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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

В субримановой геометрии [1, § 9.2] хорошо известна плоскость Грушина, представ-
ляющая простейший пример почти риманова многообразия (такое многообразие риманово
в дополнении к особому подмногообразию коразмерности один). Естественным обобщени-
ем этого примера является 𝛼-плоскость Грушина, когда вырождение на особом множестве
имеет порядок 𝛼⩾ 1. Экстремальные траектории для такого случая были параметризова-
ны в статье [2], и на основе этого исследована их оптимальность в [3]. В данной работе
проведено независимое исследование оптимальности экстремальных траекторий с помощью
качественного подхода, не использующего параметризацию этих траекторий.

Задача оптимального управления для классической плоскости Грушина ставится следу-
ющим образом [1, § 9.2]:

𝑞=𝑢1𝑋1+𝑢2𝑋2, 𝑞=(𝑥, 𝑦)∈𝑀 =R2, 𝑢=(𝑢1, 𝑢2)∈R2, (1)

𝑞(0)= 𝑞0, 𝑞(𝑡1)= 𝑞1, 𝑙=

𝑡1ˆ

0

(𝑢21+𝑢
2
2)

1/2𝑑𝑡→min, (2)

где 𝑋1= 𝜕/𝜕𝑥, 𝑋2=𝑥𝜕/𝜕𝑦.
Естественное обобщение этой задачи (𝛼-плоскость Грушина) [2, 3] ставится аналогично,

но для векторных полей:

𝑋1=
𝜕

𝜕𝑥
, 𝑋2= |𝑥|𝛼 𝜕

𝜕𝑦
, 𝛼∈R, 𝛼⩾ 1. (3)

Задача (1)–(3) называется почти римановой задачей на 𝛼-плоскости Грушина.
Обозначим функцию цены в этой задаче — почти риманово расстояние — как 𝑑(𝑞0, 𝑞1)=

= inf{𝑙(𝑞(·)) : 𝑞(·) траектория системы (1), (2)}. Особым множеством называется множество
точек 𝑞 ∈𝑀 , в которых множество допустимых скоростей {𝑞=𝑢1𝑋1+𝑢2𝑋2} неполномерно:
𝑍 = {𝑞 = (𝑥, 𝑦)∈𝑀 : 𝑥= 0}. Если 𝑞0 ∈𝑀 ∖𝑍, то задача локально превращается в риманову,
поэтому особый интерес представляет случай 𝑞0 ∈𝑍, который и рассматривается в данной
работе.
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2. ОСНОВНЫЕ ПОНЯТИЯ И СВОЙСТВА
2.1. СИММЕТРИИ

Задача (1)–(3) имеет очевидные симметрии — отражения

(𝑥, 𝑦) ↦→ (−𝑥, 𝑦), (𝑥, 𝑦) ↦→ (𝑥,−𝑦), (𝑥, 𝑦) ↦→ (−𝑥,−𝑦). (4)

Векторные поля 𝑋1, 𝑋2 не зависят от 𝑦, поэтому симметриями являются также параллельные
переносы

(𝑥, 𝑦) ↦→ (𝑥, 𝑦+𝑎), 𝑎∈R. (5)

Другая однопараметрическая группа симметрий даётся потоком векторного поля

𝑉 =𝑥
𝜕

𝜕𝑥
+(1+𝛼)𝑦

𝜕

𝜕𝑦
, (𝑥, 𝑦) ↦→ 𝑒𝑡𝑉 (𝑥, 𝑦)= (𝑒𝑡𝑥, 𝑒(1+𝛼)𝑡𝑦), 𝑡∈R, (6)

так как [𝑉,𝑋1] =−𝑋1, [𝑉,𝑋2] =−𝑋2. Значит оптимальный синтез и, в частности, расстоя-
ние 𝑑 инвариантны относительно симметрий (4), (5) и однородны порядка 1 относительно
симметрии (6): 𝑑(𝑒𝑡𝑉 (𝑞0), 𝑒𝑡𝑉 (𝑞1))= 𝑒𝑡𝑑(𝑞0, 𝑞1), 𝑞𝑖 ∈𝑀 , 𝑡∈R. Учитывая симметрию (5), будем
далее полагать 𝑞0=(0, 0).

