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Abstract. The problem of dynamic reconstruction of input actions in a system of ordinary differential equations
and the problem of tracking a trajectory of a system by some trajectory of another one influenced by an un-
known disturbance are under consideration. An input action is assumed to be an unbounded function, namely,
an element of the space of square integrable functions. Two solving algorithms, which are stable with respect
to informational noises and computational errors and oriented to program realization, are designed. Upper es-
timates of their convergence rates are established. The algorithms are based on constructions from feedback
control theory. They operate under conditions of (inaccurate) measuring the phase states of the given systems
at discrete times.
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1. INTRODUCTION. PROBLEM STATEMENT

We consider a system of ordinary differential equations

ẏ(t) = f(t, y(t)) +Bu(t), t ∈ T = [0, ϑ], (1)

with the initial condition
y(0) = y0. (2)

Here 0 < ϑ < +∞, y ∈ RN , u ∈ Rr is the input influence, f(t, y) is a Lipschitz (with Lipschitz constantL) vector
function over a set of variables, B – a stationary matrix of dimensionN × r, n, r ∈ N.

It is assumed that the system (1) is subjected to an unknown input influence u(·) ∈ L2(T ;Rr). At discrete,
sufficiently frequent, moments of time τi ∈ ∆ = {τi}i=0,m (τ0 = 0, τm = ϑ, τi+1 = τi + δ) the phase states
y(τi) = y(τi; y0, u(·)) of system (1) are measured. The states y(τi), i = 0,m− 1, are measured with error. The
measurement results are vectors ξhi ∈ RN , satisfying the inequalities

|y(τi)− ξhi |N ≤ h, (3)

where h ∈ (0, 1) is the level of measurement error, | · |N denotes the Euclidean norm in the space RN .
It is required to specify an algorithm for approximate restoration of the input impact based on the results of

inaccurate measurements y(τi). For this purpose, we consider the problem consisting in the construction of an
algorithm that, based on the current measurements of values y(τi) in “real time”, forms (according to the feedback
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if the value |x0−y0|N is small enough. Here x(·;x0, v
h(·)) is the solution of the system (6) generated by the control

vh(·) of the form (7). Note that both in the reconstruction problem and in the tracking problem, the input influence
of the given system is unknown.

If the algorithms for solving the reconstruction problem described in the papers cited above allowed us to obtain
for an arbitrary measurable input influence u(·) (possibly constrained by some specified instantaneous constraints)
estimates of the convergence rate (to u(·)) of uh(·) (in model (4) formed according to rule (5)) in a uniform or
mean-square metric, then, while solving the reconstruction problem, we would simultaneously solve the tracking
problem. Unfortunately, however, such estimates can be obtained only for special classes u(·), for example, for
functions with bounded variation. In the case when u(·) is not such a function, the algorithms from these works
guarantee only convergence of the controls uh(·) to u(·).

A question naturally arises: can we choose not the system of the form (4), but the system of the form (6), i.e., a
complete copy of the system (1), as a model in reconstruction algorithms? Then, while solving the reconstruction
problem in accordance with the described approach, we would simultaneously solve the tracking problem. Unfor-
tunately, for arbitrary f andB, even if smooth enough, it is not possible to give a positive answer to it. The purpose
of this paper is to specify two classes of systems of the form (1), for which the answer to the question is positive.
For each of these two classes, a different rule of control formation will be specified. The first class is a system
being linear both in phase variables and perturbation; the second is a system with a monotonic function in phase
variable f . It should be noted that the approach to solving problems of dynamic reconstruction developed, in this
paper, was applied when solving problems of reconstruction of unknown structural characteristics of a bioreactor
with recharge [3], the problem of formation of flight telemetry using indirect data [3], and problems of modeling
of pollution spreading processes [17].

