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Abstract. In a finite-dimensional Euclidean space, the problem of pursuing of a group of evaders by a group
of pursuers is considered, described by a linear non-stationary system of differential equations with fractional
Caputo derivatives. Sets of admissible players’ controls — compacts, terminal sets — origin of coordinates.
Sufficient conditions have been obtained for the capture of at least one evader and all evaders under the condition
that the evaders use the same control. In the study, the method of matrix and scalar resolving functions is used as
a basic one. It is shown that differential games described by equations with fractional derivatives have properties
that are different from those of differential games described by ordinary differential equations.
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1. INTRODUCTION

One of the directions of development of the modern theory of differential games is the study of pursuit-evasion
problems with participation of a group of participants [ 1—4], and besides deepening of classical methods of inves-
tigation the search of game problems to which previously developed methods are applicable is actively conducted.

Differential games with fractional derivatives were first considered in [5], where the method of scalar resolv-
ing functions was used for the study. Differential games with fractional derivatives based on the Hamilton-Jacobi
equation were studied in [6]. In [7], the problem of pursuit by a group of pursuers of a single evader in differential
games described by equations with fractional derivatives was considered. The problem of conflict interaction be-
tween a group of pursuers and a group of evaders in games with fractional dynamics was considered in [8], scalar
resolving functions were used for analysis. A. A. Chikrii, in his paper [9], notes that scalar resolving functions
attract a terminal set with images of some multivalued mappings that occur in a cone stretched over this set, which
limits the possibilities for the pursuer’s maneuver, and also proposes to use matrix resolving functions to analyze
two-person pursuit games. In [10], matrix resolution functions were applied to study the problem of pursuit by a
group of pursuers of a single evader described by a stationary linear system with fractional Caputo derivatives.

In [11], the problem of pursuit by a group of pursuers of a group of evaders in linear stationary differential
games with simple matrices under the condition that all evaders use the same control was considered. Sufficient
conditions for catching at least one evader were obtained. The pursuit problem in which all evaders use the same
control will be referred to as the coordinated evaders pursuit problem.

In this paper we consider the problem of conflict interaction between a group of pursuers and a group of evaders
in a differential game described by a nonstationary linear system of differential equations with fractional Caputo
derivatives. Underthe condition that the evaders use the same control, sufficient conditions for catching at least one
evader are obtained, using matrix or scalar resolving functions. The study of the nonstationary case is supplemented
by some results for games described by linear stationary systems with a simple matrix.
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ON THE PROBLEM OF PURSUING A GROUP
1. PROBLEM STATEMENT
In the space R¥ (k > 2) we consider a differential game of n +m persons: n pursuers P, . . ., P, and m evaders
FEy, ..., E,,, described by a system of the form
(D(a))zij =A;;j(t)zj +ui —v,  z;(to) = z?j, u; € Us,v €V. (1)

Here,i € I = {1,...,n},j € J = {1,...,m}, zij,u;,v € RF, U;, V are compact sets R*, a € (0,1), D™z is
Caputo derivative of the function x of order « [12], A;;(t) are continuous matrix functions of order k x k. Terminal
sets M; of the form

M5 = M;; + M),

177

where M;; is a linear subspace of R¥, M are convex compact sets from L;; — the orthogonal complement of M;;
to R*. We consider z; ¢ M; foralli I jeJ.
The actions of the evaders can be interpreted as follows: there is a center that, for all evaders E, ..., E,,,

chooses the same control v(-).
Let v : [tg, +00) — V be a measurable function, which we will call admissible. The prehistory of v.(-), at the
moment ¢ of the function v(-), will be called the contraction of the function v at [tg, t].

2. SUFFICIENT CATCHING CONDITIONS

Definition 1. We will say that a quasi-strategy I/; of the pursuer P; is defined, if a mapping U?, that puts the
measurable function u; (t) with values in U; in accordance with the initial positions of 20 = (2;,7 € I, j € J), the
moment ¢, and an arbitrary control prehistory v;(-) of the evader E;, j € J, is defined.

Let’s denote this game by G(n,m, 2°).

Definition 2. A capture of at least one evader occurs in the game G(n,m, 2°), if there exist moment 7' > 0,
quasi-strategies Uy, . . . ,U,, of pursuers Py, ..., P, such that for any measurable function v(-), v(t) € V.t € [to, T],
there exist moment 7 € [to, 7] and numbers p € I, ¢ € J, for which z,,(7) € Mp,.