2.2. СУЩЕСТВОВАНИЕ РЕШЕНИЙ

Система (1) вполне управляема в каждой из римановых полуплоскостей {𝑞∈𝑀 : sign𝑥=±1},
так как в них множество допустимых скоростей полномерно. Переместиться между этими
полуплоскостями можно вдоль полей ±𝑋1, поэтому система (1) вполне управляема. Отметим,
что в точках 𝑞∈𝑍 условие теоремы Рашевского–Чжоу [4, § 5.3; 5, § 2.2.4] выполнено только
при 𝛼 ∈ 2N. Все условия теоремы Филиппова [4, § 10.3; 5, § 3.1.2] выполнены, поэтому
оптимальные траектории существуют.

2.3. ЭКСТРЕМАЛЬНЫЕ ТРАЕКТОРИИ

Как обычно в субримановой геометрии, перейдём от минимизации длины (2) к мини-
мизации энергии 𝐽 =0,5

´ 𝑡1
0 (𝑢21+𝑢

2
2) 𝑑𝑡. Применим к полученной задаче принцип максимума

Понтрягина [4, § 3; 5, § 5.2; 6, § 12.4; 7, § 3.2.2]. Анормальные траектории постоянны и
нестрого анормальны. Для параметризации нормальных экстремальных траекторий поло-
жим 𝑋3=𝜕/𝜕𝑦 и обозначим линейные на слоях кокасательного расслоения 𝑇 *𝑀 гамильто-
нианы: ℎ𝑖(𝜆)= ⟨𝜆,𝑋𝑖⟩, 𝑖=1, 3, 𝜆∈𝑇 *𝑀 . Тогда максимизированный гамильтониан принципа
максимума Понтрягина равен 𝐻 =ℎ21+ |𝑥|2𝛼ℎ23≡ 1 и гамильтонова система для нормальных
экстремалей имеет вид

ℎ̇1=−𝛼 sign𝑥 |𝑥|2𝛼−1ℎ23, ℎ̇3=0, 𝑥̇=ℎ1, 𝑦̇= |𝑥|2𝛼ℎ3. (7)

Гамильтониан 𝐻 есть первый интеграл, поэтому при каждом ℎ3 ̸=0 независимая подсистема
уравнений (7) для переменных ℎ1 и 𝑥 имеет фазовый портрет типа центр.

Если ℎ3=0, то ℎ1≡const ̸=0, 𝑥=ℎ1𝑡, 𝑦=0. Пусть ℎ3 ̸=0. При интегрировании системы (7)
методом разделения переменных получаем уравнение

𝑑𝑥√︀
𝐻−ℎ23|𝑥|2𝛼

=±𝑑𝑡,

в котором левая часть интегрируется в общем случае в гипергеометрическую функцию
2𝐹1. С другой стороны, в работе [2] система (7) проинтегрирована в терминах некоторых
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обобщений тригонометрических функций. Однако мы не будем использовать явную парамет-
ризацию экстремальных траекторий и исследуем оптимальность экстремальных траекторий,
опираясь только на качественные методы.

Учитывая симметрию (ℎ3, 𝑦) ↦→ (−ℎ3,−𝑦) системы (7), далее считаем, что ℎ3> 0. После
замены переменных 𝑋 = 𝑥ℎ

1/𝛼
3 , 𝑌 = 𝑦ℎ

1+1/𝛼
3 , 𝐻1 = ℎ1, 𝑠 = 𝑡ℎ

1/𝛼
3 гамильтонова система (7)

примет вид
𝐻 ′

1=−𝛼 sign𝑋 |𝑋|2𝛼−1, 𝑋 ′=𝐻1, 𝑌 ′= |𝑋|2𝛼 (8)

с первым интегралом 𝐻 =𝐻2
1 + |𝑋|2𝛼 ≡ 1. Так как 𝐻 = 1, то имеем 𝐻1(0) =𝐻0

1 =±1. Вос-
пользовавшись симметрией (𝐻1, 𝑋) ↦→ (−𝐻1,−𝑋), получаем 𝐻0

1 =1. Первые два уравнения
системы (8) имеют в плоскости (𝐻1, 𝑋) фазовый портрет типа центр, поэтому для любого
𝛼⩾ 1 существует единственное число 𝑠*= 𝑠*(𝛼)> 0 такое, что

𝑋(𝑠)> 0 при 𝑠∈ (0, 𝑠*), 𝑋(𝑠*)= 0. (9)

Тогда первый положительный корень функции 𝑥(𝑡) равен 𝑡*= 𝑠*ℎ
−1/𝛼
3 .

