(AL)G+ fTCblar a]+ (fp+q) CX(A DG =d. (7)
Let us denote » = fp + ¢. From equation (6) express p and substitute it into (7). Then (7) takes the form

[rT fTY(AC)X(ANG=d—[a 0] - (d —a)a a. )

Let f and r be solutions of equation (8). Then from relation (6), we obtain p = d; —a; — fCb,and g = r — fp.
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Equation (8) has a solution with respect to the unknowns f and r for any vector d, if and only if
rankY (4, C) X (A, b)G = n. The matrix G is nonsingular. The matrices X (A,b) and Y (4, C) have the dimen-
sions n x n and 2] x n, respectively. Hence, rank Y (A, C)X(A,b)G = n if and only if rank X (A,b) = n and
rank Y (A, C) = n. The theorem is proved.

Remark. It follows from the theorem, that the necessary condition for the existence of a solution to the problem
is the condition 2/ > n. Consequently, the problem has a solution at a sufficiently large number of output variables.
For example, at n = 5 the number of output variables should be at least 3. This is a significant limitation of the
considered output feedback.

If the conditions of the theorem are satisfied and 2] = n, then the solution of equation (8) is unique. If 2l > n,
then equation (8) has infinitely many solutions.

In the case of a unique solution

rT M =(@d-[a 0] —(d—ai)[ar a])G'X(Ab)'Y(AC) " )

Formula (9) can be considered as an analog of the Bass-Gura formula for a system with state feedback.
Let the conditions of the theorem be satisfied and 2/ > n. Then we can find a partial solution of equation (8):

[T fT=(d-[a 0] —(di—a1)[ar a]) G X(Ab) ' (Y(A4C)Y(A40) V(A C)"

3. NUMERICAL EXAMPLE

Letn=26,1=3,

—1.68 0.64 1.53 —-15 —145 -0.22
0.89 1.48 2.35 0.78 =221 -0.08

—0.74 0.96 1.28 —2.04 1.61 1.6
0.35 —1.78 0.74 —-154 -0.16 -0.06]’
0.15 —-1.05 -1.19 0.65 —0.22 —0.54

-0.53 037 07 —0.09 0.15 —-0.41

A:

—0.47

_?'gi 1000 00
b= 0'79,0:001000

056 000001

0.46

Let us set the desired characteristic polynomial of the system (2):
dN) =(A+03)(A+04)(A+0.5)(A+0.2+0.7)(A+ 0.2 —0.70) (A + 0.1 4+ 0.37) (A + 0.1 — 0.37) =
= A"+ 1.8A% 4+ 1.9N° + 1.34\* 4+ 0.5979\% + 0.17482\% 4 0.03367\ + 0.00318.

The conditions of the theorem are fulfilled. The parameters of the compensator are determined uniquely:

fT=[0.0891861 —1.5061263 14.434942] ,

" = [7.3744718  —10.250088 53.52229], p = —3.0716998.

The verification shows that the characteristic polynomial of the matrix D coincides with the given one.
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1. INTRODUCTION. PROBLEM STATEMENT

In sub-Riemannian geometry [1,§ 9.2], the Grushin plane is well known as the simplest example of an almost
Riemannian manifold (such a manifold is Riemannian in complement to a special submanifold of dimension one).
A natural generalization of this example is «-the Grushin plane when the degeneracy on a special set is of order
«a > 1. Extremal trajectories for such a case were parameterized in [2], and their optimality was investigated based
on this in [3]. In this paper, an independent study of the optimality of extremal trajectories is carried out using a
qualitative approach that does not use the parameterization of these trajectories.

The optimal control problem for the classical Grushin plane is posed as follows [1, § 9.2]:

q:ule +U2X2, q:(xay>€M:R2a UZ(U17U2)€R27 (])

ty
9(0) =qo, q(t))=aq, 1= / (uf + u3)"/*dt — min, )
0
where X7 = %, Xo = xa%.
A natural generalization of this problem («-Grushin plane) [2, 3] is posed similarly, but for vector fields:

)(1:%7 XQZ‘IVX%, OZGR,O&ZI. (3)

Problem (1)—(3) is called an almost Riemannian problem on the o-plane of Grushin.

