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1. INTRODUCTION

One of the directions of development of the modern theory of differential games is the study of pursuit-evasion
problems with participation of a group of participants [1–4], and besides deepening of classical methods of inves-
tigation the search of game problems to which previously developed methods are applicable is actively conducted.

Differential games with fractional derivatives were first considered in [5], where the method of scalar resolv-
ing functions was used for the study. Differential games with fractional derivatives based on the Hamilton-Jacobi
equation were studied in [6]. In [7], the problem of pursuit by a group of pursuers of a single evader in differential
games described by equations with fractional derivatives was considered. The problem of conflict interaction be-
tween a group of pursuers and a group of evaders in games with fractional dynamics was considered in [8], scalar
resolving functions were used for analysis. A. A. Chikrii, in his paper [9], notes that scalar resolving functions
attract a terminal set with images of some multivalued mappings that occur in a cone stretched over this set, which
limits the possibilities for the pursuer’s maneuver, and also proposes to use matrix resolving functions to analyze
two-person pursuit games. In [10], matrix resolution functions were applied to study the problem of pursuit by a
group of pursuers of a single evader described by a stationary linear system with fractional Caputo derivatives.

In [11], the problem of pursuit by a group of pursuers of a group of evaders in linear stationary differential
games with simple matrices under the condition that all evaders use the same control was considered. Sufficient
conditions for catching at least one evader were obtained. The pursuit problem in which all evaders use the same
control will be referred to as the coordinated evaders pursuit problem.

In this paper we consider the problem of conflict interaction between a group of pursuers and a group of evaders
in a differential game described by a nonstationary linear system of differential equations with fractional Caputo
derivatives. Under the condition that the evaders use the same control, sufficient conditions for catching at least one
evader are obtained, usingmatrix or scalar resolving functions. The study of the nonstationary case is supplemented
by some results for games described by linear stationary systems with a simple matrix.
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1. PROBLEM STATEMENT

In the spaceRk (k ⩾ 2) we consider a differential game of n+m persons: n pursuers P1, . . . , Pn andm evaders
E1, . . . , Em, described by a system of the form

(D(α))zij = Aij(t)zij + ui − v, zij(t0) = z0ij , ui ∈ Ui, v ∈ V. (1)

Here, i ∈ I = {1, . . . , n}, j ∈ J = {1, . . . ,m}, zij , ui, v ∈ Rk, Ui, V are compact sets Rk, α ∈ (0, 1), D(α)x is
Caputo derivative of the function x of orderα [12],Aij(t) are continuousmatrix functions of order k×k. Terminal
setsM∗

ij of the form
M∗

ij = Mij +M0
ij ,

whereMij is a linear subspace of Rk,M0
ij are convex compact sets from Lij – the orthogonal complement ofMij

to Rk. We consider z0ij /∈ M∗
ij for all i ∈ I, j ∈ J .

The actions of the evaders can be interpreted as follows: there is a center that, for all evaders E1, . . . , Em,
chooses the same control v(·).

Let v : [t0,+∞) → V be a measurable function, which we will call admissible. The prehistory of vt(·), at the
moment t of the function v(·), will be called the contraction of the function v at [t0, t].

2. SUFFICIENT CATCHING CONDITIONS

Definition 1. We will say that a quasi-strategy Ui of the pursuer Pi is defined, if a mapping U0
i , that puts the

measurable function ui(t) with values in Ui in accordance with the initial positions of z0 = (z0ij , i ∈ I, j ∈ J), the
moment t, and an arbitrary control prehistory vt(·) of the evader Ej , j ∈ J , is defined.

Let’s denote this game byG(n,m, z0).
Definition 2. A capture of at least one evader occurs in the game G(n,m, z0), if there exist moment T > 0,

quasi-strategies U1, . . . ,Un of pursuers P1, . . . , Pn such that for any measurable function v(·), v(t) ∈ V, t ∈ [t0, T ],
there exist moment τ ∈ [t0, T ] and numbers p ∈ I, q ∈ J , for which zpq(τ) ∈ Mpq.

Let us introduce the following notations: E0 is a identity matrix of order k×k, πij : Rk → Lij is an orthogonal
projection operator,

Γ(β) =

∫ +∞

0

sβ−1e−sds, τJtf(t) =
1

Γ(α)

∫ t

τ

(t− s)α−1f(s)ds,

G0
ij(t, τ) =

(t− τ)α−1

Γ(α)
E0,

Gl+1
ij (t, τ) = τJt(Aij(t)G

l
ij(t, τ)), l = 0, 1, . . . , Φij(t, τ) =

+∞∑
l=0

Gl
ij(t, τ),

G̃0
ij(t, τ) = E0, G̃l+1

ij (t, τ) = τJt(Aij(t)G̃
l
ij(t, τ)), l = 0, 1, . . . , Ψij(t, τ) =

+∞∑
l=0

G̃l
ij(t, τ),

Wij(t, τ, v) = πijΦij(t, τ)(Ui − v), Wij(t, τ) =
⋂
v∈V

Wij(t, τ, v),

Int A, co A are the interior and the convex hull of the set A, respectively.
Assumption 1. There exists a mapping q : I → J , such that for all i ∈ I, t ⩾ t0, τ ∈ [t0, t] the following condition

is satisfied
Wiq(i)(t, τ) ̸= ∅.

Remark 1. Fulfillment of assumption 1 will allow further organizing the pursuit of evaders, so that each pursuer
will carry out the capture of “its” evader.
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Lemma 1. Let assumptions 1, 2 be satisfied,

lim
t→+∞

∫ t

t0

δ(t, s)ds = +∞. (3)

Then, there exists a moment T > t0 such that for each measurable function v(·), v(t) ∈ V , t ∈ [t0, T ], there exists a
number l ∈ I, such that for all p ∈ Jl the inequalities are true:

∫ T

t0

λ∗
lp(T, s, v(s))ds ⩾ 1.

Proof. Let v(·) be an arbitrary admissible function. Then for all t ⩾ t0, s ∈ [t0, t], l ∈ I, p ∈ Jl, the inequalities
are true:

λ∗
lp(t, s, v(s)) ⩾ λ∗

l (t, s, v(s)). (4)

In addition, relations are true,

max
l∈I

∫ t

t0

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

∑
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

max
l∈I

λ∗
l (t, s, v(s))ds ⩾

1

n

∫ t

t0

δ(t, s)ds.

It follows from condition (3) that there exists a number T > t0, for which

1

n

∫ T

t0

δ(T, s)ds ⩾ 1.