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Теорема 1. 1. Если ℎ3 =0, то экстремальная траектория 𝑞(𝑡) оптимальна на любом
отрезке [0, 𝑡1], 𝑡1> 0.

2. Если ℎ3 ̸=0, то экстремальная траектория 𝑞(𝑡) оптимальна на любом отрезке [0, 𝑡1],
𝑡1 ∈ (0, 𝑡*], и неоптимальна при 𝑡1>𝑡*, где 𝑡*= 𝑠*|ℎ3|−1/𝛼.

Доказательство. Сначала исследуем случай 2. Пусть ℎ3 ̸= 0. Рассмотрим экспоненци-
альное отображение

Exp: (𝜆, 𝑡) ↦→ 𝑞(𝑡), Exp: 𝑁̃→𝑀, 𝑁̃ =(𝑇 *
𝑞0𝑀 ∩{𝐻 =1})×R+,

𝜆=(ℎ3, ℎ
0
1), ℎ3 ∈R∖{0}, ℎ01=±1.

При любом ℎ3 ̸=0 экстремальные траектории Exp(ℎ3, 1, 𝑡) и Exp(ℎ3,−1, 𝑡) симметричны
относительно оси 𝑦 и пересекаются на этой оси при 𝑡 = 𝑡*. Поэтому точка пересечения
Exp(ℎ3, 1, 𝑡*) является точкой Максвелла [5, § 3.3.5] и эти траектории неоптимальны при
условии 𝑡> 𝑡*.

Докажем теперь, что любая траектория Exp(ℎ3, 1, 𝑡) оптимальна при 𝑡∈ [0, 𝑡1], 𝑡1∈ (0, 𝑡*).
Учитывая симметрии задачи, будем считать, что ℎ01 = 1 и ℎ3 > 0, и будем обозначать
Exp(ℎ3, 𝑡) :=Exp(ℎ3, 1, 𝑡). Пусть 𝑁 = {(ℎ3, 𝑡)∈R2 : ℎ3> 0, 𝑡∈ (0, 𝑡*)}, 𝐷= {(𝑥, 𝑦)∈𝑀 : 𝑥, 𝑦 > 0}.
Покажем, что Exp: 𝑁→𝐷 есть диффеоморфизм, для этого воспользуемся следующей тео-
ремой Адамара о глобальном диффеоморфизме.

Теорема 2 [8; 9, § 6.2]. Пусть 𝐹 : 𝑋→𝑌 — гладкое отображение между гладкими много-
образиями одинаковой размерности такое, что 𝑋, 𝑌 связны, 𝑌 односвязно, 𝐹 невырождено
и собственное. Тогда 𝐹 — диффеоморфизм.

Сначала докажем, что Exp(𝑁) ⊂ 𝐷. Так как ℎ3 > 0 и 𝑡 ∈ (0, 𝑡*), то 𝑥(𝑡) > 0 в силу
неравенства (9). Из обыкновенного дифференциального уравнения (8) следует, что 𝑦(𝑡)> 0.
Поэтому Exp(𝑁)⊂𝐷.

Очевидно, что 𝑁 и 𝐷 связны, а 𝐷 односвязно. Покажем, что Exp |𝑁 невырождено, т.е.
якобиан 𝜕(𝑥, 𝑦)/𝜕(𝑡, ℎ3) отличен от нуля в области 𝑁. Имеем 𝜕𝑥/𝜕𝑡=𝐻1, 𝜕𝑦/𝜕𝑡= ℎ−1

3 𝑋2𝛼,
𝜕𝑥/𝜕ℎ3=−𝛼−1ℎ

−1−1/𝛼
3 𝑋+(𝜕𝑠/𝜕ℎ3)𝐻1ℎ

−1/𝛼
3 , 𝜕𝑦/𝜕ℎ3=−(1+1/𝛼)ℎ

−2−1/𝛼
3 𝑌 +(𝜕𝑠/𝜕ℎ3)𝑋

2𝛼ℎ
−1−1/𝛼
3 ,

откуда 𝐽 = ℎ
−2−1/𝛼
3 𝛼−1𝐽1, 𝐽1 =𝑋2𝛼+1− (𝛼+1)𝑌 𝐻1. Дифференцируя в силу (8), получаем
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𝐽 ′
1 = 𝛼𝑋2𝛼−1𝐽2, 𝐽2 = 𝐻1𝑋 +(𝛼+1)𝑌. Дифференцируя ещё раз, имеем 𝐽 ′