Thereafter, for each h ∈ (0, 1), we fix a family∆h of partitions of the segment T by control time instants τh,i:

∆h = {τh,i}i=0,mh
, τh,0 = 0, τh,mh

= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1). (8)

It should be noted that the same solution of the system (1) can be conditioned by more than one influence. Let
U(y(·)) be the set of all input influences from L2(T ;Rr), generating the solution y(·) of system (1), i.e.,

U(y(·)) = {ũ(·) ∈ L2(T ;Rr) : ẏ(t)− f(t, y(t)) = Bũ(t) at a.e. t ∈ T}.

By the symbol u∗(·) we denote the minimal element of the set U(y(·)), i.e., by L2(T ;Rr)-norm.

u∗(·) = arg min
u(·)∈U(y(·))

|u(·)|L2(T ;Rr).

Such an element exists and is unique. Following the approach adopted in the theory of incorrect problems, we will
recover u∗(·). Hereinafter c(0), c(1), . . . , c0, c1, . . . , k(1), k(2), . . . , k1, k2, . . . denote positive constants that can be
written out explicitly, (·, ·) is the scalar product in the corresponding finite-dimensional Euclidean space, and | · |
is the modulus of a number.

2. SOLUTION ALGORITHM IN CASE OF A LINEAR SYSTEM

Let us consider the case when the system (1) is linear, i.e., has the form

ẏ(t) = Ay(t) +Bu(t) + f1(t). (9)

Here, A and B are constant matrices of corresponding dimensions, f1(·) ∈ L2(T ;RN ) is a given function. The
model is a copy of the system (9):

ẏh(t) = Ayh(t) +Buh(t) + f1(t) (10)

initialized
yh(0) = ξh0 .

Let’s fix the function α(h) : (0, 1) → (0.1). In the future we will need the following
Condition A.With h → 0, we have α(h) → 0, δ(h)α−2(h) → 0, h2(α(h)δ(h))−1 → 0.
Let us denote by Y(t) the fundamental matrix of the system of equations ẏ(t) = Ay(t). The inequality

∥Y(t)∥ ≤ exp{χt}, t ≥ 0,

principle) the function u = uh(·), that is an approximation (in the spacemetricL2(T ;Rr)) of some input influence
generating the solution y(·) of equation (1).

The formulated problem is a problem of dynamic recovery (reconstruction). One of the approaches to its
solution was developed in [1, pp. 7–87; 2, pp. 400–415; 3, pp. 13–93; 4–12]. In [1–10], the case of instantaneous
constraints on perturbations was considered; the case of absence of such constraints is described in [3, pp. 41–64;
6; 11; 12]. The approach is based on a combination of methods of the theory of positional control [13], according
to which for dynamic, realized at the rate of “real time”, restoration of the perturbation acting on the system
(1), one proceeds as follows: some controlled system, quite often called a model, is introduced; after that, the
restoration task is replaced by the task of forming the control of this model according to the feedback principle
in such a way, that at a suitable matching of the measurement error h, the value of the measurement interval δ
(as well as, perhaps, some other parameters, e.g., regulation parameter), the control uh (.) — in one or some
other metrics — approximates some input influence that induces a measured solution y (.) of system (1). Usually,
when speaking of approximation, one means uniform (space metricC) or mean-square (space metricL2) metrics.
When implementing this approach, in many cases the right-hand side of the model has the same structure as the
real system (system (1)). However, instead of the phase vector of the model in its right part there are the values ξhi ,
i.e., the results of measurements of phase states of the real system instead of the states of the model. Quite often
(see, for example, [1, p. 23; 4; 5]) the model has the following form:

ẏh(t) = f(τi, ξ
h
i ) +Buh

i at a.e. t ∈ δi = [τi, τi+1), i = 0,m− 1. (4)

In this case, the control uh(·) in the model is formed according to some rule U in the form of feedback:

uh(t) = uh
i = U(τi, ξ

h
i , y

h(τi)) at a.e. t ∈ δi, i = 0,m− 1. (5)

In mathematical control theory, one of the “classical” problems is the so-called tracking problem, the study
of which began in the fifties of the XX century and was caused by practical problems arising in aviation and as-
tronautics. This problem has not lost its relevance nowadays, in particular, due to the needs of flight dynamics
development. The tracking problem is also in demand when analyzing processes arising in control problems of
mechanical systems [14, 15], as well as systems functioning under uncertainty [16]. It also plays an important role
in the framework of positional differential games [13].