Hence,

max
l∈I

∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1,

so there is a number l ∈ I, for which ∫ T

t0

λ∗
l (T, s, v(s))ds ⩾ 1.

From the last inequality and inequality (4), the validity of the statement of the lemma follows.
Let’s find the number

T0 = inf
{
t ⩾ t0 : inf

v(·)
max
l∈I

min
p∈Jl

∫ t

t0

λ∗
lp(t, s, v(s))ds ⩾ 1

}
.

Consider the sets (i ∈ I, p ∈ Jl)

Tip(v(·)) =
{
t ⩾ t0 :

∫ t

t0

λ∗
ip(T0, s, v(s))ds ⩾ 1

}
.

Let’s determine the values

t∗ip(v(·)) =

{
inf{t : t ∈ Tip(v(·))}, if Tip(v(·)) ̸= ∅,
+∞, if Tip(v(·)) = ∅.

Assumption 3. 1) For all τ ∈ [t0, T0], v ∈ V , l ∈ I, J0
l ⊂ Jl, selectors Bl(T0, τ, v) = diag(βl1(T0, τ, v), . . .

. . . , βlkl
(T0, τ, v)) where

βlp(T0, τ, v) =

{
λ∗
lp(T0, τ, v), if p ∈ J0

l ,

0, if p /∈ J0
l ,

satisfy the condition Bl(T0, τ, v) ⊂ Ml(T0, τ, v).
2)

∫ T0

t0
Bl(T0, s, v(s))M

0
lq(l)ds ⊂ M0

lq(l).
Theorem 2. Let assumptions 1–3 and condition (19) be satisfied. Then, at least one evader is captured in the game

G(n,m, z0).

It follows from the measurable choice theorem [13, Theorem 8.1.3], that for every i ∈ I for any ⩾ t0, there
exists at least one measurable selector γiq(i)(t, τ) ∈ Wiq(i)(t, τ) for all t ⩾ t0, τ ∈ [t0, t]. Let us choose arbitrary
measurable selectors γiq(i)(t, τ), fix them and denote

ξiq(i)(t) = πiq(i)Ψiq(i)(t, t0)z
0
iq(i) +

∫ t

t0

γiq(i)(t, τ)dτ.

Theorem 1. Let Assumption 1 be satisfied, and there exist T > t0, l ∈ I such that ξlq(l)(T ) ∈ M0
lq(l). Then a

capture occurs in the gameG(n,m, z0).
Proof. Let’s consider the multivalued mapping (τ ∈ [t0, T ], v ∈ V ):

Ul(T, τ, v) = {ul ∈ Ul : πlq(l)Φlq(l)(T, τ)(u− v)− γlq(l)(T, τ) = 0}.

By assumption 1, Ul(T, τ, v) ̸= ∅ for all τ ∈ [t0, T ], v ∈ V . It follows from the measurable choice theorem
[13, Theorem 8.1.3], that there exists a measurable selector u∗

l (τ, v) ∈ Ul(T, τ, v). We assume the control of the
pursuer Pl is equal to

ul(τ) = u∗
l (τ, v(τ)), τ ∈ [t0, T ].

The controls of the other pursuers are set arbitrarily. The solution of the Cauchy problem for the system (1) is
represented as [14]

zlq(l)(T ) = Ψlq(l)(T, t0)z
0
lq(l) +

∫ T

t0

Φlq(l)(T, s)(ul(s)− v(s))ds,

therefore

πlq(l)zlq(l)(T ) = ξlq(l)(T ) +

∫ T

t0

(πlq(l)Φlq(l)(T, s)(ul(s)− v(s))− γlq(l)(T, s))ds = ξlq(l)(T ) ∈ M0
lq(l).

This means that a capture of at least one evader occurs in the gameG(n,m, z0). The theorem is proven.
In the following, we will assume that ξiq(i)(t) /∈ M0

iq(i) is for all i ∈ I, t ⩾ t0.
Consider an arbitrary diagonal square matrix Λi of order ki × ki, where ki is the dimension of Liq(i), of the

form

Λi =




λi1 0 . . . 0
0 λi2 . . . 0
...

...
. . .

...
0 0 . . . λiki


 = diag(λi1, λi2, . . . , λiki).

We will identify the matrix Λi with the vector (λi1, . . . , λiki
). We will understand the inequality Λi ⩾ 0 coor-

dinatewise. Let us introduce multivalued mappings

Mi(t, τ, v) = {Λi : Λi ⩾ 0,Λi(M
0
iq(i) − ξiq(i)(t)) ∩ (Wiq(i)(t, τ, v)− γiq(i)(t, τ)) ̸= ∅}.

Due to the properties of the parameters of the conflict-controlled process, the mappingsMi(t, τ, v) are (τ, v)
measurable mappings [15]. Let us define the scalar functions

λ0
i (t, τ, v) = sup

Λi∈Mi(t,τ,v)
min
l∈Ji

λil(t, τ, v), Ji = {1, . . . , ki}. (2)

Assumption 2. For all t ⩾ t0, τ ∈ [t0, t], v ∈ V , an exact upper bound is achieved in (2).
We consider this assumption to be satisfied. Let us define the set

M∗
i (t, τ, v) = {Λi(t, τ, v) ∈ Mi(t, τ, v) : λ

0
i (t, τ, v) = min

l∈Ji

λil(t, τ, v)}.

It follows from [15], that under the assumptions made, M∗
i (t, τ, v) is measurable by (τ, v) and closed-valued

at any t ⩾ 0. By the measurable choice theorem [13, Theorem 8.1.3], for each i ∈ I in M∗
i (t, τ, v), there

exists at least one selector measurable by (τ, v) at any t ⩾ 0. Let us fix these selectors and denote them by
Λ∗
i (t, τ, v) = diag(λ∗

i1(t, τ, v), . . . , λ
∗
iki

(t, τ, v)). Let further

δ(t, τ) = inf
v∈V

max
i∈I

min
l∈Ji

λ∗
il(t, τ, v).
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λ∗
1(t, s, v) = sup

Λ∈M1(t,s,v)
min
l∈J1

λ1l(t, s, v) =
(t− s)α−1

2Γ(α)
.

Hence,

M∗
1 (t, s, v) = diag

(
(t− s)α−1

2Γ(α)
,
(t− s)α−1

Γ(α)

)
, δ(t, s) =

(t− s)α−1

2Γ(α)
.

