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1. INTRODUCTION. PROBLEM STATEMENT

In sub-Riemannian geometry [1,§ 9.2], the Grushin plane is well known as the simplest example of an almost
Riemannianmanifold (such amanifold is Riemannian in complement to a special submanifold of dimension one).
A natural generalization of this example is α-the Grushin plane when the degeneracy on a special set is of order
α ≥ 1. Extremal trajectories for such a case were parameterized in [2], and their optimality was investigated based
on this in [3]. In this paper, an independent study of the optimality of extremal trajectories is carried out using a
qualitative approach that does not use the parameterization of these trajectories.

The optimal control problem for the classical Grushin plane is posed as follows [1, § 9.2]:

q̇ = u1X1 + u2X2, q = (x, y) ∈ M = R2, u = (u1, u2) ∈ R2, (1)

q(0) = q0, q(t1) = q1, l =

∫ t1

0

(u2
1 + u2

2)
1/2dt → min, (2)

whereX1 = ∂
∂x ,X2 = x ∂

∂y .
A natural generalization of this problem (α-Grushin plane) [2, 3] is posed similarly, but for vector fields:

X1 =
∂

∂x
, X2 = |x|α ∂

∂y
, α ∈ R, α ≥ 1. (3)

Problem (1)–(3) is called an almost Riemannian problem on the α-plane of Grushin.
Let us denote the cost function in this problem– the almost Riemannian distance – as d(q0, q1) = inf{l(q(·)) :

q(·) the trajectory of system (1), (2)}. A special set is the set of points q ∈ M , where the set of admissible velocities
{q̇ = u1X1 + u2X2} is not full-dimensional: Z = {q = (x, y) ∈ M : x = 0}. If q0 ∈ M \ Z, then the problem
locally becomes Riemannian, so the case q0 ∈ Z, that is considered in this paper, is of special interest.
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2. BASIC CONCEPTS AND PROPERTIES

2.1. Symmetries

The problem (1)–(3) has obvious symmetries – reflections

(x, y) �→ (−x, y), (x, y) �→ (x,−y), (x, y) �→ (−x,−y). (4)

Vector fieldsX1, X2 are independent of y, so parallel translations are also symmetries

(x, y) �→ (x, y + a), a ∈ R. (5)

Another one-parameter group of symmetries is given by the flow of the vector field

V = x
∂

∂x
+ (1 + α)y

∂

∂y
, (x, y) �→ etV (x, y) = (etx, e(1+α)ty), t ∈ R, (6)

since [V,X1] = −X1, [V,X2] = −X2. So the optimal synthesis and, in particular, the distance d are invariant with
respect to symmetries (4), (5) and homogeneous of order 1 with respect to symmetry (6): d(etV (q0), etV (q1)) =
etd(q0, q1), qi ∈ M , t ∈ R. Given the symmetry (5), we will further assume q0 = (0, 0).

2.2. Existence of solutions

System (1) is completely controllable in each of the Riemannian half-planes {q ∈ M : signx = ±1}, since in
them, the set of admissible velocities is full-dimensional. It is possible to move between these half-planes along
the fields±X1, so system (1) is quite controllable. Note that at the points q ∈ Z, the condition of the Rashevskii-
Chow theorem [4, § 5.3; 5, § 2.2.4] is satisfied only at α ∈ 2N. All conditions of Filippov’s theorem [4,§ 10.3; 5,§
3.1.2] are satisfied, so optimal trajectories exist.

2.3. Extreme trajectories
As usual in sub-Riemannian geometry, we pass from length minimization (2) to energy minimization

J = 0.5
∫ t1
0
(u2

1 + u2
2)dt. We apply Pontryagin’s maximum principle to the resulting problem [4, § 3; 5, § 5.2; 6, §

12.4; 7, § 3.2.2]. The abnormal trajectories are constant and non-strictly anormal. To parameterize the normal
extremal trajectories, we put X3 = ∂

∂y and denote the Hamiltonians linear on the layers of the cotangent bundle
T ∗M : hi(λ) = 〈λ,Xi〉, i = 1, 3, λ ∈ T ∗M . Then the maximized Hamiltonian of the Pontryagin maximum
principle isH = h2

1 + |x|2αh2
3 ≡ 1 and the Hamiltonian system for the normal extremals is of the form

ḣ1 = −α signx|x|2α−1h2
3, ḣ3 = 0, ẋ = h1, ẏ = |x|2αh3. (7)

The Hamiltonian H is the first integral, so at each h3 �= 0 the independent subsystem of equations (7) for the
variables h1 and x has a phase portrait of type center.

If h3 = 0, then h1 ≡�= 0, x = h1t, y = 0. Let h3 �= 0. When integrating the system (7) by the method of
separation of variables, we obtain the equation

dx√
H − h2

3|x|2α
= ±dt,

in which the left part integrates in the general case into a hypergeometric function 2F1. On the other hand, in
[2], the system (7) is integrated in terms of some generalizations of trigonometric functions. However, we will not
use explicit parametrization of the extremal trajectories and investigate the optimality of the extremal trajectories
relying only on qualitative methods.