The essence of the tracking problem in the simplest case is as follows. There is a system (1) with an unknown
input influence u(·), satisfying usually the instantaneous constraint u(t) ∈ P at a.e. t ∈ T , where P ⊂ Rr is a
compact set. Along with the system (1) there is another system of the same type

ẋ(t) = f(t, x(t)) +Bv(t), t ∈ T, (6)

x(0) = x0

and control v(·), that obeys the same constraints as the function u(·). At moments τi, the phase states of systems
(1) and (6), y(τi) and x(τi), respectively, are measured (with error). The measurement results are vectors ξhi ∈ RN

and ψh
i ∈ RN , satisfying the inequalities

|ξhi − y(τi)|N ≤ h, |ψh
i − x(τi)|N ≤ h.

The essence of the tracking task consists in designing such an algorithm for forming the control of v = vh(·) system
(6) according to the feedback principle

vh(t) = vhi = V (τi, ξ
h
i , ψ

h
i ) at a.e. t ∈ δi, i = 0,m− 1, (7)

that, at appropriate coordination of values h and δ the solutions of systems (1) and (6), will be close, as a rule in
uniformmetric (in case of proximity of initial states of these systems), whatever the admissible realization of input
influence v(·) is. Thus, when solving the tracking problem, it is necessary to construct such a law V of control
formation (7), that whatever the number ε > 0, the numbers h∗ and δ∗ are specified, such that for all h ∈ (0, h∗)
and δ ∈ (0, δ∗), the inequality is true

sup
t∈T

|x(t;x0, v
h(·))− y(t; y0, u(·))|N ≤ ε,
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if the value |x0−y0|N is small enough. Here x(·;x0, v
h(·)) is the solution of the system (6) generated by the control

vh(·) of the form (7). Note that both in the reconstruction problem and in the tracking problem, the input influence
of the given system is unknown.

If the algorithms for solving the reconstruction problem described in the papers cited above allowed us to obtain
for an arbitrary measurable input influence u(·) (possibly constrained by some specified instantaneous constraints)
estimates of the convergence rate (to u(·)) of uh(·) (in model (4) formed according to rule (5)) in a uniform or
mean-square metric, then, while solving the reconstruction problem, we would simultaneously solve the tracking
problem. Unfortunately, however, such estimates can be obtained only for special classes u(·), for example, for
functions with bounded variation. In the case when u(·) is not such a function, the algorithms from these works
guarantee only convergence of the controls uh(·) to u(·).

A question naturally arises: can we choose not the system of the form (4), but the system of the form (6), i.e., a
complete copy of the system (1), as a model in reconstruction algorithms? Then, while solving the reconstruction
problem in accordance with the described approach, we would simultaneously solve the tracking problem. Unfor-
tunately, for arbitrary f andB, even if smooth enough, it is not possible to give a positive answer to it. The purpose
of this paper is to specify two classes of systems of the form (1), for which the answer to the question is positive.
For each of these two classes, a different rule of control formation will be specified. The first class is a system
being linear both in phase variables and perturbation; the second is a system with a monotonic function in phase
variable f . It should be noted that the approach to solving problems of dynamic reconstruction developed, in this
paper, was applied when solving problems of reconstruction of unknown structural characteristics of a bioreactor
with recharge [3], the problem of formation of flight telemetry using indirect data [3], and problems of modeling
of pollution spreading processes [17].

Thereafter, for each h ∈ (0, 1), we fix a family∆h of partitions of the segment T by control time instants τh,i:

∆h = {τh,i}i=0,mh
, τh,0 = 0, τh,mh

= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1). (8)

It should be noted that the same solution of the system (1) can be conditioned by more than one influence. Let
U(y(·)) be the set of all input influences from L2(T ;Rr), generating the solution y(·) of system (1), i.e.,

U(y(·)) = {ũ(·) ∈ L2(T ;Rr) : ẏ(t)− f(t, y(t)) = Bũ(t) at a.e. t ∈ T}.