We have limt→+∞
∫ t

0
δ(t, s)ds = +∞, so T0 = (2Γ(α+ 1))1/α. Let T1 = T0 − (Γ(α+ 1))1/α. The control of

pursuer P1 has the form

u1(t) =

{
(−1,−1), t ∈ [0, T1),

(−1, 0), t ∈ [T1, T0],

then [14]

z11(T0) = z011 +
1

Γ(α)

∫ T0

0

(T0 − s)α−1u1(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

Λ =

(
λ 0
0 λ

)
,

does not allow us to prove the solvability of the pursuit problem, since in this case the condition −Λz011 ∈ U1 − v
is satisfied only for the zero matrix Λ.

Example 2. Consider the gameG(n, 1, z0), in which the system (1) has the form
{
(D(α))zi1 = tzi2,

(D(α))zi2 = ui − v,
zi(0) = z0i . (5)

Here zi = (zi1, zi2) ∈ R2k, Ui = V = {v ∈ Rk : ∥v∥ ⩽ 1},M∗
i1 = {(zi1, zi2) ∈ R2k : zi1 = 0}, so (i ∈ I)

M0
i1 = {(zi1, zi2) ∈ R2k : zi1 = zi2 = 0}, Mi1 = {(zi1, zi2) ∈ R2k : zi1 = 0},

Li1 = {(zi1, zi2) ∈ R2k : zi2 = 0}, πi1 =

(
E0 0
0 0

)
.

Let’s denote

p(t, τ) =
(t− τ)α−1

Γ(α)
, q(t, τ) =

α(t− τ)2α−1(t+ τ)

Γ(2α+ 1)
, r(t, τ) =

(t− τ)α(t+ ατ)

Γ(α+ 2)
.

Then [14]

Ψi(t, τ) =

(
E0 r(t, τ)E0

0 E0

)
, Φi(t, τ) =

(
p(t, τ)E0 q(t, τ)E0

0 p(t, τ)E0

)
.

Hence,

Wi(t, τ, v) = q(t, τ)(V − v), Wi(t, τ) = {0}, γi(t, τ) = 0, ξi(t) = πiΨi(t, 0)z
0
i = z0i1 + r(t, 0)z0i2,

λi(t, τ, v) = q(t, τ)
(ξi(t), v) +

√
(ξi(t), v)2 + ∥ξi(t)∥2(1− ∥v∥2)

∥ξi(t)∥2
.

Assertion. Let z0i2 = 0 for all i ∈ I and 0 ∈ Int co{z0i1, i ∈ I}. Then a capture occurs in the gameG(n, 1, z0).
Proof. In this case, ξi1(t) = z0i1 for all t > 0. It follows from [16], that

δ(t, τ) = min
v

max
i

λi(t, τ, v) ⩾ q(t, τ)δ0

for all t, τ with some δ0 > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the gameG(n, 1, z0). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.

Proof. It follows from lemma 1, that T0 < +∞. Let v : [t0, T0] → V be an arbitrary admissible function. Let
us introduce the functions B∗

l (T0, t, v) = diag(β∗
l1(T0, t, v), . . . , β

∗
lkl

(T0, t, v)), where

β∗
lp(T0, t, v) =

{
λ∗
lp(T0, t, v), if t ∈ [t0, t

∗
lp(v(·))),

0, if t ∈ [t∗lp(v(·)), T0].

By assumption 3, B∗
i (T0, t, v) is a measurable selector ofMi(T0, t, v). Consider multivalued mappings

Ui(T0, t, v) = {ui ∈ Ui : πiq(i)Φiq(i)(T0, t)(ui − v)− γiq(i)(T0, t) ∈ B∗
i (T0, t, v)(M

0
iq(i) − ξiq(i)(T0))}.

Then Ui(T0, t, v) ̸= ∅ for all i ∈ I, t ∈ [t0, T0], v ∈ V , and hence by the measurable choice theorem [13,
Theorem 8.1.3], Ui(T0, t, v) has at least one measurable selector u∗

i (T0, t, v). We define the pursuers’ controls by
assuming ui(t) = u∗

i (T0, t, v(t)). We’ll show that this evaders’ control guarantees the capture of at least one evader.
The solution of the Cauchy problem of the system (1) has the form [14]

ziq(i)(t) = Ψiq(i)(t, t0)z
0
iq(i) +

∫ t

t0

Φiq(i)(t, s)(ui(s)− v(s))ds,

therefore

πiq(i)ziq(i)(T0) = πiq(i)Ψiq(i)(T0, t0)z
0
iq(i) +

∫ T0

t0

γiq(i)(T0, s)ds +

+

∫ T0

t0

(πiq(i)Φiq(i)(T0, s)(ui(s)− v(s))− γiq(i)(T0, s))ds =

= ξiq(i)(T0) +

∫ T0

t0

(πiq(i)Φiq(i)(T0, s)(ui(s)− v(s))− γiq(i)(T0, s))ds ∈

∈ ξiq(i)(T0) +

∫ T0

t0

B∗
i (T0, s, v(s))(M

0
iq(i) − ξiq(i)(T0))ds =

= ξiq(i)(T0)

(
E0 −

∫ T0

t0

B∗
i (T0, s, v(s))ds

)
+

∫ T0

t0

B∗
i (T0, s, v(s))M

0
iq(i)ds.

From the definition of B∗
i (T0, s, v) and lemma 1, it follows that there exists a number l ∈ I, for which

∫ T0

t0

B∗
l (T0, s, v(s))ds = E0.

Then,

πlq(l)zlq(l)(T0) =

∫ T0

t0

B∗
l (T0, s, v(s))M

0
lq(l)ds ⊂ M0

lq(l).

The theorem is proved.
Remark 2. Scalar resolving functions are a special case of matrix resolving functions, since they are represented

in the form λE0, where λ is a non-negative real number.
Example 1. Let the system (1) k = 2, n = m = 1, t0 = 0, A11(t) = 0 for all t, V = {0}, z011 = (2, 1),

M∗
11 = {0}, U1 = {(u1, u2) : u1 = 0, u2 ∈ [−1, 1]} ∪ {(u1, u2) : u2 = 0, u1 ∈ [−1, 1]} ∪ {(u1, u2) : u1 =

= u2 ∈ [−1, 1]}. Then

Ψ11(t, t0) = E0, Φ11(t, s) =
(t− s)α−1

Γ(α)
, W11(t, s, v) = W11(t, s) =

(t− s)α−1

Γ(α)
U1.