Let us introduce the following notations: E° is a identity matrix of order k x k, ;; : RF — L;; is an orthogonal
projection operator,

+o0 t
F(ﬂ)Z/O 7l ds, Tth(t)Zﬁ/ (t—5)"" f(s)ds

0 (t T)OHI 0
Gij(th) F(a) E ’
Gt 7) =+ J(A (DG (7)), 1=0,1,..., ®(t,7)= ZG
GU(t,m) = E°, GU'(t,r) =+ Jy(Ai ()Gt 7)), 1=0,1,..., Ty(t71)= ZG

Wij(t, T, ’U) = ﬂ-ij(bij(tv T)(UZ - ’U), Wij(t, ’7') = m Wij(t, T, ’U),
veV
Int A, co A are the interior and the convex hull of the set A, respectively.
Assumption 1. There exists a mapping q : I — J, such that forall i € 1,t > to, T € [to, t] the following condition
is satisfied
W?q(?) (tv T) 7é (Z)

Remark 1. Fulfillment of assumption 1 will allow further organizing the pursuit of evaders, so that each pursuer
will carry out the capture of “its” evader.
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98 PETROV, MACHTAKOVA

It follows from the measurable choice theorem [13, Theorem 8.1.3], that for every ¢ € I for any > t(, there
exists at least one measurable selector ;4 (£, 7) € Wigq(t,7) forallt > to, 7 € [to,t]. Let us choose arbitrary
measurable selectors v;,¢; (¢, 7), fix them and denote

t

Eiq(i)(t) = Tig(iy Yiqi (£, tO)Z?q(i) +/t Yiq(s) (t, T)dT.
0

Theorem 1. Let Assumption 1 be satisfied, and there exist T > to,1 € I such that §,)(T) € Ml%(l). Then a

capture occurs in the game G(n,m, 2°).
Proof. Let’s consider the multivalued mapping (7 € [to,T],v € V):

Ul(T,7,v) = {w € Up : mqy@igy (T, 7) (w — v) — 90y (T, 7) = 0}

By assumption 1, U;(T,7,v) # 0 forall 7 € [tg,T],v € V. It follows from the measurable choice theorem
[13, Theorem 8.1.3], that there exists a measurable selector u} (7,v) € U;(T, ,v). We assume the control of the
pursuer P, is equal to

w(r) =uj(r,v(r)), T € [to,T].
The controls of the other pursuers are set arbitrarily. The solution of the Cauchy problem for the system (1) is
represented as [14]
T
Zlq(l)(T) = ‘Illq(l)(Ty tO)Z;)q(l) +/ (plq(l) (T, S)(UZ(S) — v(s))ds,
to

therefore
T
Tiq) 21g() (1) = &gy (T) +/ (T1g) Piq() (T, 8) (wi(s) — v(5)) =Ygy (T, 8))ds = &gy (T) € My
to

This means that a capture of at least one evader occurs in the game G'(n, m, 2°). The theorem is proven.
In the following, we will assume that &;,(;)(t) ¢ MZ.Oq(Z.) isforalli € I,t > t,.
Consider an arbitrary diagonal square matrix A; of order k; x k;, where k; is the dimension of L;,(;), of the

form

i1 0 ... 0
0 Ao ... 0 .

Ai = : - . = diag(\i1, iz, - -+ Aik, )-
0 0 ...

We will identify the matrix A; with the vector (A1, ..., Az, ). We will understand the inequality A; > 0 coor-
dinatewise. Let us introduce multivalued mappings

Due to the properties of the parameters of the conflict-controlled process, the mappings M; (¢, 7,v) are (7, v)
measurable mappings [15]. Let us define the scalar functions

MN(t,7,0) = sup  min\y(t,7,v), Ji={1,... k}. ()
AiEMi(t}T,’U) leJ;

Assumption 2. Forall t > to, T € [to,t],v € V, an exact upper bound is achieved in (2).
We consider this assumption to be satisfied. Let us define the set

M (t,7,0) = {Ai(t, 7,0) € My(t,7,0) : N(t,7,0) = En}]n Xi(t, ,0)}.
€J;
It follows from [15], that under the assumptions made, M (¢, 7, v) is measurable by (7, v) and closed-valued
at any ¢ > 0. By the measurable choice theorem [13, Theorem 8.1.3], for each ¢ € I in M (¢, 7,v), there

exists at least one selector measurable by (7,v) at any ¢ > 0. Let us fix these selectors and denote them by
Aj(t,7,v) = diag(A\j, (£, 7, v), . . ., Ajy, (¢, 7,v)). Let further