By the symbol u∗(·) we denote the minimal element of the set U(y(·)), i.e., by L2(T ;Rr)-norm.

u∗(·) = arg min
u(·)∈U(y(·))

|u(·)|L2(T ;Rr).

Such an element exists and is unique. Following the approach adopted in the theory of incorrect problems, we will
recover u∗(·). Hereinafter c(0), c(1), . . . , c0, c1, . . . , k(1), k(2), . . . , k1, k2, . . . denote positive constants that can be
written out explicitly, (·, ·) is the scalar product in the corresponding finite-dimensional Euclidean space, and | · |
is the modulus of a number.

2. SOLUTION ALGORITHM IN CASE OF A LINEAR SYSTEM

Let us consider the case when the system (1) is linear, i.e., has the form

ẏ(t) = Ay(t) +Bu(t) + f1(t). (9)

Here, A and B are constant matrices of corresponding dimensions, f1(·) ∈ L2(T ;RN ) is a given function. The
model is a copy of the system (9):

ẏh(t) = Ayh(t) +Buh(t) + f1(t) (10)

initialized
yh(0) = ξh0 .

Let’s fix the function α(h) : (0, 1) → (0.1). In the future we will need the following
Condition A.With h → 0, we have α(h) → 0, δ(h)α−2(h) → 0, h2(α(h)δ(h))−1 → 0.
Let us denote by Y(t) the fundamental matrix of the system of equations ẏ(t) = Ay(t). The inequality

∥Y(t)∥ ≤ exp{χt}, t ≥ 0,
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where I is a unit matrix of dimensionN ×N . Therefore

|Sh
i − exp{−2χτi+1}shi |N ≤ δc∗ exp{−2χτi+1}|shi |N ≤ δc∗|shi |N . (15)

In this case, taking into account (15) and the inequality |Sh
i |N ≤ |shi |N , we have

|(Sh
i ,Y(δ)Bu)− exp{−2χτi+1}(shi , Bu)| ≤

≤ |Sh
i |N |Y(δ)− I|N |Bu|N + |(Sh

i , Bu)− exp{−2χτi+1}(shi , Bu)| ≤ 2δc(0)|shi |N |Bu|N . (16)

Further, by virtue of (16), the inequality is true

λ1i ≤ 2 exp{−2χτi+1}
(
yh(τi)− y(τi),

∫ τi+1

τi

B{uh
i − u∗(τ)}dτ

)
+ I1i,

where
I1i = δc(1)|shi |N

∫ τi+1

τi

|uh
i − u∗(τ)|rdτ.

It is not difficult to see that there is an estimation

I1i ≤ δ2λ(τi) + c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ. (17)

Considering (17) and the rule for choosing the control uh(·) (see (5), (11)), we obtain

λ1i + α

∫ τi+1

τi

(|uh(s)|2r − |u∗(s)|2r)ds ≤

≤ δ2λ(τi) + c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds+ c(2)δ

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds. (18)

In addition, the estimates are correct

µ1i ≤ δc(4)
∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ,

c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds ≤ δc(5)

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds+ c(6)h2. (19)

From (14), using (18), (19), we establish the validity of the inequality

γ(τi+1) = λ(τi+1) + α

∫ τi+1

τi

|uh(s)|2rds ≤

≤ (1 + δ2)λ(τi) + α

∫ τi+1

τi

|u∗(τ)|2rdτ + δc(7)
∫ τi+1

τi

(|u∗(τ)|2r + |uh
i |2r)dτ + c(6)h2. (20)

In turn, by virtue of (3), (11) we have

|uh
i |2r ≤ α−2c(8)(h2 + |yh(τi)− y(τi)|2N )2 ≤ α−2c(9)(λ(τi) + h2) ≤ α−2c(9)(γ(τi) + h2). (21)

From (20), (21) follows the estimation of

γ(τi+1) ≤ (1 + δ2)γ(τi) + (α+ c(7)δ)