Let us denote the cost function in this problem — the almost Riemannian distance — as d(qo, ¢1) = inf{i(¢(")) :
q(+) the trajectory of system (1), (2)}. A special set is the set of points ¢ € M, where the set of admissible velocities
{¢ = u1 X1 + u2 X2} is not full-dimensional: Z = {¢ = (x,y) € M : x = 0}. If g9 € M \ Z, then the problem
locally becomes Riemannian, so the case ¢y € Z, that is considered in this paper, is of special interest.

114



OPTIMAL TRAJECTORIES IN THE GRUSHIN a-PLANE 115
2. BASIC CONCEPTS AND PROPERTIES

2.1. Symmetries
The problem (1)—(3) has obvious symmetries — reflections
(@,y) = (=2,9),  (w,y) = (2,-y), (2,y) = (-2, —y). ©)
Vector fields X1, X, are independent of y, so parallel translations are also symmetries
(x,y) = (z,y+a), a€R. (5)

Another one-parameter group of symmetries is given by the flow of the vector field

V= w% T +ayg., @y eV (w,y) = (e'z, e y), tER, (6)
since [V, X;] = — X1, [V, X5] = —X>. So the optimal synthesis and, in particular, the distance d are invariant with

respect to symmetries (4), (5) and homogeneous of order 1 with respect to symmetry (6): d(eV (qo),e'V (q1)) =
etd(qo,q1), ¢; € M, t € R. Given the symmetry (5), we will further assume ¢q = (0, 0).

2.2. Existence of solutions

System (1) is completely controllable in each of the Riemannian half-planes {¢ € M : signz = +1}, since in
them, the set of admissible velocities is full-dimensional. It is possible to move between these half-planes along
the fields + X7, so system (1) is quite controllable. Note that at the points ¢ € Z, the condition of the Rashevskii-
Chow theorem [4, § 5.3; 5, § 2.2.4] is satisfied only at o € 2N. All conditions of Filippov’s theorem [4,§ 10.3; 5,§
3.1.2] are satisfied, so optimal trajectories exist.

2.3. Extreme trajectories

As usual in sub-Riemannian geometry, we pass from length minimization (2) to energy minimization
J=0.5 fot ' (u? 4 u2)dt. We apply Pontryagin’s maximum principle to the resulting problem [4, § 3; 5, § 5.2, 6, §
12.4; 7, § 3.2.2]. The abnormal trajectories are constant and non-strictly anormal. To parameterize the normal
extremal trajectories, we put X3 = 3% and denote the Hamiltonians linear on the layers of the cotangent bundle
T*M : hy(\) = (\X;), i = 1,3, A € T*M. Then the maximized Hamiltonian of the Pontryagin maximum
principle is H = h} + |z|>**h% = 1 and the Hamiltonian system for the normal extremals is of the form

hy = —asignz|z?** 7 h2, hs =0, @=hy, §=|z|*¥hs. (7)

The Hamiltonian H is the first integral, so at each h3z # 0 the independent subsystem of equations (7) for the
variables h; and x has a phase portrait of type center.

If hg = 0, then hy =# 0, x = hyt, y = 0. Let hg # 0. When integrating the system (7) by the method of
separation of variables, we obtain the equation

dx
—_— = 4,
VH — hi|z|?

in which the left part integrates in the general case into a hypergeometric function 5 F}. On the other hand, in
[2], the system (7) is integrated in terms of some generalizations of trigonometric functions. However, we will not
use explicit parametrization of the extremal trajectories and investigate the optimality of the extremal trajectories
relying only on qualitative methods.

Considering the symmetry (hs,y) — (—hg, —y) of the system (7), further we consider that hy > 0. After

change of variables X = xhé/a, Y = yhéﬂ/o‘, Hi=hy,s= thé/a, the Hamiltonian system (7) will take the form

H| = —asign X|X 7Y, X' =H,, Y =|X* )
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with the first integral H = H? + | X|?>* = 1. Since H = 1, we have H;(0) = H{ = 41. Taking advantage of the
symmetry (Hy, X) + (—H;,—X), we obtain HY = 1. The first two equations of system (8) have a phase portrait
of type center in the plane (H;, X), so forany a > 1, there exists a unique number s, = s.(a) > 0 such that

X(s)>0 at se(0,s:), X(sx)=0. ©)

Then the first positive root of the function z(t) is t,. = s*h?fl/ *,

3. MAIN RESULTS

Theorem 1. 1. [fhs = O, then the extremal trajectory q(t) is optimal on any segment [0, 1], t; > 0.

