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Abstract. In this paper, we solve the problem of assigning the desired characteristic polynomial of a linear sta-
tionary dynamic system with one input and output dynamic feedback in the form of a first-order dynamic com-
pensator. Necessary and sufficient conditions for the existence of the solution of the problem are considered.
An explicit formula for the compensator parameters, analogous to the Bass–Gura formula for a state feedback
system, is derived.
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1. INTRODUCTION. PROBLEM STATEMENT

The Ackerman and Bass-Gura formulas are known frommathematical control theory [1, p. 360], used to solve
the problem of assigning the desired characteristic polynomial of a linear stationary systemwith one input and state
feedback, whose behavior is described by equations

ẋ = Ax+ bu, u = −fTx, (1)

where x ∈ Rn is the state vector, u ∈ R is the scalar control, A ∈ Rn×n, b ∈ Rn, f ∈ Rn.
The characteristic polynomial of the system (1) is the characteristic polynomial of thematrix of the closed-loop

system A− bfT. Let us denote by

a(λ) = λn + a1λ
n−1 + · · ·+ an, d(λ) = λn + d1λ

n−1 + · · ·+ dn

characteristic polynomial of thematrixA and the desired characteristic polynomial of thematrixA−bfT. Suppose
that the matrix

X(A, b) =
[
b Ab . . . An−1b

]

is nonsingular, which corresponds to the controllability condition of the system (1).
According to Ackerman’s formula the required vector f is equal to

fT =
[
0 . . . 0 1

]
X(A, b)−1d(A).

According to the Bass-Gura formula

fT = (d̄− ā)TH−1X(A, b)−1,

where

H =




an−1 an−2 . . . 1
an−2 an−3 . . . 0
...

...
. . .

...
1 0 . . . 0


 , ā =




an
an−1

...
a1


 , d̄ =




dn
dn−1

...
d1


 .
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In papers [2, 3], the Ackerman formula and the Bass–Gura formula were generalized for systems with multiple

inputs and state feedback. The purpose of this paper is to obtain a generalization of the Bass–Gura formula for a
system with dynamic output feedback in the form of a first-order dynamic compensator.

It is known [4] that dynamic feedback significantly expands the possibilities of output feedback compared to
static feedback. Dynamic output feedback can include state observers as well as dynamic compensators of the
general kind. According to the seminal work [5], a dynamic compensator of ordermin{pc, po}, where pc and po are
the controllability and observability indices of the system, respectively, can be constructed for a fully controllable
and fully observable system. In the case of a systemwith one input, theminimumorder of the compensator is equal
to the observability index po.

Let us consider a linear stationary system with one input

ẋ = Ax+ bu, y = Cx,

where x ∈ Rn is the state vector, y ∈ Rl is the measurement vector, u ∈ R is the scalar control,A ∈ Rn×n, b ∈ Rn,
C ∈ Rl×n, l < n.

We will search for the control in the form of a dynamic compensator of the first order

u = −fTy − z, ż + pz = qTy,

where f ∈ Rl, p ∈ R, q ∈ Rl are the compensator parameters. The system with compensator is described by the
equations

ẋ = (A− bfTC)x− bz, ż = qTCx− pz. (2)

The characteristic polynomial of the system (2) is the characteristic polynomial of thematrix of the closed-loop
system

D =

[
A− bf⊤C −b

q⊤C −p

]
.

We will search for the compensator parameters taking into account the properties of the given characteristic poly-
nomial of the matrixD. For this purpose, it is necessary to obtain an explicit formula for the feedback parameters
similar to the Bass–Gura formula.

2. KEY FINDINGS

Let’s denote by
a(λ) = det(λE −A) = λn + a1λ

n−1 + · · ·+ an

the characteristic polynomial of the matrix A. Let us introduce a column vector g(λ) = C(λE − A)∗b, where
(λE −A)∗ is the adjoint matrix to λE −A.

Lemma. The characteristic polynomial of the matrixD is

det(λE −D) = (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)g(λ). (3)

Proof. Following simple transformations in the determinant of the matrix λE −D, we obtain

det(λE −D) = det
[
λE −A+ bf⊤C b

−q⊤C λ+ p

]
= det

[
λE −A+ b(f⊤ + (λ+ p)−1q⊤)C b

0 λ+ p

]
=

= (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)C(λE −A)∗b = (λ+ p)a(λ) + (f⊤(λ+ p) + q⊤)g(λ).

Here the det(A+ bc⊤) = detA+ c⊤A∗b is applied, where A is a square matrix, A∗ is a adjoint matrix to A, b is a
column vector, c⊤ is a row vector [6, p. 133]. The lemma is proved.