∫ τi+1

τi

|u∗(s)|2rds+ c(6)h2 + c(9)δ2α−2(γ(τi) + h2). (22)

Taking into account condition A, we conclude that it is possible to specify the number h1 ∈ (0, 1) such that the
inequality holds

sup
h∈(0,h1)

δ(h)α−2(h) ≤ 1.

where χ = ∥A∥, ∥A∥ is the Euclidean norm of the matrix A, is true.
Before the algorithm starts, we fix the value h ∈ (0, 1), the partition ∆h = {τh,i}i=0,mh

of the form (8) and
the number α = α(h). The algorithm operation is divided into a finite number of steps of the same type. At the
i-th step, carried out at the time interval δi = [τi, τi+1), τi = τh,i, the following operations are performed: at the
moment τi, the vector uh

i is calculated according to formula (5), in which

U(τi, ξ
h
i , y

h(τi)) = α−1 exp{−2χτi+1}B′(ξhi − yh(τi)) (11)

(here dash means transpose); then the input of system (10) at all t ∈ δi is given control uh(t) of the form (5),
(11), under the action of which the system (10) passes from the state yh(τi) to the state yh(τi+1). The work of the
algorithm ends at the moment ϑ.

Let’s introduce the functional
λ(t) = exp{−2χt}|yh(t)− y(t)|2N .

In the future, we’ll need the following
Lemma 1 (Gronwall’s discrete inequality [18, p. 311]). Let ϕj ≥ 0, fj ≥ 0 at j = 0,m and fj ≤ fj+1 at

j = 0,m− 1. Then from the inequalities

ϕj+1 ≤ c0δ

j∑
i=1

ϕi + fj , j = 1,m− 1,

inequalities follow
ϕj+1 ≤ fj exp{c0jδ}, j = 0,m− 1,

if c0 > 0, ϕ1 ≤ f0.
Lemma 2. Let condition A be satisfied. Then it is possible to specify such a number h∗ ∈ (0, 1), that for all

h ∈ (0, h∗) the inequalities are true.

max
i∈0,mh−1

λ(τi+1) ≤ d1{α+ δ + h2δ−1}, (12)

ϑ∫

0

|uh(s)|2r ds ≤ (1 + d2δα
−2)

ϑ∫

0

|u∗(s)|2r ds+ d3h
2(αδ)−1, (13)

where dj, j = 1, 2, 3 are positive constants independent of h, δ and α.
Proof. Let’s estimate the change in the value of

ε(t) = λ(t) + α

∫ t

0

(|uh(τ)|2r − |u∗(τ)|2r)dτ.

Here α = α(h), δ = δ(h). It is easy to see that the inequality is true

ε(τi+1) ≤ ε(τi) + λ1i + µ1i + α

∫ τi+1

τi

(|uh(τ)|2r − |u∗(τ)|2r)dτ, (14)

where
λ1i = 2

(
Sh
i ,

∫ τi+1

τi

Y (τi+1 − τ)B(uh(τ)− u∗(τ))dτ

)
,

µ1i = δ exp{−2χτi+1}
∫ τi+1

τi

|Y (τi+1 − τ)B(uh(τ)− u∗(τ))|2Ndτ,

Sh
i = exp{−2χτi+1}Y (δ)shi , shi = yh(τi)− y(τi).

Note that at t ∈ [0, δ∗], δ∗ ∈ (0, 1),

∥Y(t)− I∥ ≤ c∗t, c∗ = c∗(δ∗),
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where I is a unit matrix of dimensionN ×N . Therefore

|Sh
i − exp{−2χτi+1}shi |N ≤ δc∗ exp{−2χτi+1}|shi |N ≤ δc∗|shi |N . (15)

In this case, taking into account (15) and the inequality |Sh
i |N ≤ |shi |N , we have

|(Sh
i ,Y(δ)Bu)− exp{−2χτi+1}(shi , Bu)| ≤

≤ |Sh
i |N |Y(δ)− I|N |Bu|N + |(Sh

i , Bu)− exp{−2χτi+1}(shi , Bu)| ≤ 2δc(0)|shi |N |Bu|N . (16)

Further, by virtue of (16), the inequality is true

λ1i ≤ 2 exp{−2χτi+1}
(
yh(τi)− y(τi),

∫ τi+1

τi

B{uh
i − u∗(τ)}dτ

)
+ I1i,

where
I1i = δc(1)|shi |N

∫ τi+1

τi

|uh
i − u∗(τ)|rdτ.