S(t,T) = vlg‘f; r?gx?gijn A (t, 7,0).
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ON THE PROBLEM OF PURSUING A GROUP 99

Lemma 1. Let assumptions 1, 2 be satisfied,
t

lim o(t, s)ds = +o0. (3)

t—+oo to

Then, there exists a moment T’ > t( such that for each measurable function v(-), v(t) € V, t € [to, T, there exists a
number | € I, such that for all p € J; the inequalities are true:

T
/ Aip(Ty5,0(s))ds > 1.
to

Proof. Let v(-) be an arbitrary admissible function. Then forall ¢ > g, s € [to, ], € I, p € J;, the inequalities
are true:

Ip(t,s,v(s)) 2 A (t, s, v(s)). “4)
In addition, relations are true,
t 1 t
max [ A(t,s,0(s)) / AL (t, s, 0( / max Aj (t,s,v(s))ds = — [ 0(t,s)ds
lel /to ! ‘o g ! 1 L€l i( n Jy,

It follows from condition (3) that there exists a number 7' > tq, for which
1 /7
= / 0(T,s)ds > 1
n Ji,

T
ma&x/ AT, s,v(s))ds > 1,

T
/ AT, s,v(s))ds > 1
to

From the last inequality and inequality (4), the validity of the statement of the lemma follows.
Let’s find the number

Hence,

so there is a number [ € I, for which

t
To=inf<t >ty : infmaxmin [ N\ (¢ ds>15.
0 { = v(:) 1€] pEJL Jy, lp( -5,0(s))ds > }

Considerthe sets (i € I, p € J))

Let’s determine the values

. _Jinf{t :t € Tip(v(-)}, i Tip(v(-)) #
tip(v()) = {+oo, if Tip(v()) =

0,
0.

Assumption 3. 1) Forall T € [ty,Ty],v e V,l € I, J) C J, selectors B;(Ty, 7,v) = diag(B1(To, T,v), ...
-y Bk, (To, 7,v)) where
Al (To,m,v), ifp € JP,

T =
ﬁlp( 07T7U) {0’ ifp¢=]l07

satisfy the condition By(Ty, T,v) C My(Ty,T,v).

2) f B (Ty, s, v(s ))Ml%(l)ds C Mlq(l)

Theorem 2. Let assumptions 1—3 and condition (19) be satisfied. Then, at least one evader is captured in the game
G(n,m, z°).
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Proof. It follows from lemma 1, that T, < +oc0. Let v : [to,Tp] — V be an arbitrary admissible function. Let
us introduce the functions B} (7o, t,v) = diag(8;; (1o, t,v), . .., By, (To, t,v)), where

/\zkp(TO’ta'U)v ift € [to,tzkp(’l}('))),

Brp(To, t,v) = {07 ift € [t},(v(")), To)-

By assumption 3, B} (Tp, ¢, v) is a measurable selector of M;(Tp, ¢, v). Consider multivalued mappings
Ui(To, t, 'U) = {ul S Ul . ﬂ_iq(i)q)iq(i)(TOa t)(ul — ”U) — PYiq(i) (To,t) S B:< (To,t, U)(MSI(Z) — Eiq(i) (Tg))}
Then U;(Tp,t,v) # @ foralli € I,t € [to, To], v € V, and hence by the measurable choice theorem [13,
Theorem 8.1.3], U;(1y, t,v) has at least one measurable selector u; (1, ¢, v). We define the pursuers’ controls by
assuming u; (t) = u} (7o, t,v(t)). We’ll show that this evaders’ control guarantees the capture of at least one evader.
The solution of the Cauchy problem of the system (1) has the form [14]

t
Zig(i) (1) = Wyg(e) (8, to)z?q(i) +/ Qg0 (L, 8)(ui(s) — v(s))ds,

to

therefore

To
Tiq(i)Zia(i) (T0) = Tiq(i) Yiq() (Tos to) 25y + / Vig() (To, s)ds +

to

+/t O(Wiq(i)@iq(i) (To, 5)(ui(s) — v(s)) — Yigi)(To, 5))ds =

To
= &iq(i)(To) +/t (Tiq(i) Piq(i) (To, 8) (wi(s) — v(8)) — Yig(s) (L0, 8))ds €

To
€ &iq(iy(To) + B} (Ty, s, U(s))(Mz%(i) — &iqi)(To))ds =

to

To To
= &iq()(To) <E0 — B} (T, s,v(s))ds) + B} (T, s,v(s))MZ-O )ds.
t

q(i
to 0

From the definition of B} (T, s, v) and lemma 1, it follows that there exists a number [ € I, for which