Let’s take γ11(t, s) = 0 for all (t, s), then ξ11(t) = z011,

M1(t, s, v) =

{(
0 0
0 λ2

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
∪

∪
{(

λ2/2 0
0 0

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
∪
{(

λ2/2 0
0 λ2

)
, λ2 =

λ(t− s)α−1

Γ(α)
, λ ∈ [0, 1]

}
,
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λ∗
1(t, s, v) = sup

Λ∈M1(t,s,v)
min
l∈J1

λ1l(t, s, v) =
(t− s)α−1

2Γ(α)
.

Hence,

M∗
1 (t, s, v) = diag

(
(t− s)α−1

2Γ(α)
,
(t− s)α−1

Γ(α)

)
, δ(t, s) =

(t− s)α−1

2Γ(α)
.

We have limt→+∞
∫ t

0
δ(t, s)ds = +∞, so T0 = (2Γ(α+ 1))1/α. Let T1 = T0 − (Γ(α+ 1))1/α. The control of

pursuer P1 has the form

u1(t) =

{
(−1,−1), t ∈ [0, T1),

(−1, 0), t ∈ [T1, T0],

then [14]

z11(T0) = z011 +
1

Γ(α)

∫ T0

0

(T0 − s)α−1u1(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

Λ =

(
λ 0
0 λ

)
,

does not allow us to prove the solvability of the pursuit problem, since in this case the condition −Λz011 ∈ U1 − v
is satisfied only for the zero matrix Λ.

Example 2. Consider the gameG(n, 1, z0), in which the system (1) has the form
{
(D(α))zi1 = tzi2,

(D(α))zi2 = ui − v,
zi(0) = z0i . (5)

Here zi = (zi1, zi2) ∈ R2k, Ui = V = {v ∈ Rk : ∥v∥ ⩽ 1},M∗
i1 = {(zi1, zi2) ∈ R2k : zi1 = 0}, so (i ∈ I)

M0
i1 = {(zi1, zi2) ∈ R2k : zi1 = zi2 = 0}, Mi1 = {(zi1, zi2) ∈ R2k : zi1 = 0},

Li1 = {(zi1, zi2) ∈ R2k : zi2 = 0}, πi1 =

(
E0 0
0 0

)
.

Let’s denote

p(t, τ) =
(t− τ)α−1

Γ(α)
, q(t, τ) =

α(t− τ)2α−1(t+ τ)

Γ(2α+ 1)
, r(t, τ) =

(t− τ)α(t+ ατ)

Γ(α+ 2)
.

Then [14]

Ψi(t, τ) =

(
E0 r(t, τ)E0

0 E0

)
, Φi(t, τ) =

(
p(t, τ)E0 q(t, τ)E0

0 p(t, τ)E0

)
.

Hence,

Wi(t, τ, v) = q(t, τ)(V − v), Wi(t, τ) = {0}, γi(t, τ) = 0, ξi(t) = πiΨi(t, 0)z
0
i = z0i1 + r(t, 0)z0i2,

λi(t, τ, v) = q(t, τ)
(ξi(t), v) +

√
(ξi(t), v)2 + ∥ξi(t)∥2(1− ∥v∥2)

∥ξi(t)∥2
.

Assertion. Let z0i2 = 0 for all i ∈ I and 0 ∈ Int co{z0i1, i ∈ I}. Then a capture occurs in the gameG(n, 1, z0).
Proof. In this case, ξi1(t) = z0i1 for all t > 0. It follows from [16], that

δ(t, τ) = min
v

max
i

λi(t, τ, v) ⩾ q(t, τ)δ0

for all t, τ with some δ0 > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the gameG(n, 1, z0). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.
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hence limt→+∞ F (t) < 0. So limt→+∞
∑n

i=1 hi(t, v(·)) < 0. Since
∑n

i=1 hi(0, v(·)) > 0, there exists T > 0, for
which for any admissible function v(·) the inequality

∑n
i=1 hi(T, v(·)) < 0 is true. Thus, inequality (9) is proved.

Let

T0 = min
{
t : inf

v(·)
min
i∈I

(
E1/α(aiq(i)t

α, 1)−
∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds

)
⩽ 0

}
.

It follows from inequality (7), that T0 < +∞. Let v(·) be an admissible fleeing control. Consider the sets

Ti(v(·)) =
{
t ⩾ 0 : E1/α(aiq(i)T

α
0 , 1)−

∫ t

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)λ(z0iq(i), v(s))ds ⩽ 0

}
.

Let the following be

ti(v(·)) =

{
inf{t : t ∈ Ti(v(·))}, if Ti(v(·)) ̸= ∅,
+∞, if Ti(v(·)) = ∅,

βi(t, v(·)) =

{
λ(ziq(i), v(t)), t ∈ [0, ti(v(·))],
0, t ∈ [ti(v(·)), T0].

Let’s set the controls of the pursuers Pi, i ∈ I, assuming

ui(t) = v(t)− βi(t, v(·))z0iq(i).

The solution of the Cauchy problem of the system (1) is represented in the form [19]

ziq(i)(T0) = E1/α(aiq(i)T
α
0 , 1)z

0
iq(i) +

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)(ui(s)− v(s))ds =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i) =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ ti(v(·))

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i).

It follows from the previous proof that there exists a number l ∈ I, for which zlq(l)(T0) = 0. The theorem is
proved.

Example 3. Let k = 2, I = {1, 2, 3, 4}, J = {1, 2}, Aij(t) = aijE
0, aij < 0, Ui = V = {v : ∥v∥ ⩽ 1}, z011 =

(1, 3), z021 = (−1, 3), z031 = (−1, 1), z041 = (1, 1), z012 = (0,−1), z022 = (−2,−1), z032 = (−2,−3), z042 = (0,−3).
Define a mapping q : I → J as follows: q(1) = 2, q(2) = q(3) = q(4) = 1. The conditions of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z0). Note that 0 /∈ Int co{z0i1, i ∈ I}
and 0 /∈ Int co{z0i2, i ∈ I}.

We show that if aiq(i) > 0, then condition (6) in Theorem 3 does not guarantee capture.
Example 4. Let k = 2, n = 3, m = 1, I = {1, 2, 3}, M∗

i1 = {0}, t0 = 0, z011 = (0, 1), z021 = (1/2,−
√
3/2),

z031 = (−1/2,−
√
3/2), Ui = V = {v : ∥v∥ ⩽ 1}. System (1) has the form

(D(1/2))zi1 = zi1 + ui − v.

Let’s take v(t) = 0 for all t ⩾ 0. Then we have

zi1(t) = E2(
√
t, 1)z0i1 +

∫ t

0

(t− s)−1/2E2((t− s)1/2, 1/2)ui(s)ds.