Considering the symmetry (h3, y) �→ (−h3,−y) of the system (7), further we consider that h3 > 0. After
change of variablesX = xh

1/α
3 , Y = yh

1+1/α
3 ,H1 = h1, s = th

1/α
3 , the Hamiltonian system (7) will take the form

H ′
1 = −α signX|X|2α−1, X ′ = H1, Y ′ = |X|2α (8)

OPTIMAL TRAJECTORIES IN THE GRUSHIN α-PLANE



116

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

with the first integralH = H2
1 + |X|2α ≡ 1. SinceH = 1, we haveH1(0) = H0

1 = ±1. Taking advantage of the
symmetry (H1, X) �→ (−H1,−X), we obtainH0

1 = 1. The first two equations of system (8) have a phase portrait
of type center in the plane (H1, X), so for any α ≥ 1, there exists a unique number s∗ = s∗(α) > 0 such that

X(s) > 0 at s ∈ (0, s∗), X(s∗) = 0. (9)

Then the first positive root of the function x(t) is t∗ = s∗h
−1/α
3 .

3. MAIN RESULTS

Theorem 1. 1. If h3 = 0, then the extremal trajectory q(t) is optimal on any segment [0, t1], t1 > 0.
2. If h3 �= 0, then the extremal trajectory q(t) is optimal at any segment [0, t1], t1 ∈ (0, t∗], and not optimal for

t1 > t∗, where t∗ = s∗|h3|−1/α.
Proof. Let us first study case 2. Let h3 �= 0. Consider an exponential mapping

Exp : (λ, t) �→ q(t), Exp : Ñ → M, Ñ = (T ∗
q0M ∩ {H = 1})× R+,

λ = (h3, h
0
1), h3 ∈ R \ {0}, h0

1 = ±1.

At any h3 �= 0, the extremal trajectories Exp(h3, 1, t) and Exp(h3,−1, t) are symmetric w.r.t. the axis y and
intersect this axis at t = t∗. Therefore, the intersection point Exp(h3, 1, t∗) is a Maxwell point [5, § 3.3.5] and
these trajectories are not optimal under the condition t > t∗.

Let us now prove that any trajectory Exp(h3, 1, t) is optimal at t ∈ [0, t1], t1 ∈ (0, t∗). Given the symme-
tries of the problem, we will assume that h0

1 = 1 and h3 > 0, and denote by Exp(h3, t) := Exp(h3, 1, t). Let
N = {(h3, t) ∈ R2 : h3 > 0, t ∈ (0, t∗)}, D = {(x, y) ∈ M : xy > 0}. Let us show that Exp : N → D is a
diffeomorphism by using the following theorem of Adamar on global diffeomorphism.

Theorem 2 [8; 9, § 6.2]. Let F : X → Y be a smooth mapping between smooth manifolds of the same dimension
such thatX,Y are connected, Y is one-connected, F is nondegenerate and proper. Then F is a diffeomorphism.

Let us first prove that Exp(N) ⊂ D. Since h3 > 0 and t ∈ (0, t∗), then x(t) > 0 by virtue of inequality (9). It
follows from the ordinary differential equation (8) that y(t) > 0. Therefore Exp(N) ⊂ D.

Obviously, N and D are connected, and D is one-connected. Let us show that Exp |N is nondegenerate,
i.e., the Jacobian of ∂(x, y)/∂(t, h3) is different from zero in the region N . We have ∂x

∂t = H1, ∂y
∂t = h−1

3 X2α,
∂x
∂h3

= −α−1h
−1−1/α
3 X + ( ∂s

∂h3
)H1h

−1/α
3 , ∂y∂h3 = −(1 + 1

α ) h
−2−1/α
3 Y + ( ∂s

∂h3
) X2αh

−1−1/α
3 , whence J =

h
−2−1/α
3 α−1J1, J1 = X2α+1 − (α + 1)Y H1. Differentiating by virtue of (8), we obtain J ′

1 = αX2α−1J2, J2 =
H1X + (α+ 1)Y. Differentiating again, we have J ′

2 = H2
1 +X2α > 0, so J |N > 0, i.e., Exp |N is nondegenerate.

Now let us show that the mapping Exp : N → D is proper. This is equivalent to the following condition: if the
sequence {(hn

3 , t
n) : n ∈ N} ⊂ N is not contained in any compact set inN , then its image qn = Exp(hn

3 , t
n) is not

contained in any compact set in D. Let the sequence {(hn
3 , t

n) : n ∈ N} ⊂ N be not contained in any compact
set in N , we’ll denote sn = (hn

3 )
1/αtn ∈ (0, s∗). Then it contains a subsequence for which one of the following

conditions is satisfied: 1) hn
3 → h̄3 ∈ (0,+∞), sn → 0; 2) hn

3 → 0, sn → 0; 3) hn
3 → 0, sn → s̄ ∈ (0, s∗);

4) hn
3 → 0, sn → s∗; 5) hn

3 → h̄3 ∈ (0,+∞), sn → s∗; 6) hn
3 → +∞, sn → s∗; 7) hn

3 → +∞, sn → s̄ ∈ (0, s∗);
8) hn

3 → +∞, sn → 0.
We’ll show that for each of them, the sequence qn = (xn, yn) contains a subsequence on which one of the

following conditions is satisfied: xn → 0, xn → +∞, yn → 0, yn → +∞, i.e., qn is not contained in any compact
set inD.