It is not difficult to see that there is an estimation

I1i ≤ δ2λ(τi) + c(2)δ
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≤ δ2λ(τi) + c(3)h
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∫ τi+1

τi
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In addition, the estimates are correct

µ1i ≤ δc(4)
∫ τi+1

τi

(|uh
i |2r + |u∗(τ)|2r)dτ,

c(3)h

∫ τi+1

τi

(|uh
i |r + |u∗(s)|r)ds ≤ δc(5)

∫ τi+1

τi

(|uh
i |2r + |u∗(s)|2r)ds+ c(6)h2. (19)
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In turn, by virtue of (3), (11) we have

|uh
i |2r ≤ α−2c(8)(h2 + |yh(τi)− y(τi)|2N )2 ≤ α−2c(9)(λ(τi) + h2) ≤ α−2c(9)(γ(τi) + h2). (21)
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where µh(t) = yh(t)− y(t). It is not difficult to see that the inequalities are true at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(3)
∣∣∣∣
∫ t

τi

Y (t− s)B(uh(s)− u∗(s))ds

∣∣∣∣
N

≤

≤ k(2)λ(τi) + k(4)
∫ t

τi

(|uh(s)|r + |u∗(s)|r)ds. (27)

In turn, by virtue of (12) and (21) at t ∈ δi, we have
∫ t

τi

|uh(s)|rds ≤ k(5)δα−1(λ1/2(τi) + h) ≤ k(6)δα−1(α1/2 + δ1/2 + hδ−1/2). (28)

Given the convergence of δ(h)α−2(h) → 0 at h → 0, we conclude that at h ∈ (0, h∗), the following estimates
are valid

δα−1/2 ≤ k(7)α3/2, δ3/2α−1 ≤ k(8)α2, hδ1/2α−1 ≤ k(9)h. (29)

Moreover, in view of (28) and (29) at t ∈ δi, the following estimates are true
∫ t

τi

|uh(s)|rds ≤ k(10)(h+ α3/2),

∫ t

τi

|u∗(s)|rds ≤ k(11)δ1/2 ≤ k(12)α. (30)

From (27), taking into account (30), we derive the following relation, which is valid at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(13)(h+ α). (31)

In this case, by virtue of (12), from (31) we obtain

sup
t∈T

|µh(t)|N ≤ k(14)(α+ h+ h2δ−1)1/2.

Hence we deduce
∣∣∣∣
∫ t2

t1

(uh(t)− u∗(t))dt

∣∣∣∣
r

≤ k(15)
∣∣∣∣
∫ t2

t1

B(uh(t)− u∗(t))dt

∣∣∣∣
N

≤ k(16)(α1/2 + h1/2 + hδ−1/2). (32)

Again using lemma 2 (see (13)), we set
∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ =

∫ ϑ

0

|uh(τ)|2rdτ − 2

∫ ϑ

0

(uh(τ), u∗(τ))dτ +

∫ ϑ

0

|u∗(τ)|2rdτ ≤

≤ (2 + d2α
−2δ)

∫ ϑ

0

|u∗(τ)|2rdτ −
∫ ϑ

0

(uh(τ), u∗(τ))dτ + d3h
2(αδ)−1 =

= 2

∫ ϑ

0

(u∗(τ)− uh(τ), u∗(τ))dτ + d2α
−2δ

∫ ϑ

0

|u∗(τ)|2rdτ + d3h
2(αδ)−1. (33)

Considering lemma 3 and also (32), we obtain

sup
t∈T

∣∣∣∣
∫ t

0

(u∗(τ)− uh(τ), u∗(τ))dτ

∣∣∣∣ ≤ k(17)(α1/2 + h1/2 + hδ−1/2). (34)

Thus, inequality (26) is true for all h ∈ (0, h∗), t ∈ T , by virtue of (33), (34). The lemma is proved.