To
B} (Ty, s,v(s))ds = E°.

to

Then,
7o * 0 0
qu(l)zlq(l)(To) = / Bl (T(), S, ’U(S))Mlq(l)ds C Mlq(l)'

to
The theorem is proved.
Remark 2. Scalar resolving functions are a special case of matrix resolving functions, since they are represented
in the form AE°, where ) is a non-negative real number.
Example 1. Let the system (1) k = 2, n = m = 1,tg = 0, Aj1(t) = Oforallt, V = {0}, 2{; = (2,1),
My, = {0}, U1 = {(u1,u2) s ug =0,uz € [—1,1]} U {(ug,u2) :us = 0, ug € [—-1,1]} U {(u1,u2):uy =
= ug € [-1,1]}. Then

)a—l (t _ S)a—l

Ui (t,to) = B, @u(t,s) = s ()

NGO
Let’s take 711 (¢, s) = 0 forall (¢, s), then &1 (¢) = 29,

Ml(t,s,v):{<8 SQ),AQZW,AG[OJ]}U
U{(A2o/2 8>,A2:W,AE[O,1]}U{(/\QO/2 f),&:W,Ae[m]},

Wn(t,s,v) = Wu(t,s) = Ul.
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ON THE PROBLEM OF PURSUING A GROUP 101

Al(t,s,v) = su min Ay (¢, s,v) = w
1% 9 - AEMl(IZSJ)) leJq 1\by o, - 2F(O[)
Hence,
) (t _ S)Oz—l (t _ 8)01—1 (t _ S)a—l
M7 (t =d S(t _
1(ts,v) 1ag( () T(a) . O(t,s) 2T (a)
We have lim;_, o f(f §(t,8)ds = +00,50 Ty = (2T (v + 1))/, Let T} = Ty — (T'(a + 1))/ The control of

pursuer P; has the form

B (_]_7_1), te [O,Tl)v
uy(t) = {(_170)7 t e [Ty, Tol,

then [14]
21(To) = 27 +

1 7o a—1 _
@A (To — 8)* uy(s)ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

A0
=0 %)
does not allow us to prove the solvability of the pursuit problem, since in this case the condition —A2Y;, € U; — v

is satisfied only for the zero matrix A.
Example 2. Consider the game G(n, 1, "), in which the system (1) has the form

(D) 21 = tz;0, 0
{(Dm))m cu—w,  AO=E ©)

Here Zi = (Zil,ZiQ) e R2k, Uz =V = {U S Rk : ||'U|| g 1}, Mi*l = {(Zﬂ,zig) € RQk L Zi1 = 0}, SO (Z S I)
M = {(zi1, 2i2) € R 2 2y = 20 = 0}, My1 = {(2i1, 2i2) € R* 1 251 = 0},
0
Lit = {(zi1,2i2) € R¥* 1 25 =0}, 1 = (EO 8) )

Let’s denote

B (t—7)t B alt—7)22 "t +71) _(t=1)*(t+ar)
p(t,7) = T(a) q(t,7) = (20 + 1) ;o Tt T) = T T(at2)
Th 14
en [14] (B r(t,7)E° _ (pt,T)E° q(t,T)E°
\I’i(taT) - < 0 EO ) ) q)i(taT) - < 0 p(t,7’)E0> .
Hence,

Wi(t,1,v) = q(t, 7)(V —v), Wi(t,7) ={0}, ~(t,7) =0, &) =mPT;(t,0)z) =20 +r(t,0)z,
(&), v) + V(&@), )2 + &P = Jv]?)
1€ @)1 ’

Assertion. Let 2%, = 0 foralli € I and 0 € Int co{z,,i € I'}. Then a capture occurs in the game G(n, 1, 2°).
Proof. In this case, &1 (t) = 29 forall ¢ > 0. It follows from [16], that

Ai(t,T,0) = q(t, 7)

0(t,7) = minmax \;(t, 7,v) > q(t, 7)dg

for all ¢, 7 with some &g > 0. Therefore, all conditions of Theorem 2 are satisfied and, hence there is a capture in
the game G(n, 1, 2°). The assertion is proved.