Suppose that there exist T > 0, function ul(·), l ∈ {1, 2, 3}, for which zl1(T ) = 0. Then [20, p. 120, formula
(1.15)]

E2(
√
T , 1) = ∥E2(

√
T , 1)z0l1∥ =

∥∥∥∥∥
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ul(s) ds

∥∥∥∥∥ ⩽

⩽
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ds =

√
TE2(

√
T , 3/2).

3. SUFFICIENT CAPTURE CONDITIONS IN THE LINEAR STATIONARY CASE
WITH SIMPLEMATRICES

Theorem 3. Let in the system (1) for all i, j Aij(t) = aijE
0 for any t,M∗

ij = {0}, t0 = 0, Ui = V = {v : ∥v∥ ⩽ 1},
there exists a mapping q : I → J such that aiq(i) < 0 for all i ∈ I and

0 ∈ Int co{z0iq(i), i ∈ I}. (6)

Then a capture of at least one evader occurs in the gameG(n,m, z0).
Proof. In this case

Ψiq(i)(t, t0) = E1/α(aiq(i)t
α, 1), Φiq(i)(t, τ) = (t− τ)α−1E1/α(aiq(i)(t− τ)α, α),

where Eρ(z, µ) =
∑∞

l=0 z
l/Γ(lρ−1 + µ) is the Mittag-Leffler function. Assumption 1 is fulfilled.

Let’s takeγiq(i)(t, τ) = 0 as selectors for all i ∈ I, t ⩾ 0, τ ∈ [0, t]. Then ξiq(i)(t) = πiq(i)E1/α(aiq(i)t
α, 1)z0iq(i).

Let
λ(z, v) = sup{λ ⩾ 0 : −λz ∈ V − v}, δ = min

v∈V
max
i∈I

λ(z0iq(i), v), a = min
i∈I

aiq(i).

It follows from condition (6) and from [16], that δ > 0. Let us show that there exists T > 0 such that for any
admissible function v(·) there exists l ∈ I, for which

E1/α(alq(l)T
α, 1)−

∫ T

0

(T − s)α−1E1/α(alq(l)(T − s)α, α)λ(z0lq(l), v(s))ds ⩽ 0. (7)

Consider the functions

hi(t, v(·)) = E1/α(aiq(i)t
α, 1)−

∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds.

It follows from [17], that for all t ⩾ 0, τ ∈ [0, t], i ∈ I the inequalities hold

E1/α(aiq(i)(t− τ)α, α) ⩾ E1/α(a(t− τ)α, α).

It follows from Theorem 4.1.1 of [18], that for all t ⩾ 0, τ ∈ [0, t], the inequalityE1,α(a(t− τ)α, α) ⩾ 0 is true.
From the last two inequalities we obtain

n∑
i=1

t∫

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(ziq(i), v(s)) ds ⩾

⩾
t∫

0

(t− s)α−1E1/α(a(t− s)α, α)max
i∈I

λ(ziq(i), v(s)) ds ⩾

⩾ δ

t∫

0

(t− s)α−1E1/α(a(t− s)α, α) ds = δtαE1/α(at
α, α+ 1),

hence

F (t) =
n∑

i=1

hi(t, v(·)) ⩽
n∑

i=1

E1/α(aiq(i)t
α, 1)− δtαE1/α(at

α, α+ 1).

Since aiq(i) < 0 for all i ∈ I, it follows from [18] that the asymptotic representation is valid at t → +∞

E1/α(aiq(i)t
α, 1) = − 1

aiq(i)tαΓ(α+ 1)
+O

(
1

t2α

)
, E1/α(at

α, α+ 1) = − 1

atα
+O

(
1

t2α

)
,

F (t) = −
n∑

i=1

1

aiq(i)tαΓ(α+ 1)
+

1

a
+O

(
1

tα

)
,
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hence limt→+∞ F (t) < 0. So limt→+∞
∑n

i=1 hi(t, v(·)) < 0. Since
∑n

i=1 hi(0, v(·)) > 0, there exists T > 0, for
which for any admissible function v(·) the inequality

∑n
i=1 hi(T, v(·)) < 0 is true. Thus, inequality (9) is proved.

Let

T0 = min
{
t : inf

v(·)
min
i∈I

(
E1/α(aiq(i)t

α, 1)−
∫ t

0

(t− s)α−1E1/α(aiq(i)(t− s)α, α)λ(z0iq(i), v(s))ds

)
⩽ 0

}
.

It follows from inequality (7), that T0 < +∞. Let v(·) be an admissible fleeing control. Consider the sets

Ti(v(·)) =
{
t ⩾ 0 : E1/α(aiq(i)T

α
0 , 1)−

∫ t

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)λ(z0iq(i), v(s))ds ⩽ 0

}
.

Let the following be

ti(v(·)) =

{
inf{t : t ∈ Ti(v(·))}, if Ti(v(·)) ̸= ∅,
+∞, if Ti(v(·)) = ∅,

βi(t, v(·)) =

{
λ(ziq(i), v(t)), t ∈ [0, ti(v(·))],
0, t ∈ [ti(v(·)), T0].

Let’s set the controls of the pursuers Pi, i ∈ I, assuming

ui(t) = v(t)− βi(t, v(·))z0iq(i).

The solution of the Cauchy problem of the system (1) is represented in the form [19]

ziq(i)(T0) = E1/α(aiq(i)T
α
0 , 1)z

0
iq(i) +

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)(ui(s)− v(s))ds =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ T0

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i) =

=

(
E1/α(aiq(i)T

α
0 , 1)−

∫ ti(v(·))

0

(T0 − s)α−1E1/α(aiq(i)(T0 − s)α, α)βi(s, v(s))ds

)
z0iq(i).

It follows from the previous proof that there exists a number l ∈ I, for which zlq(l)(T0) = 0. The theorem is
proved.

Example 3. Let k = 2, I = {1, 2, 3, 4}, J = {1, 2}, Aij(t) = aijE
0, aij < 0, Ui = V = {v : ∥v∥ ⩽ 1}, z011 =

(1, 3), z021 = (−1, 3), z031 = (−1, 1), z041 = (1, 1), z012 = (0,−1), z022 = (−2,−1), z032 = (−2,−3), z042 = (0,−3).
Define a mapping q : I → J as follows: q(1) = 2, q(2) = q(3) = q(4) = 1. The conditions of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z0). Note that 0 /∈ Int co{z0i1, i ∈ I}
and 0 /∈ Int co{z0i2, i ∈ I}.