The following theorem formulates necessary and sufficient conditions for the existence of a solution to the
problem and simultaneously describes the algorithm for calculating the compensator parameters.

Theorem. The characteristic polynomial of the matrixD can be arbitrarily set by choosing the compensator param-
eters f, p, q, only when

rankX(A, b) = n, rankY (A,C) = n,
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where

X(A, b) =
[
b Ab . . . An−1b

]
, Y (A,C) =

[
C CA

]T
.

Proof. Let’s denote by
d(λ) = λn+1 + d1λ

n + · · ·+ dn+1 (4)

the desired characteristic polynomial of the matrix D. We will search for the compensator parameters from the
condition of coincidence of polynomials (3) and (4).

Let’s denote

πk(λ) =
[
λk λk−1 . . . λ 1

]⊤
, ā =

[
a2 a3 . . . an

]
, d̄ =

[
d2 d3 . . . dn+1

]
.

Then
a(λ) = λn +

[
a1 ā

]
πn−1(λ), λa(λ) = λn+1 + a1λ

n +
[
ā 0

]
πn−1(λ),

d(λ) = λn+1 + d1λ
n + d̄πn−1(λ).

Let us write the matrix (λE −A)∗ as a matrix polynomial [7, p. 91]

(λE −A)∗ = Eλn−1 +A1λ
n−2 + · · ·+An−1,

where
A1 = A+ a1E, A2 = A2 + a1A+ a2E = AA1 + a2E, . . .

. . . , An−1 = An−1 + a1A
n−2 + · · ·+ an−1E = AAn−2 + an−1E.

Note that by the Cayley-Hamilton theorem,

An = An + a1A
n−1 + · · ·+ anE = AAn−1 + anE = 0.

Let’s introduce the matrix

G =




1 a1 . . . an−1

0 1 . . . an−2

...
...

. . .
...

0 0 . . . 1


 .

Vectors g(λ) and λg(λ) can be written in the form

g(λ) = C(λE −A)∗b = C
[
b A1b . . . An−1b

]
πn−1(λ) = CX(A, b)Gπn−1(λ),

λg(λ) = Cbλn + C
[
A1b A2b . . . Anb

]
πn−1(λ) =

= Cbλn + CAX(A, b)Gπn−1(λ) + Cb
[
a1 ā

]
πn−1(λ).

The characteristic polynomial (3) of the matrixD is equal to

det(λE −D) = λn+1 + a1λ
n +

[
ā 0

]
πn−1(λ) + pλn + p

[
a1 ā

]
πn−1(λ)+

+fTCbλn + fTCAX(A, b)Gπn−1(λ) + fTCb
[
a1 ā

]
πn−1 + (fp+ q)TCX(A, b)Gπn−1(λ). (5)

The given polynomial (4) and the polynomial (5) coincide if and only if

a1 + p+ f⊤Cb = d1, (6)
[
ā 0

]
+ p

[
a1 ā

]
+ f⊤CAX(A, b)G+ f⊤Cb

[
a1 ā

]
+ (fp+ q)⊤CX(A, b)G = d̄. (7)

Let us denote r = fp+ q. From equation (6) express p and substitute it into (7). Then (7) takes the form
[
r⊤ fT

]
Y (A,C)X(A, b)G = d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

]
. (8)

Let f and r be solutions of equation (8). Then from relation (6), we obtain p = d1−a1−fCb, and q = r−fp.
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Equation (8) has a solution with respect to the unknowns f and r for any vector d̄, if and only if
rankY (A,C)X(A, b)G = n. The matrix G is nonsingular. The matrices X(A, b) and Y (A,C) have the dimen-
sions n × n and 2l × n, respectively. Hence, rankY (A,C)X(A, b)G = n if and only if rankX(A, b) = n and
rankY (A,C) = n. The theorem is proved.

Remark. It follows from the theorem, that the necessary condition for the existence of a solution to the problem
is the condition 2l ≥ n. Consequently, the problem has a solution at a sufficiently large number of output variables.
For example, at n = 5 the number of output variables should be at least 3. This is a significant limitation of the
considered output feedback.

If the conditions of the theorem are satisfied and 2l = n, then the solution of equation (8) is unique. If 2l > n,
then equation (8) has infinitely many solutions.

In the case of a unique solution
[
rT fT

]
=

(
d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

])
G−1X(A, b)−1Y (A,C)−1. (9)

Formula (9) can be considered as an analog of the Bass-Gura formula for a system with state feedback.
Let the conditions of the theorem be satisfied and 2l > n. Then we can find a partial solution of equation (8):

[
rT fT

]
=

(
d̄−

[
ā 0

]
− (d1 − a1)

[
a1 ā

])
G−1X(A, b)−1(Y (A,C)TY (A,C))−1Y (A,C)T.