2 = 𝐻2
1 +𝑋2𝛼 > 0,

поэтому 𝐽 |𝑁 > 0, т.е. Exp |𝑁 невырождено.
Теперь покажем, что отображение Exp: 𝑁 →𝐷 собственное. Это равносильно следую-

щему условию: если последовательность {(ℎ𝑛3 , 𝑡𝑛) : 𝑛 ∈ N} ⊂ 𝑁 не содержится ни в каком
компакте в 𝑁, то её образ 𝑞𝑛=Exp(ℎ𝑛3 , 𝑡

𝑛) не содержится ни в каком компакте в 𝐷. Пусть
последовательность {(ℎ𝑛3 , 𝑡𝑛) : 𝑛∈N}⊂𝑁 не содержится ни в каком компакте в 𝑁, обозначим
𝑠𝑛 = (ℎ𝑛3 )

1/𝛼𝑡𝑛 ∈ (0, 𝑠*). Тогда она содержит подпоследовательность, для которой выполнено
одно из следующих условий: 1) ℎ𝑛3 → ℎ̄3 ∈ (0,+∞), 𝑠𝑛 → 0; 2) ℎ𝑛3 → 0, 𝑠𝑛 → 0; 3) ℎ𝑛3 → 0,
𝑠𝑛 → 𝑠 ∈ (0, 𝑠*); 4) ℎ𝑛3 → 0, 𝑠𝑛 → 𝑠*; 5) ℎ𝑛3 → ℎ̄3 ∈ (0,+∞), 𝑠𝑛 → 𝑠*; 6) ℎ𝑛3 → +∞, 𝑠𝑛 → 𝑠*;
7) ℎ𝑛3 →+∞, 𝑠𝑛→ 𝑠∈ (0, 𝑠*); 8) ℎ𝑛3 →+∞, 𝑠𝑛→ 0.

Покажем, что для каждого из них последовательность 𝑞𝑛=(𝑥𝑛, 𝑦𝑛) содержит подпосле-
довательность, на которой выполнено одно из следующих условий: 𝑥𝑛→0, 𝑥𝑛→+∞, 𝑦𝑛→0,
𝑦𝑛→+∞, т.е. 𝑞𝑛 не содержится ни в каком компакте в 𝐷.

При условии 1) имеем 𝑋(𝑠𝑛)→𝑋(0)= 0, поэтому 𝑥𝑛=𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼→ 0.

При выполнении условия 2) последовательность 𝑡𝑛 = 𝑠𝑛/(ℎ𝑛3 )
1/𝛼 > 0 содержит подпосле-

довательность одного из следующих видов: 𝑡𝑛 → 0, 𝑡𝑛 → 𝑡∈ (0,+∞), 𝑡𝑛 →+∞. Если 𝑡𝑛 → 0,
то 𝑥𝑛 = 𝑥(ℎ𝑛3 , 𝑡

𝑛) → 𝑥(0, 0) = 0. Если 𝑡𝑛 → 𝑡 ∈ (0,+∞), то 𝑦𝑛 = 𝑦(ℎ𝑛3 , 𝑡
𝑛) → 𝑦(0, 𝑡) = 0. Пусть

𝑡𝑛 →+∞. При необходимости переходя к подпоследовательности, можно считать, что {𝑠𝑛}
убывает. Существует число 𝐾 ∈N такое, что 𝑠𝐾 <𝑠*/2, поэтому 𝐻1(𝑠)>0 для всех 𝑠∈ [0, 𝑠𝐾 ].
Следовательно, 𝐻1|[0,𝑠𝐾 ]⩾ 𝜀 :=min[0,𝑠𝐾 ]𝐻1> 0 и

𝑋(𝑠𝑛)=

𝑠𝑛ˆ

0

𝐻1(𝑠) 𝑑𝑠⩾ 𝜀𝑠𝑛= 𝜀𝑡𝑛(ℎ𝑛3 )
1/𝛼, 𝑥𝑛=

𝑋(𝑠𝑛)

(ℎ𝑛3 )
1/𝛼

⩾ 𝜀𝑡𝑛→+∞.