From (22), we derive in the standard way (see, e.g., [13, p. 59–64]) the relation

γ(τi+1) ≤
(
(α+ c(7)δ)

∫ τi+1

τi

|u∗(s)|2rds+ c(6)h2δ−1 + c(9)h2

)
exp{δ(1 + c(9)α−2)τi+1}. (23)

Note that δ(h)α−2(h) → 0 at h → 0. Therefore, we can specify a number c(10) > 0, such that for all h ∈ (0, h1)
the inequality is true

exp{δ(1 + c(9)α−2)ϑ} ≤ 1 + δc(10)(1 + α−2).

Then from (23) follows the relation
∫ ϑ

0

|uh(s)|2rds ≤ (1 + c(7)δα−1)(1 + c(10)δα(1 + α−2))

∫ ϑ

0

|u∗(s)|2rds+ c(11)h2(δα)−1. (24)

By virtue of condition A, there is such a number h∗ ∈ (0, h1) such that for all h ∈ (0, h∗)

(1 + c(7)δα−1)(1 + c(10)δ(1 + α−2)) ≤ 1 + d2δα
−2. (25)

Inequality (13) follows from (24) and (25). In turn, inequality (12) follows from (23). The lemma is proved.
Remark. If δ(h) = d4h, α(h) = d5h

1/2−ε, where d4 and d5 are positive constants, ε ∈ (0, 1/2), then the
inequalities hold

max
i=0,mh−1

λ(τi+1) ≤ d6h
1/2−ε,

∫ ϑ

0

|uh(s)|2rds ≤ (1 + d7h
2ε)

∫ ϑ

0

|u∗(s)|2rds+ d8h
1/2+ε.

It follows from lemma 2
Theorem 1. Let the conditions of lemma 2 be satisfied. Then there is convergence uh(·) → u∗(·) at h → 0.
The proof of this theorem follows the standard scheme (see, for example, the proof of Theo-

rem 1.2.3 in [3, pp. 21-27]).
Under some additional conditions, an estimate of the convergence rate of the algorithm can be obtained. To

justify it, we need the following
Lemma 3 [3, p. 29]. Let x1(·) ∈ L∞(T∗;Rn), y1(·) ∈ W (T∗;Rn), T∗ = [a, b],−∞ < a < b < +∞,

∣∣∣∣
∫ t

a

x1(τ)dτ

∣∣∣∣
n

≤ ε, |y1(t)|n ≤ K, t ∈ T∗.

Then the inequality is true for all t ∈ T∗:
∣∣∣∣
∫ t

a

(x1(τ), y1(τ))dτ

∣∣∣∣ ≤ ε(K + var(T∗; y1(·))).

Here, var(T∗; y1(·)) denotes the variation of the function y1(·) on the segment T∗, andW (T∗;Rn) denotes the
set of functions y(·) : T∗ → Rn with bounded variation.

Lemma 4. Let u∗(·) be a function of bounded variation, B be a matrix independent of t and y (stationary) matrix,
N ≥ r, rank B = r. Let the conditions of Lemma 2 also be satisfied. Then we can specify a number d9 > 0 such that
for all h ∈ (0, h∗) the inequality is true.

∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ ≤ d9(α
1/2 + h2(αδ)−1 + δα−2 + h1/2 + hδ−1/2). (26)

Proof. Note that for any t1, t2 ∈ T , t1 < t2, the following relation is true
∣∣∣∣
∫ t2

t1

B{uh(t)− u∗(t)}dt
∣∣∣∣
N

=

∣∣∣∣
∫ t2

t1

[ẏh(τ)− ẏ(τ)−A(yh(τ)− y(τ))]dτ

∣∣∣∣
N

≤

≤ |µh(t2)− µh(t1)|N + k(1)
∫ t2

t1

|µh(τ)|Ndτ,
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where µh(t) = yh(t)− y(t). It is not difficult to see that the inequalities are true at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(3)
∣∣∣∣
∫ t