Note that in [14], the problem of pursuit by one pursuer of one evader described by system (5), in which the
pursuer has an advantage over the evader, was considered in the space R2.
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3. SUFFICIENT CAPTURE CONDITIONS IN THE LINEAR STATIONARY CASE
WITH SIMPLE MATRICES

Theorem 3. Let in the system (1) for all i, j A;;(t) = a;; E° for any t, M ={0},to=0,U; =V ={v:|v] <1},
there exists a mapping q : I — J such that a;q;y < 0 foralli € I and

0 € Int co{z) .y,i € I}. (6)

iq(i)”

Then a capture of at least one evader occurs in the game G(n,m, 2°).
Proof. In this case

Vi) (t,t0) = Erjalaigit®, 1), Pige(t,7) = (t = 7)* 7 By ja(aiym (t — 7)%, a),

where E,(z, 1) = Y2 2! /T(lp~1 + p) is the Mittag-Leffler function. Assumption 1 is fulfilled.
Let’s take v;4(;) (¢, 7) = Oasselectorsforalli € I,¢ > 0,7 € [0,t]. Then&;q;)(t) = Tiq(iy £ /a(@igit®, 1)z?q(i).
Let

AMz,v)=sup{A>20: - zeV —v}, = Eél‘r/lr?eax)\( iq(i)) V), a= rlnei}laiq(,»).

It follows from condition (6) and from [16], that § > 0. Let us show that there exists 7" > 0 such that for any
admissible function v(-) there exists [ € I, for which

T
Eyjo(aiqyT*,1) — / (T = 8)* 7 By ja(aigy (T — 8)*, @) Mz ), v(s))ds < 0. (7
0

Consider the functions

t
hi(t,v(-)) = E1ja(aigat®, 1) — /0 (t — s)"‘_lEl/a(aiq(i)(t —5)%, a))\(zioq(i), v(s))ds.
It follows from [17], that for all ¢ > 0, 7 € [0,¢], ¢ € I the inequalities hold

En o (@i (t —7)% a) 2 Eyala(t —7)% a).
It follows from Theorem 4.1.1 of [18], that forall ¢ > 0, 7 € [0, t], the inequality E4 ,(a(t —7)%, ) > Oistrue.
From the last two inequalities we obtain
Nt
Z/ (t—s) El/a(aiq(i) (t —8) )M 2ig(iy, v(s)) ds >
=10

i=1

"Eyja(a(t —5)%, @) max Mzig(iy, v(s)) ds >

>0 El/a(a(t —5)% a)ds = 6t" By (at”, a + 1),

t
/t—s
0

t

/t—s

0

hence
n

F(t) =Y hi(t,v(-)) <Y Eijalaig@t®, 1) — 6t By o (at®, a + 1).
1=1 1=1
Since a;4(;) < 0 forall ¢ € 1, it follows from [18] that the asymptotic representation is valid at t — +oco

1 1 1 1
E ot 1) =——F—— 4+ 0 E t )=——+0|
l/a(azq(z) 3 ) aiq(i)taf(a T 1) + <t2a), l/a(a O ) ate + (tz()‘)’

F(t>=—im +O<ta>’
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ON THE PROBLEM OF PURSUING A GROUP 103
hence lim;_, o F(t) < 0. So limy_, 400 Y i hi(t,v(-)) < 0. Since > ., h;(0,v(+)) > 0, there exists ' > 0, for

which for any admissible function v(-) the inequality Y """, h;(T, v(+)) < 0 is true. Thus, inequality (9) is proved.
Let

t
Ty = min{ inf min (El/a( aig(i)t*, 1) — /0 (t =) E1 o aiqn)(t — $)%, a)/\(z?q(i),v(s))ds) < O} .

v(-) i€l

It follows from inequality (7), that T, < +oco. Let v(-) be an admissible fleeing control. Consider the sets

¢
Ti(v(+)) = {t > 0: Eyja(aiginTy, 1) — /0 (To — 8)* ' B o (@i (To — s)a,a))\(z?q(i),v(s))ds < 0} .

Let the following be

(0()) = inf{t : t € T;(v(-))}, ifT;(v()) #0,
. ())_{m itT,(0()) = 0,
o A(zz-qw(t)), € 0,1:((),
ot {07 € [t:(v()), To).