3. NUMERICAL EXAMPLE

Let n = 6, l = 3,

A =




−1.68 0.64 1.53 −1.5 −1.45 −0.22
0.89 1.48 2.35 0.78 −2.21 −0.08

−0.74 0.96 1.28 −2.04 1.61 1.6
0.35 −1.78 0.74 −1.54 −0.16 −0.06
0.15 −1.05 −1.19 0.65 −0.22 −0.54

−0.53 0.37 0.7 −0.09 0.15 −0.41



,

b =




−0.47
−0.53
1.87
0.79

−0.56
0.46



, C =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


.

Let us set the desired characteristic polynomial of the system (2):

d(λ) = (λ+ 0.3)(λ+ 0.4)(λ+ 0.5)(λ+ 0.2 + 0.7i)(λ+ 0.2− 0.7i)(λ+ 0.1 + 0.3i)(λ+ 0.1− 0.3i) =

= λ7 + 1.8λ6 + 1.9λ5 + 1.34λ4 + 0.5979λ3 + 0.17482λ2 + 0.03367λ+ 0.00318.

The conditions of the theorem are fulfilled. The parameters of the compensator are determined uniquely:

fT =
[
0.0891861 −1.5061263 14.434942

]
,

qT =
[
7.3744718 −10.250088 53.52229

]
, p = −3.0716998.

The verification shows that the characteristic polynomial of the matrixD coincides with the given one.

CONFLICT OF INTERESTS

The author of this paper declares that he has no conflict of interests.

PEREPELKIN

REFERENCES

1. Datta B.Numerical Methods for Linear Control Systems, Boston: Elsevier Academic Press, 2004.

2. Lapin A.V., ZubovN.E., andProletarskii A.V.Generalization of Ackermann formula for a certain class ofmul-
tidimensional dynamic systemswith vector input,Herald of theBaumanMoscowState TechnicalUniversity,
Series Natural Sciences, 2023, Vol. 109, No. 4, pp. 18–38.

3. Lapin A.V. and Zubov N.E. Generalization of Bass–Gura formula for linear dynamic systems with vector
control, Herald of the BaumanMoscow State Technical University, Series Natural Sciences, 2020, Vol. 89,
No. 2, pp. 41–64.

4. Bukov V.N., Goryunov S.V., and Ryabchenko V.N. Matrix linear systems: a comparative review of the ap-
proaches to their analysis and synthesis, Automation and Remote Control, 2000, Vol. 61 (1), No. 11,
pp. 1759–1795.

5. Brash F.M. and Pearson J.B. Pole placement using dynamic compensators, IEEE Trans. Automat. Contr.,
1970, Vol. AC-15, pp. 34–43.

6. BernsteinD.S.MatrixMathematics: Theory, Facts, andFormulas, SecondEd., PrincetonUniv. Press, 2009.

7. Gantmacher F.R. The Theory of Matrices, American Mathematical Society, 1998.



113

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

REFERENCES

1. Datta B.Numerical Methods for Linear Control Systems, Boston: Elsevier Academic Press, 2004.

2. Lapin A.V., ZubovN.E., andProletarskii A.V.Generalization of Ackermann formula for a certain class ofmul-
tidimensional dynamic systemswith vector input,Herald of theBaumanMoscowState TechnicalUniversity,
Series Natural Sciences, 2023, Vol. 109, No. 4, pp. 18–38.

3. Lapin A.V. and Zubov N.E. Generalization of Bass–Gura formula for linear dynamic systems with vector
control, Herald of the BaumanMoscow State Technical University, Series Natural Sciences, 2020, Vol. 89,
No. 2, pp. 41–64.

4. Bukov V.N., Goryunov S.V., and Ryabchenko V.N. Matrix linear systems: a comparative review of the ap-
proaches to their analysis and synthesis, Automation and Remote Control, 2000, Vol. 61 (1), No. 11,
pp. 1759–1795.

5. Brash F.M. and Pearson J.B. Pole placement using dynamic compensators, IEEE Trans. Automat. Contr.,
1970, Vol. AC-15, pp. 34–43.

6. BernsteinD.S.MatrixMathematics: Theory, Facts, andFormulas, SecondEd., PrincetonUniv. Press, 2009.

7. Gantmacher F.R. The Theory of Matrices, American Mathematical Society, 1998.

BASS—GURA FORMULA FOR LINEAR SYSTEM