2. If hy # 0, then the extremal trajectory q(t) is optimal at any segment [0,t1], t1 € (0,t.], and not optimal for
ty > t., wheret, = s,|hs| /.

Proof. Let us first study case 2. Let hg # 0. Consider an exponential mapping

Exp: (A\t)—q(t), Exp:N—=M, N=(T;Mn{H=1})xR,,

A= (h3,hY), hseR\{0},h) ==+1.

At any hg # 0, the extremal trajectories Exp(hs, 1,¢) and Exp(hg, —1,¢) are symmetric w.r.t. the axis y and
intersect this axis at ¢ = t,. Therefore, the intersection point Exp(hs, 1,¢.) is a Maxwell point [5, § 3.3.5] and
these trajectories are not optimal under the condition ¢ > ¢,.

Let us now prove that any trajectory Exp(hs, 1,t) is optimal at ¢t € [0,¢], t; € (0,t.). Given the symme-
tries of the problem, we will assume that A{ = 1 and h3 > 0, and denote by Exp(hs,t) := Exp(hs,1,t). Let
N = {(h3,t) eR? : h3 > 0,t € (0,t.)}, D = {(z,y) € M : zy > 0}. Let us show that Exp : N — D isa
diffeomorphism by using the following theorem of Adamar on global diffeomorphism.

Theorem 2 [8; 9, § 6.2]. Let I’ : X — Y be a smooth mapping between smooth manifolds of the same dimension
such that XY are connected, Y is one-connected, F is nondegenerate and proper. Then F is a diffeomorphism.

Let us first prove that Exp(/N) C D. Since hz > 0and ¢ € (0, ¢, ), then z(¢) > 0 by virtue of inequality (9). It
follows from the ordinary differential equation (8) that y(¢) > 0. Therefore Exp(N) C D.

Obviously, N and D are connected, and D is one-connected. Let us show that Exp|y is nondegenerate,
i.e., the Jacobian of 0(z,y)/d(t, hs) is different from zero in the region N. We have %‘f = Hiq, % = hy'X?%,

o —a~lhgt VX 4 (88;3)H1hgl/a, Wohy = —(1+ 1) n> oy + (2) X2op 7 whence J =

h;zfl/aa—lJl, J1 = X221 — (o + 1)Y H;. Differentiating by virtue of (8), we obtain J| = aX?* 1]y, Jo =
H1X + (o + 1)Y. Differentiating again, we have J; = H? + X?* > 0,s0 J|y > 0, i.e., Exp |y is nondegenerate.

Now let us show that the mapping Exp : N — D is proper. This is equivalent to the following condition: if the
sequence {(h%,t") : n € N} C N isnot contained in any compact set in N, then its image ¢ = Exp(h},¢") is not
contained in any compact set in D. Let the sequence {(h%,¢") : n € N} C N be not contained in any compact
set in N, we’ll denote s = (h%)Y/*t" € (0,s,). Then it contains a subsequence for which one of the following
conditions is satisfied: 1) hf — hz € (0,4+00), s® — 0;2) h§ — 0, s" — 0;3) hZ — 0, s" — 5 € (0,5,);
4) h% — 0, s — 543 5) h — hg € (0,4+00), 8" = 5,; 6) hY — +00, 8" — s4; 7) hf — +00, 5" — 5 € (0, 5.);
8) h — 400, s™ — 0.

We’ll show that for each of them, the sequence ¢ = (2™, y™) contains a subsequence on which one of the
following conditions is satisfied: 2" — 0, 2" — +o00, y"™* — 0, y™ — 400, i.e., ¢"* is not contained in any compact
setin D.

Given 1) we have X (s") — X (0) = 0,s0 2" = X (s")/(h§)*/* — 0.