Let’s set the controls of the pursuers P;, ¢ € I, assuming

ui(t) = v(t) — ﬁi(t,v())z?q(i).
The solution of the Cauchy problem of the system (1) is represented in the form [19]

To
Zig(i)(To) = E1/a i) Ty, 1)2’?,1@) +/O (To — ) ' E1 o (aiq) (To — 8)*, @) (ui(s) — v(s))ds =
To
= (El/a(a'iq(i)TOav 1) - /0 (TO - 8) El/a (azq(z)( 0 — 5) Q)BL(S,U(S))dS> Z?q(z) =

ti(v(-))
= <E1/a(aiq(i)T§‘, 1) — /o (T — s)“‘lEl/a(aiq(i) (To — 5)%, @) Bi(s, v(s))ds) z?q(i).

It follows from the previous proof that there exists a number [ € I, for which z,;)(To) = 0. The theorem is
proved.

Example3 Letk=2,1=1{1,2 3 4}, J =11, 2} Aij(t) = ai; E° i <0,U; =V ={v: ||v|| 1}, 29, =
(1,3), 28 = (=1,3), 281 = (=1, 1), 2§; = (1,1), 295 = (0, =1), 255 = (=2, 1), 28, = (=2, -3), 24, = (0, -3).
Define a mapping ¢ : I — J as follows: ¢(1) = 2, ¢(2) = ¢(3) = ¢(4) = 1. The condmons of Theorem 3 are
satisfied, and so a capture of at least one evader occurs in the game G(4, 2, z°). Note that 0 ¢ Int co{z%,i € I}
and 0 ¢ Int co{2%,i € I}.

We show that if a;4(;y > 0, then condition (6) in Theorem 3 does not guarantee capture.

Example 4. Letk = 2,n =3, m = 1,1 = {1,2,3}, Mj; = {0}, to = 0, 20, = (0,1), 23, = (1/2,—/3/2),
29 =(-1/2,-v3/2),U; =V = {v: Hv|| <1} System(l) hasthe form

(D(l/Q))Zil = zj1 +u; — 0.
Let’s take v(t) = 0 for all ¢ > 0. Then we have

zi(t) = Ea(Vt,1)2% +/O (t — s)"Y2Ey((t — 5)'/2,1/2)u;(s)ds.

Suppose that there exist 7' > 0, function w;(-), [ € {1,2, 3}, for which z;; (T") = 0. Then [20, p. 120, formula
(1.19)]

Es(VT,1) = |[Es(VT, 1)z} | =

<

/ ) TV2E (T — 5)'%,1/2)w(s) ds
0

/ $) V2B, (T — 5)Y/2,1/2) ds = VT E»(VT,3/2).
0
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By virtue of [20, p. 118, formula (1.4)],

1

Ey(VT,3/2) = 77

(B,(VT,1) —1).

Relation (7) entails the inequality
Ey(VT,1) < B2(VT,1) — 1,

which is impossible. Consequently, in this game G(3, 1, V), capture does not occur.

4. CAPTURE OF ALL EVADERS

In the space R* (k > 2), we consider a differential game G(1,m, z°) involving 1 4+ m persons: one pursuer P; and
m evaders F1, ..., E,,. The law of motion of the pursuer P; has the form

(DNzy = azy +u, 21(0)=2Y, weV;
the law of motion of each of the evaders E; is of the form
(D)y; = ay; +v;,  y;(0) = yJQ» v; € V.

Here V = {v : |lv|| < 1}, a € (0,1), a € R, D(®)f is the Caputo derivative of the function f of order «,
jeJ={1,...,m}. We consider z{ # y? forall j € J.
Let’s denote
f(t) = Eyjq(at*,1), F(t) =t"Ey /o (at®, a+1), zjo- = y? — 9.

Lemma?2. Leta <0, T, > T >0,
T>
h(t) = / (t — ) By jalalt — 5)* a)ds.
T

Then limy_, o, t*h(t) = 0.
Proof. By substituting ¢ — s = 7 we get

t—T1
h(t) = / T By o (ar®, a)dr.
t—T5

By virtue of formula (2.32) from [20, p. 136], the inequality
M

a?

|E1/a(at®, a)| < M >0,

2

is true for all t > T'2, therefore

()] = < /tt_Tl MT:_ldT:M(ln(t—Tl) —In(t — Ty)).

—Ts T

Ty
/ To‘_lEl/a(aT(’, a)dr
t

— T2

Then

T, — T Mt(Ty — T
|t0‘h(t)<Mta(ln(t—Tl)—ln(t—Tg)):Mt“ln(l—i— 2 1>< (1 =T)

t— 15 t—"1T5
Since lim;_, 4 o, % = 0, then lim;_, o, t*h(t) = 0. The lemma is proved.
Theorem 4. Let a < 0, M{; = {0} forall j € J, thereis vy € V, ||vol = 1, such that (y§ — 29, v0) < 0 for all

j € J. All evaders use constant control vy, the pursuer Py knows vy. Then a capture of all evaders occurs in the game
G(1,m, 2%).
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Proof. 1. We show that there exist a moment 7,,, and a vector w,,, ||u, || = 1, for which the equality 4 (7,,) =
ym(Tr) holds, where 21 (¢) is the trajectory of the pursuer Py, using constant control .