We show that if aiq(i) > 0, then condition (6) in Theorem 3 does not guarantee capture.
Example 4. Let k = 2, n = 3, m = 1, I = {1, 2, 3}, M∗

i1 = {0}, t0 = 0, z011 = (0, 1), z021 = (1/2,−
√
3/2),

z031 = (−1/2,−
√
3/2), Ui = V = {v : ∥v∥ ⩽ 1}. System (1) has the form

(D(1/2))zi1 = zi1 + ui − v.

Let’s take v(t) = 0 for all t ⩾ 0. Then we have

zi1(t) = E2(
√
t, 1)z0i1 +

∫ t

0

(t− s)−1/2E2((t− s)1/2, 1/2)ui(s)ds.

Suppose that there exist T > 0, function ul(·), l ∈ {1, 2, 3}, for which zl1(T ) = 0. Then [20, p. 120, formula
(1.15)]

E2(
√
T , 1) = ∥E2(

√
T , 1)z0l1∥ =

∥∥∥∥∥
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ul(s) ds

∥∥∥∥∥ ⩽

⩽
T∫

0

(T − s)−1/2E2

(
(T − s)1/2, 1/2

)
ds =

√
TE2(

√
T , 3/2).
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Proof. 1. We show that there exist a moment Tm and a vector um, ∥um∥ = 1, for which the equality x1(Tm) =
ym(Tm) holds, where x1(t) is the trajectory of the pursuer P1, using constant control um.

Let the pursuer P1 uses the constant control u on the interval [0, Tm]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

x1(t) = f(t)x0
1 +

∫ t

0

(t− s)α−1E1/α(a(t− s)α, α)ds · u = f(t)x0
1 + F (t)u,

ym(t) = f(t)y0m + F (t)v0.

The x1(t) = ym(t) can be represented as

F (t)u = f(t)z0m + F (t)v0.

Let us require that ∥u∥ = 1. For this purpose, consider the function

gm(t) = ∥f(t)z0m + F (t)v0∥2 − F 2(t) = f2(t)∥z0m∥2 + 2f(t)F (t)(z0m, v0),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(t) > 0, F (t) > 0
for all t > 0. Therefore, the equation gm(t) = 0 is equivalent to the equation

f(t)

F (t)
= −2(z0m, v0)

∥zm∥2
. (8)

Note that limt→+0
f(t)
F (t) = +∞. By virtue of Theorem 1.2.1 of [18], we have the asymptotic estimates

f(t) = − 1

atαΓ(1− α)
+O(1/t2α), F (t) = −1

a
+O(1/tα), (9)

therefore limt→+∞
f(t)
F (t) = 0. Hence, equation (8) has at least one positive root Tm. We now assume that the

control of the pursuer P1 on the interval [0, Tm] is equal to

um =
f(Tm)

F (Tm)
z0m + v0.

We obtain that at time Tm, the pursuer P1 will realize the capture of the evader Em.
2. Let us further construct a control for the pursuer P1, that guarantees the capture of Em−1. Suppose that at

[Tm, Tm−1], the pursuer P1 uses the constant control u (the moment Tm−1 will be defined below). Then, by virtue
of the Cauchy formula [19] (t > Tm),

x1(t) = f(t)x0
1 +

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds · um +

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

ym−1(t) = f(t)y0m−1 + F (t)v0.

Let’s denote

Hm(t) =

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds, hm(t) =

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds.

Note thatHm(t) + hm(t) = F (t). Then the equality x1(t) = ym−1(t) can be represented as

f(t)x0
1 + hm(t)um +Hm(t)u = f(t)y0m−1 + F (t)v0

or
Hm(t)u = f(t)z0m−1 + F (t)v0 − hm(t)um.

Consider the function
gm−1(t) = ∥f(t)z0m−1 + F (t)v0 − hm(t)um∥2 −H2

m(t).

By virtue of [20, p. 118, formula (1.4)],

E2(
√
T , 3/2) =

1√
T
(E2(

√
T , 1)− 1).

Relation (7) entails the inequality

E2(
√
T , 1) ⩽ E2(

√
T , 1)− 1,

which is impossible. Consequently, in this gameG(3, 1, z0), capture does not occur.

4. CAPTURE OF ALL EVADERS

In the space Rk (k ⩾ 2), we consider a differential gameG(1,m, z0) involving 1+m persons: one pursuer P1 and
m evaders E1, . . . , Em. The law of motion of the pursuer P1 has the form

(D(α))x1 = ax1 + u, x1(0) = x0
1, u ∈ V ;

the law of motion of each of the evaders Ej is of the form

(D(α))yj = ayj + vj , yj(0) = y0j , vj ∈ V.

Here V = {v : ∥v∥ ⩽ 1}, α ∈ (0, 1), a ∈ R1, D(α)f is the Caputo derivative of the function f of order α,
j ∈ J = {1, . . . ,m}. We consider x0

1 ̸= y0j for all j ∈ J .
Let’s denote

f(t) = E1/α(at
α, 1), F (t) = tαE1/α(at

α, α+ 1), z0j = y0j − x0
1.

Lemma 2. Let a < 0, T2 > T1 ⩾ 0,

h(t) =

∫ T2

T1

(t− s)α−1E1/α(a(t− s)α, α)ds.

Then limt→+∞ tαh(t) = 0.
Proof. By substituting t− s = τ we get

h(t) =

∫ t−T1

t−T2

τα−1E1/α(aτ
α, α)dτ.

By virtue of formula (2.32) from [20, p. 136], the inequality

|E1/α(aτ
α, α)| ⩽ M

τα
, M > 0,

is true for all t > T2, therefore

|h(t)| =

∣∣∣∣∣
∫ t−T1

t−T2

τα−1E1/α(aτ
α, α)dτ

∣∣∣∣∣ ⩽
∫ t−T1

t−T2

Mτα−1

τα
dτ = M(ln(t− T1)− ln(t− T2)).

Then
|tαh(t)| ⩽ Mtα(ln(t− T1)− ln(t− T2)) = Mtα ln

(
1 +

T2 − T1

t− T2

)
⩽ Mtα(T2 − T1)

t− T2
.

Since limt→+∞
tα

t−T2
= 0, then limt→+∞ tαh(t) = 0. The lemma is proved.

Theorem 4. Let a < 0, M∗
1j = {0} for all j ∈ J , there is v0 ∈ V , ∥v0∥ = 1, such that (y0j − x0

1, v0) < 0 for all
j ∈ J . All evaders use constant control v0, the pursuer P1 knows v0. Then a capture of all evaders occurs in the game
G(1,m, z0).
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Proof. 1. We show that there exist a moment Tm and a vector um, ∥um∥ = 1, for which the equality x1(Tm) =
ym(Tm) holds, where x1(t) is the trajectory of the pursuer P1, using constant control um.