Given 1) we haveX(sn) → X(0) = 0, so xn = X(sn)/(hn
3 )

1/α → 0.
If condition 2) is satisfied, the sequence tn = sn/(hn

3 )
1/α > 0 contains a subsequence of one of the following

kinds: tn → 0, tn → t̄ ∈ (0,+∞), tn → +∞. If tn → 0, then xn = x(hn
3 , t

n) → x(0, 0) = 0. If tn → t̄ ∈
(0,+∞), then yn = y(hn

3 , t
n) → y(0, t̄) = 0. Let tn → +∞. Passing to the subsequence if necessary, we can

assume that {sn} is decreasing. There exists a numberK ∈ N such that sK < s∗/2, soH1(s) > 0 for all s ∈ [0, sK ].
Hence,H1|[0,sK ] ≥ ε := min[0,sK ] H1 > 0 and

X(sn) =

∫ sn

0

H1(s)ds ≥ εsn = εtn(hn
3 )

1/α, xn =
X(sn)

(hn
3 )

1/α
≥ εtn → +∞.
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For the remaining conditions, we have: 3)X(sn) → X(s̄) ∈ (0,+∞) and xn = X(sn)
(hn

3 )
1/α → +∞; 4) Y (sn) →

Y (s∗) =
∫ s∗
0

|X(s)|2αds ∈ (0,+∞) and yn = Y (sn)
(hn

3 )
1+1/α → +∞; 5) X(sn) → X(s∗) = 0, from where xn =

X(sn)
(hn

3 )
1/α → +0; 6) X(sn) → X(s∗) = 0, from where xn = X(sn)

(hn
3 )

1/α → +0; 7) X(sn) → X(s̄) ∈ (0,+∞), from

where xn = X(sn)
(hn

3 )
1/α → +0; 8) X(sn) → X(0) = 0, from where xn = X(sn)

(hn
3 )

1/α → +0. Therefore, the mapping
Exp : N → D is proper. By Theorem 2, this mapping is a diffeomorphism. By the existence of optimal trajectories,
any trajectory Exp(h3, t), h3 �= 0, t ∈ [0, t1], is optimal for any t1 ∈ (0, t∗).

At t = t∗, two trajectories arrive at the point Exp(h3, t∗) that are symmetric about the axis y and have the same
value of the time functional, so both are optimal.

Now consider case 1. If h3 = 0, then the extremal trajectory is the line q(t) = (h0
1t, 0). From the above proved

inclusion of Exp(N) ⊂ D, it follows that for h3 �= 0 and t > 0, the extremal trajectories do not intersect the
coordinate axis y = 0, so at each point of this axis comes the only (up to reparameterization) extremal trajectory
– the straight line q(t) = (h0

1t, 0). By virtue of the existence of an optimal trajectory, it is optimal on any segment
[0, t1], t1 > 0. The theorem is proved.

Corollary. 1. For any trajectory Exp(λ, t), λ = (h3, h
0
1) ∈ T ∗

q0M ∩ {H = 1}, the cut time (time to loss of
optimality) is tcut = t∗ = |h3|−1/αs∗ ∈ (0,+∞].

2. The cut locus is

Cut = {Exp(λ, tcut(λ)) : λ ∈ T ∗
q0M ∩ {H = 1}} = {(x, y) ∈ M : x = 0, y �= 0}.

Remark. The optimality of extremal trajectories on α-Grushin plane was first investigated in [3] on the basis
of similar reasoning, but using explicit parameterization of extremal trajectories obtained in [2]. The novelty of
this study consists in the qualitative use of only the property of the Hamiltonian system (7), but not its explicit
integration.

For the Grushin 2-plane, Fig. ?? shows an almost Riemannian sphere of radius 2: {q ∈ M : d(q0, q) = 2} and
its radii (optimal trajectories arriving at points on this sphere), andFig. 2 shows thewavefronts {Exp(λ,R) : λ ∈ N}
for different values of R.

Fig. 1. Sphere of radius 2 and its radii Fig. 2. Wavefronts

CONCLUSION

This paper presents a qualitative study of optimal trajectories on α-Grushin plane, that does not use explicit
integration of theHamiltonian systemof Pontryagin’smaximumprinciple. To the best of our knowledge, this study
is the first one in optimal control theory. For example, even in the sub-Riemannian problem on the Heisenberg
group, optimality is studied on the basis of explicit integration of the Hamiltonian system [1, §13.2]. We hope

OPTIMAL TRAJECTORIES IN THE GRUSHIN α-PLANE



118

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

that the qualitative approach to the construction of optimal synthesis presented in this paper can be useful for
other optimal control problems where explicit integration of the Hamiltonian system of the Pontryagin maximum
principle is difficult or impossible. This approach can be applied to problems of small dimension and with a large
symmetry group.
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