Let the pursuer P; uses the constant control « on the interval [0, 7},,]. Then, by virtue of the Cauchy formula
[19] and formula (1.15) from [20, p. 120], we have

t
i (t) = f(B)21 + / (t=5)" " Byja(alt — )%, a)ds - u = f(t)a) + F(t)u,
0
Ym(t) = f(O)ym + F(t)vo.
The 21 (t) = ym (t) can be represented as
F(tyu = f(t)22, + F(t)vo.
Let us require that ||u|| = 1. For this purpose, consider the function

g (t) = [ f(O)zm + F()vol* = F2(t) = £2() 201> + 2f () F (£) (2, vo),

where (a, b) is the scalar product of the vectors a and b. It follows from Theorem 4.1.1 [18], that f(¢) > 0, F(t) > 0
for all ¢ > 0. Therefore, the equation g,,(t) = 0 is equivalent to the equation

(@) 2(28,,v0)

S . (8)
F(t) ll2m 12
Note that lim;_, ¢ % = +o00. By virtue of Theorem 1.2.1 of [ 18], we have the asymptotic estimates
1 2a 1 o
f(t)=—m+0(l/t ), Ft)=——+0@1/t%), ©)

therefore lim;_, | % = 0. Hence, equation (8) has at least one positive root 7,,,. We now assume that the

control of the pursuer P; on the interval [0, T,,,] is equal to
f(Tm)

_ 0
Um = F(Tm)zm + vg.

We obtain that at time T7,,, the pursuer P; will realize the capture of the evader F,,.

2. Let us further construct a control for the pursuer P, that guarantees the capture of F,,, 1. Suppose that at
[T, Trn—1], the pursuer P; uses the constant control « (the moment T;,,_; will be defined below). Then, by virtue
of the Cauchy formula [19] (¢ > T},,),

T t
o1(0) = 128+ [ (0= 9" Byalalt - 9% a)ds [ (6= 5" Byalat - )%, )ds
0 T

Ym—1(t) = [(t)yp—1 + F(t)vo.
Let’s denote

H,(t) = / (t—s)* "By jalalt —5)*, a)ds, hp(t) = /0 " (t—s)* "By 0(alt — 5)%, a)ds.

T

Note that H,,(t) + hy,(t) = F(t). Then the equality z1(t) = y,,—1(t) can be represented as
f(t)x? + hin (O + Hp (u = f(t)y?n—l + F(t)vo

or
H,,(tH)u = f(t)zg%l + F(t)vg — hp ()t
Consider the function
gm—1(t) = || f ()21 + F(t)vg — hm (t)um|* — Hy, (1)
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Then
Im—1(Tm) = ||f(Tm)ZEn—1 + F(Trm)vo — hm(Tm)“mH2~
Since F(T,,) = by (T)) and F(Ty,)(vo — tr) = —f(T)n)2Y,, then

Gn—1(Tm) = 1 (T)zm 1 = F (L) 2 I* = f2 (Tl 21 — 2l > 0.
The function t*g,, 1 (t) can be written as

tgm—1(t) =t f2() |71 |7 + 26 F () F(£) (21, v0) — 26 F () o () (2,1, ) —
— 2LYF () o (8) (V0 Uy ) + 26 F (£) By (8).

By virtue of asymptotic estimates (9) and lemma 2, we obtain that the following relations are true

: o o 1 : o £2 _
t—ll?oot f(t)F(t) - agr(l _ 04)7 tggloot f (t) - 07

lim () hm(t) =0,  lim t“F(t)hn(t) = 0,

t——+oo t—+oo

so it follows from the inequality (29, _;,vo) < 0, that lim;_, o, t“g,,—1(t) = —o0, and hence there exists a moment

Tn—1 > Ty, for which g,,—1(T,,—1) = 0.
Choosing now on the interval [T}, T},,—1] control ., of the form

Um—1 = f(Tmfl)qufl + F(Tmfl)vo - hm(Tmfl)um/Hm(Tmfl)a

the pursuer P; at the moment 7,,,_; will catch the evader E,,,_1.
3. Let’s denote

t

T;
hl(t):/ (t— 5)* By jalat — 5)* a)ds, Hk+1(t):/ (t— ) Eyjalalt — 5)* a)ds,

Tyt Trt1

sl(t):hm(t)um+~-~+hl(t)ul, §l(t):hm(t)+~~-+hl(t), l=m-—1,...,k+ 1.