Let the pursuer P1 uses the constant control u on the interval [0, Tm]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

x1(t) = f(t)x0
1 +

∫ t

0

(t− s)α−1E1/α(a(t− s)α, α)ds · u = f(t)x0
1 + F (t)u,

ym(t) = f(t)y0m + F (t)v0.

The x1(t) = ym(t) can be represented as

F (t)u = f(t)z0m + F (t)v0.

Let us require that ∥u∥ = 1. For this purpose, consider the function

gm(t) = ∥f(t)z0m + F (t)v0∥2 − F 2(t) = f2(t)∥z0m∥2 + 2f(t)F (t)(z0m, v0),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(t) > 0, F (t) > 0
for all t > 0. Therefore, the equation gm(t) = 0 is equivalent to the equation

f(t)

F (t)
= −2(z0m, v0)

∥zm∥2
. (8)

Note that limt→+0
f(t)
F (t) = +∞. By virtue of Theorem 1.2.1 of [18], we have the asymptotic estimates

f(t) = − 1

atαΓ(1− α)
+O(1/t2α), F (t) = −1

a
+O(1/tα), (9)

therefore limt→+∞
f(t)
F (t) = 0. Hence, equation (8) has at least one positive root Tm. We now assume that the

control of the pursuer P1 on the interval [0, Tm] is equal to

um =
f(Tm)

F (Tm)
z0m + v0.

We obtain that at time Tm, the pursuer P1 will realize the capture of the evader Em.
2. Let us further construct a control for the pursuer P1, that guarantees the capture of Em−1. Suppose that at

[Tm, Tm−1], the pursuer P1 uses the constant control u (the moment Tm−1 will be defined below). Then, by virtue
of the Cauchy formula [19] (t > Tm),

x1(t) = f(t)x0
1 +

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds · um +

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

ym−1(t) = f(t)y0m−1 + F (t)v0.

Let’s denote

Hm(t) =

∫ t

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds, hm(t) =

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds.

Note thatHm(t) + hm(t) = F (t). Then the equality x1(t) = ym−1(t) can be represented as

f(t)x0
1 + hm(t)um +Hm(t)u = f(t)y0m−1 + F (t)v0

or
Hm(t)u = f(t)z0m−1 + F (t)v0 − hm(t)um.

Consider the function
gm−1(t) = ∥f(t)z0m−1 + F (t)v0 − hm(t)um∥2 −H2

m(t).
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Since sk+1(Tk+1) = sk+2(Tk+1) + hk+1(Tk+1)uk+1, then

sk+1(Tk+1) = sk+2(Tk+1) +Hk+2(Tk+1)uk+1. (11)

Using formula (10), let us write equality (11) as

sk+1(Tk+1) = f(Tk+1)z
0
k+1 + F (Tk+1)v0.

Then
gk(Tk+1) = ∥f(Tk+1)z

0
k − f(Tk+1)z

0
k+1∥2 = f2(Tk+1)∥z0k − z0k+1∥2 > 0.

SinceHk+1(t) = F (t)− ŝk+1(t), the function tαgk(t) can be represented as

tαgk(t) = tαf2(t)∥z0k∥2 + 2tαf(t)F (t)(z0k, v0) + tα∥sk+1(t)∥2−
−2tαF (t)(sk+1(t), v0)− 2tαf(t)(sk+1(t), z

0
k) + 2tαF (t)ŝk+1(t)− tαŝ2k+1(t).

It follows from lemma 2, that for any l and p

lim
t→+∞

tαhl(t)hp(t) = 0,

therefore
lim

t→+∞
tα∥sk+1(t)∥2 = lim

t→+∞
tαŝ2k+1(t) = lim

t→+∞
tαf2(t) = 0,

hence limt→+∞ tαgk(t) = −∞. Therefore, there is a moment Tk > Tk+1, for which gk(Tk) = 0. Choosing its
control uk on the interval [Tk+1, Tk] in the form of

uk = f(Tk)z
0
k + F (Tk)v0 − sk+1(Tk)/Hk+1(Tk),

the pursuer P1 at the moment Tk will catch the fleeing Ek. The theorem is proved.
Corollary. Let a < 0, there exists a hyperplane H such that y0j ∈ H for all j ∈ J , x0

1 /∈ H, v0 the unit normal
vector of the hyperplane H, directed into the half-space containing x0

1. The evaders use constant control v0. Then a
capture of all evaders occurs in the gameG(1,m, z0).

The validity of this statement follows directly from Theorem 4, since (y0j − x0
1, v0) < 0 for all j ∈ J .

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form

ẋ1 = ax1 + u, ẏj = ayj + vj , u, vj ∈ V, j ∈ J. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the gameG(1,m, z0), the pursuerP1 will realize the capture of nomore than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem4 shows that differential games described by equationswith fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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Then
gm−1(Tm) = ∥f(Tm)z0m−1 + F (Tm)v0 − hm(Tm)um∥2.

Since F (Tm) = hm(Tm) and F (Tm)(v0 − um) = −f(Tm)z0m, then

gm−1(Tm) = ∥f(Tm)z0m−1 − f(Tm)z0m∥2 = f2(Tm)∥z0m−1 − z0m∥2 > 0.

The function tαgm−1(t) can be written as

tαgm−1(t) = tαf2(t)∥z0m−1∥2 + 2tαf(t)F (t)(z0m−1, v0)− 2tαf(t)hm(t)(z0m−1, um)−
− 2tαF (t)hm(t)(v0, um) + 2tαF (t)hm(t).

By virtue of asymptotic estimates (9) and lemma 2, we obtain that the following relations are true

lim
t→+∞

tαf(t)F (t) =
1

a2Γ(1− α)
, lim

t→+∞
tαf2(t) = 0,

lim
t→+∞

tαf(t)hm(t) = 0, lim
t→+∞

tαF (t)hm(t) = 0,

so it follows from the inequality (z0m−1, v0) < 0, that limt→+∞ tαgm−1(t) = −∞, and hence there exists amoment
Tm−1 > Tm, for which gm−1(Tm−1) = 0.