If condition 2) is satisfied, the sequence t" = s"/ (h;})l/ @ > () contains a subsequence of one of the following
kinds: t" — 0,t" — t € (0,400), " — 4o0. Ift" — 0, then 2" = z(h%,t") — x(0,0) = 0. If t" — ¢ €
(0, +00), then y™ = y(h%,t") — y(0,t) = 0. Let t™ — +oo. Passing to the subsequence if necessary, we can
assume that {s"} is decreasing. There existsa number K € Nsuch that s% < s, /2, s0 H;(s) > Oforall s € [0, s%].
Hence, H1|[O,SK] > €= min[o,sx] Hy > 0and

s™ X(sn
X(s") = /0 Hy(s)ds > es™ = et (W), " = (hn(;/l > et" — 4o0.
3
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For the remaining conditions, we have: 3) X (s") — X (5) € (0,400) and 2" = <L 5 4 50: 4) Y (s™) —

n)77e
Y(s.) = [771X(s)[**ds € (0,+00) and y" = (hzj)(liil)/a — +00; 5) X(s™) — X(s4) = 0, from where z" =

(ifg(;l/L — 40; 6) X(s") — X (s«) = 0, from where 2" = (i;(;:/)a — 40;7) X(s") = X(5) € (0,400), from
where 2" = (f;()sl/)a — +0; 8) X(s™) — X(0) = 0, from where 2™ = (ifg(;l/)a — +0. Therefore, the mapping

Exp : N — D isproper. By Theorem 2, this mapping is a difftcomorphism. By the existence of optimal trajectories,
any trajectory Exp(hs, t), hs # 0, t € [0, 1], is optimal for any ¢; € (0, ¢..).

Att = t,, two trajectories arrive at the point Exp(hg, ¢,) that are symmetric about the axis y and have the same
value of the time functional, so both are optimal.

Now consider case 1. If h3 = 0, then the extremal trajectory is the line ¢(¢) = (h9t,0). From the above proved
inclusion of Exp(N) C D, it follows that for h3 # 0 and ¢ > 0, the extremal trajectories do not intersect the
coordinate axis y = 0, so at each point of this axis comes the only (up to reparameterization) extremal trajectory
— the straight line ¢(t) = (h{t,0). By virtue of the existence of an optimal trajectory, it is optimal on any segment
[0,%1], t; > 0. The theorem is proved.

Corollary. 1. For any trajectory Exp(\,t), A = (h3,hY) € Ty M N {H = 1}, the cut time (time o loss of
optimality) is te, = t. = |hs| =Y/ %s, € (0, 400].

2. The cut locus is

Cut = {Exp(\, tewr(N) : A e Ty MN{H =1}} ={(z,y) e M : 2 =0,y # 0}.

q0

Remark. The optimality of extremal trajectories on a-Grushin plane was first investigated in [3] on the basis
of similar reasoning, but using explicit parameterization of extremal trajectories obtained in [2]. The novelty of
this study consists in the qualitative use of only the property of the Hamiltonian system (7), but not its explicit
integration.

For the Grushin 2-plane, Fig. ?? shows an almost Riemannian sphere of radius 2: {¢ € M : d(qo,q) = 2} and
its radii (optimal trajectories arriving at points on this sphere), and Fig. 2 shows the wavefronts { Exp(\, R) : A € N}
for different values of R.

YA YA

Fig. 1. Sphere of radius 2 and its radii Fig. 2. Wavefronts

CONCLUSION

This paper presents a qualitative study of optimal trajectories on «-Grushin plane, that does not use explicit
integration of the Hamiltonian system of Pontryagin’s maximum principle. To the best of our knowledge, this study
is the first one in optimal control theory. For example, even in the sub-Riemannian problem on the Heisenberg
group, optimality is studied on the basis of explicit integration of the Hamiltonian system [1, §13.2]. We hope
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that the qualitative approach to the construction of optimal synthesis presented in this paper can be useful for
other optimal control problems where explicit integration of the Hamiltonian system of the Pontryagin maximum
principle is difficult or impossible. This approach can be applied to problems of small dimension and with a large
symmetry group.
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