Suppose that the vectors w,,, ..., ur+1 and the moments of time 7,,, < T;,—1 < --- < Tj41, guaranteeing
the pursuer P; to catch the evaders F,,,, ..., Fx1, are defined, and on the interval [T} 2, T)1] the vector w1 is
equal to

ki1 = f(Thr1) 241 + F(Tir1)vo — skt (Thsr)/Hrr2(Thr)- (10)

Let us further construct a control of the pursuer P;, which guarantees him to catch the evader E;. Suppose
that at [Tj41, T%], the pursuer P; uses the constant control u (the moment T}, will be defined below). Then for
t > Ty 1, by virtue of the Cauchy formula [19], we have

Tm, T7n—1
21(t) = f(t)a) + / (t = )" Eyjalalt— )%, 0)ds -ty + / (t= )" By jaalt — )%, a)ds -ty 4+
0 T

t

Trt1
S / (t — s)a_lEl/a(a(t —8)*, a)ds - ugy1 + / (t— s)o‘_lEl/a(a(t —5)%, a)ds - u,

Trt2 Tita
ye(t) = fF(t)yy + F(t)vo.
The inequality x4 (¢t) = y(¢) can be represented as
F@O2] + spa(t) + Hia (u = fO)yR + F(tyog mma - Hypa ()u = f(1)z — sp41(t) + F(t)vo.

Consider the function
gr(t) = [ F(t)2 = sk (t) + F(t)ool|> — Hiyy (8),
then
91(Tit1) = £ (Tre1)2 = 841 (Thra) + F(Thoga ool

It follows from the definition of the functions Hyo(+) and hgy2(-) that Hyyo(Tky1) = hgr1(Thy1)-
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Since sg41(Th+1) = Skt2(Trt1) + hkr1(Tkt1)uk41, then
Skt 1 (Tht1) = Sig2(Tit1) + Herz(Th1) g1 (11)
Using formula (10), let us write equality (11) as
k1 (Thr1) = f(Tig1) 2041 + F(Thg1)vo.

Then
91 (Tis1) = 1f Tes1) 2 — F(Tes)zp i I” = F2(Tos) 122 — 2044017 > 0.

Since Hy11(t) = F(t) — Sk+1(t), the function t* g, (¢) can be represented as

tgu(t) = t* PO RN + 26 F @) F (£) (2R, v0) + 2 |swr1 (£)]1*~
=2 (t)(sp41(t), vo) — 26 (t) (341 (1), 2) + 2" F(£)3p41(t) — 17851 (1).

It follows from lemma 2, that for any [ and p

lim %hy(£)h,(t) = 0,

t——+oo
therefore
. «@ 2 : a2 _ . @ r2 _
Jim s (1 = Jim 540 = lim 12720 = 0,
hence lim;_, . t*gi(t) = —oc. Therefore, there is a moment T}, > T} 1, for which g, (T%) = 0. Choosing its

control uy, on the interval [T}, T)] in the form of
up = f(Ti)zp + F(T)vo — sir1(Tk) /Hir1 (Th),

the pursuer P; at the moment 7}, will catch the fleeing F),. The theorem is proved.

Corollary. Let a < 0, there exists a hyperplane H such that y;? € Hforallj € J, 29 ¢ H, vy the unit normal
vector of the hyperplane H, directed into the half-space containing x%. The evaders use constant control vo. Then a
capture of all evaders occurs in the game G(1,m, 2°).

The validity of this statement follows directly from Theorem 4, since (y? —29,v9) < Oforall j € J.

Remark 3. Let the corollary conditions be satisfied and the laws of motion of each participant have the form
I =ary +u, Y;=ay; +vj, u,v; €V, je. (12)

In [2], the problem of evasion a group of evaders from a group of pursuers described by system (12) was considered,
where it was shown that in the game G(1,m, 2°), the pursuer P; will realize the capture of no more than one evader
[2, Corollary 6.3.3, p. 333].

Thus, Theorem 4 shows that differential games described by equations with fractional derivatives have properties
that differential games described by ordinary differential equations do not have.
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