Choosing now on the interval [Tm, Tm−1] control um−1 of the form

um−1 = f(Tm−1)z
0
m−1 + F (Tm−1)v0 − hm(Tm−1)um/Hm(Tm−1),

the pursuer P1 at the moment Tm−1 will catch the evader Em−1.
3. Let’s denote

hl(t) =

∫ Tl

Tl+1

(t− s)α−1E1/α(a(t− s)α, α)ds, Hk+1(t) =

∫ t

Tk+1

(t− s)α−1E1/α(a(t− s)α, α)ds,

sl(t) = hm(t)um + · · ·+ hl(t)ul, ŝl(t) = hm(t) + · · ·+ hl(t), l = m− 1, . . . , k + 1.

Suppose that the vectors um, . . . , uk+1 and the moments of time Tm < Tm−1 < · · · < Tk+1, guaranteeing
the pursuer P1 to catch the evadersEm, . . . , Ek+1, are defined, and on the interval [Tk+2, Tk+1] the vector uk+1 is
equal to

uk+1 = f(Tk+1)z
0
k+1 + F (Tk+1)v0 − sk+2(Tk+1)/Hk+2(Tk+1). (10)

Let us further construct a control of the pursuer P1, which guarantees him to catch the evader Ek. Suppose
that at [Tk+1, Tk], the pursuer P1 uses the constant control u (the moment Tk will be defined below). Then for
t > Tk+1, by virtue of the Cauchy formula [19], we have

x1(t) = f(t)x0
1+

∫ Tm

0

(t− s)α−1E1/α(a(t− s)α, α)ds ·um+

∫ Tm−1

Tm

(t− s)α−1E1/α(a(t− s)α, α)ds ·um−1+ · · ·

· · ·+
∫ Tk+1

Tk+2

(t− s)α−1E1/α(a(t− s)α, α)ds · uk+1 +

∫ t

Tk+1

(t− s)α−1E1/α(a(t− s)α, α)ds · u,

yk(t) = f(t)y0k + F (t)v0.

The inequality x1(t) = yk(t) can be represented as

f(t)x0
1 + sk+1(t) +Hk+1(t)u = f(t)y0k + F (t)v0 или Hk+1(t)u = f(t)z0k − sk+1(t) + F (t)v0.

Consider the function
gk(t) = ∥f(t)z0k − sk+1(t) + F (t)v0∥2 −H2

k+1(t),

then
gk(Tk+1) = ∥f(Tk+1)z

0
k − sk+1(Tk+1) + F (Tk+1)v0∥2.

It follows from the definition of the functionsHk+2(·) and hk+2(·) thatHk+2(Tk+1) = hk+1(Tk+1).
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Since sk+1(Tk+1) = sk+2(Tk+1) + hk+1(Tk+1)uk+1, then

sk+1(Tk+1) = sk+2(Tk+1) +Hk+2(Tk+1)uk+1. (11)

Using formula (10), let us write equality (11) as

sk+1(Tk+1) = f(Tk+1)z
0
k+1 + F (Tk+1)v0.

Then
gk(Tk+1) = ∥f(Tk+1)z

0
k − f(Tk+1)z

0
k+1∥2 = f2(Tk+1)∥z0k − z0k+1∥2 > 0.

SinceHk+1(t) = F (t)− ŝk+1(t), the function tαgk(t) can be represented as

tαgk(t) = tαf2(t)∥z0k∥2 + 2tαf(t)F (t)(z0k, v0) + tα∥sk+1(t)∥2−
−2tαF (t)(sk+1(t), v0)− 2tαf(t)(sk+1(t), z

0
k) + 2tαF (t)ŝk+1(t)− tαŝ2k+1(t).

It follows from lemma 2, that for any l and p

lim
t→+∞

tαhl(t)hp(t) = 0,

therefore
lim

t→+∞
tα∥sk+1(t)∥2 = lim

t→+∞
tαŝ2k+1(t) = lim

t→+∞
tαf2(t) = 0,

hence limt→+∞ tαgk(t) = −∞. Therefore, there is a moment Tk > Tk+1, for which gk(Tk) = 0. Choosing its
control uk on the interval [Tk+1, Tk] in the form of

uk = f(Tk)z
0
k + F (Tk)v0 − sk+1(Tk)/Hk+1(Tk),

the pursuer P1 at the moment Tk will catch the fleeing Ek. The theorem is proved.
Corollary. Let a < 0, there exists a hyperplane H such that y0j ∈ H for all j ∈ J , x0

1 /∈ H, v0 the unit normal
vector of the hyperplane H, directed into the half-space containing x0

1. The evaders use constant control v0. Then a
capture of all evaders occurs in the gameG(1,m, z0).

The validity of this statement follows directly from Theorem 4, since (y0j − x0
1, v0) < 0 for all j ∈ J .

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form

ẋ1 = ax1 + u, ẏj = ayj + vj , u, vj ∈ V, j ∈ J. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the gameG(1,m, z0), the pursuerP1 will realize the capture of nomore than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem4 shows that differential games described by equationswith fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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Abstract. In this paper, we solve the problem of assigning the desired characteristic polynomial of a linear sta-
tionary dynamic system with one input and output dynamic feedback in the form of a first-order dynamic com-
pensator. Necessary and sufficient conditions for the existence of the solution of the problem are considered.
An explicit formula for the compensator parameters, analogous to the Bass–Gura formula for a state feedback
system, is derived.
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1. INTRODUCTION. PROBLEM STATEMENT

The Ackerman and Bass-Gura formulas are known frommathematical control theory [1, p. 360], used to solve
the problem of assigning the desired characteristic polynomial of a linear stationary systemwith one input and state
feedback, whose behavior is described by equations

ẋ = Ax+ bu, u = −fTx, (1)

where x ∈ Rn is the state vector, u ∈ R is the scalar control, A ∈ Rn×n, b ∈ Rn, f ∈ Rn.
The characteristic polynomial of the system (1) is the characteristic polynomial of thematrix of the closed-loop

system A− bfT. Let us denote by

a(λ) = λn + a1λ
n−1 + · · ·+ an, d(λ) = λn + d1λ

n−1 + · · ·+ dn

characteristic polynomial of thematrixA and the desired characteristic polynomial of thematrixA−bfT. Suppose
that the matrix

X(A, b) =
[
b Ab . . . An−1b

]

is nonsingular, which corresponds to the controllability condition of the system (1).
According to Ackerman’s formula the required vector f is equal to

fT =
[
0 . . . 0 1

]
X(A, b)−1d(A).

According to the Bass-Gura formula

fT = (d̄− ā)TH−1X(A, b)−1,

where

H =




an−1 an−2 . . . 1
an−2 an−3 . . . 0
...

...
. . .

...
1 0 . . . 0


 , ā =




an
an−1

...
a1


 , d̄ =




dn
dn−1

...
d1


 .
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