Для остальных условий имеем: 3) 𝑋(𝑠𝑛)→𝑋(𝑠) ∈ (0,+∞) и 𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 →+∞;

4) 𝑌 (𝑠𝑛)→𝑌 (𝑠*)=
´ 𝑠*
0 |𝑋(𝑠)|2𝛼𝑑𝑠∈ (0,+∞) и 𝑦𝑛=𝑌 (𝑠𝑛)/(ℎ𝑛3 )

1+1/𝛼→+∞; 5) 𝑋(𝑠𝑛)→𝑋(𝑠*)=0,
откуда 𝑥𝑛 = 𝑋(𝑠𝑛)/(ℎ𝑛3 )

1/𝛼 → +0; 6) 𝑋(𝑠𝑛) → 𝑋(𝑠*) = 0, откуда 𝑥𝑛 = 𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 → +0;

7) 𝑋(𝑠𝑛)→𝑋(𝑠) ∈ (0,+∞), откуда 𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 → +0; 8) 𝑋(𝑠𝑛)→𝑋(0) = 0, откуда

𝑥𝑛 =𝑋(𝑠𝑛)/(ℎ𝑛3 )
1/𝛼 →+0. Поэтому отображение Exp: 𝑁→𝐷 собственное. По теореме 2 это

отображение является диффеоморфизмом. В силу существования оптимальных траекторий
любая траектория Exp(ℎ3, 𝑡), ℎ3 ̸=0, 𝑡∈ [0, 𝑡1], оптимальна для любого 𝑡1 ∈ (0, 𝑡*).

При 𝑡 = 𝑡* в точку Exp(ℎ3, 𝑡*) приходят две траектории, симметричные относительно
оси 𝑦 и с одинаковым значением функционала времени, поэтому обе они оптимальны.

Теперь рассмотрим случай 1. Если ℎ3 = 0, то экстремальная траектория — прямая
𝑞(𝑡)= (ℎ01𝑡, 0). Из доказанного выше включения Exp(𝑁)⊂𝐷 следует, что при ℎ3 ̸=0 и 𝑡 > 0
экстремальные траектории не пересекают координатную ось 𝑦=0, поэтому в каждую точ-
ку этой оси приходит единственная (с точностью до перепараметризации) экстремальная
траектория — прямая 𝑞(𝑡) = (ℎ01𝑡, 0). В силу существования оптимальной траектории она
оптимальна на любом отрезке [0, 𝑡1], 𝑡1> 0. Теорема доказана.

Следствие. 1. Для любой траектории Exp(𝜆, 𝑡), 𝜆 = (ℎ3, ℎ
0
1) ∈ 𝑇 *

𝑞0𝑀 ∩{𝐻 = 1}, время
разреза (время потери оптимальности) равно 𝑡cut= 𝑡*= |ℎ3|−1/𝛼𝑠* ∈ (0,+∞].

2. Множество разреза

Cut= {Exp(𝜆, 𝑡cut(𝜆)) : 𝜆∈𝑇 *
𝑞0𝑀 ∩{𝐻 =1}}= {(𝑥, 𝑦)∈𝑀 : 𝑥=0, 𝑦 ̸=0}.

Замечание. Оптимальность экстремальных траекторий на 𝛼-плоскости Грушина впер-
вые исследована в работе [3] на основе аналогичных рассуждений, но с использованием
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явной параметризации экстремальных траекторий, полученных в работе [2]. Новизна дан-
ного исследования состоит в качественном использовании лишь свойства гамильтоновой
системы (7), но не её явного интегрирования.

Для 2-плоскости Грушина на рис. 1 приведена почти риманова сфера радиуса 2: {𝑞∈𝑀 :
𝑑(𝑞0, 𝑞)=2} и её радиусы (оптимальные траектории, приходящие в точки этой сферы), а на
рис. 2 — волновые фронты {Exp(𝜆,𝑅) : 𝜆∈𝑁} для разных значений 𝑅.

Рис. 1. Сфера радиуса 2 и её радиусы Рис. 2. Волновые фронты

ЗАКЛЮЧЕНИЕ

В работе представлено качественное исследование оптимальных траекторий на 𝛼-плос-
кости Грушина, не использующее явное интегрирование гамильтоновой системы принципа
максимума Понтрягина. Насколько нам известно, это первое такого рода исследование в
теории оптимального управления. Например, даже в субримановой задаче на группе Гей-
зенберга оптимальность исследуется на основе явного интегрирования гамильтоновой систе-
мы [1, § 13.2]. Мы надеемся, что представленный в данной работе качественный подход
к построению оптимального синтеза может быть полезен в других задачах оптимального
управления, где явное интегрирование гамильтоновой системы принципа максимума Понт-
рягина затруднительно или вовсе невозможно. Этот подход может быть применён в задачах
небольшой размерности и с большой группой симметрий.
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