τi

Y (t− s)B(uh(s)− u∗(s))ds

∣∣∣∣
N

≤

≤ k(2)λ(τi) + k(4)
∫ t

τi

(|uh(s)|r + |u∗(s)|r)ds. (27)

In turn, by virtue of (12) and (21) at t ∈ δi, we have
∫ t

τi

|uh(s)|rds ≤ k(5)δα−1(λ1/2(τi) + h) ≤ k(6)δα−1(α1/2 + δ1/2 + hδ−1/2). (28)

Given the convergence of δ(h)α−2(h) → 0 at h → 0, we conclude that at h ∈ (0, h∗), the following estimates
are valid

δα−1/2 ≤ k(7)α3/2, δ3/2α−1 ≤ k(8)α2, hδ1/2α−1 ≤ k(9)h. (29)

Moreover, in view of (28) and (29) at t ∈ δi, the following estimates are true
∫ t

τi

|uh(s)|rds ≤ k(10)(h+ α3/2),

∫ t

τi

|u∗(s)|rds ≤ k(11)δ1/2 ≤ k(12)α. (30)

From (27), taking into account (30), we derive the following relation, which is valid at t ∈ δi

|µh(t)|2N ≤ k(2)λ(τi) + k(13)(h+ α). (31)

In this case, by virtue of (12), from (31) we obtain

sup
t∈T

|µh(t)|N ≤ k(14)(α+ h+ h2δ−1)1/2.

Hence we deduce
∣∣∣∣
∫ t2

t1

(uh(t)− u∗(t))dt

∣∣∣∣
r

≤ k(15)
∣∣∣∣
∫ t2

t1

B(uh(t)− u∗(t))dt

∣∣∣∣
N

≤ k(16)(α1/2 + h1/2 + hδ−1/2). (32)

Again using lemma 2 (see (13)), we set
∫ ϑ

0

|uh(τ)− u∗(τ)|2rdτ =

∫ ϑ

0

|uh(τ)|2rdτ − 2

∫ ϑ

0

(uh(τ), u∗(τ))dτ +

∫ ϑ

0

|u∗(τ)|2rdτ ≤

≤ (2 + d2α
−2δ)

∫ ϑ

0

|u∗(τ)|2rdτ −
∫ ϑ

0

(uh(τ), u∗(τ))dτ + d3h
2(αδ)−1 =

= 2

∫ ϑ

0

(u∗(τ)− uh(τ), u∗(τ))dτ + d2α
−2δ

∫ ϑ

0

|u∗(τ)|2rdτ + d3h
2(αδ)−1. (33)

Considering lemma 3 and also (32), we obtain

sup
t∈T

∣∣∣∣
∫ t

0

(u∗(τ)− uh(τ), u∗(τ))dτ

∣∣∣∣ ≤ k(17)(α1/2 + h1/2 + hδ−1/2). (34)

Thus, inequality (26) is true for all h ∈ (0, h∗), t ∈ T , by virtue of (33), (34). The lemma is proved.
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≤ −2ωε1(t) + 2(yh(t)− y(t), B(uh
i − u∗(t))) ≤ −2ωε1(t) +

3∑
j=1

Iji(t), (40)

where
I1i(t) = 2(yh(τi)− ξhi , B(uh

i − u∗(t))),

I2i(t) = 2∥B∥h(|uh
i |r + |u∗(t)|r),

I3i(t) = 2∥B∥(|uh
i |N + |u∗(t)|N )

∫ τi+1

τi

|ẏh(s)− ẏ(s)|Nds.

From (40) follows the inequality

ε1(τi+1) ≤ ε1(τi)− 2ω

∫ τi+1

τi

ε1(s)ds+

∫ τi+1

τi

3∑
j=1

Iji(s)ds. (41)

Further, at t ∈ δi we have

ε1(τi) =

∣∣∣∣yh(t)− y(t)−
∫ t

τi

(ẏh(s)− ẏ(s))ds

∣∣∣∣
2

N

≤ 2ε1(t) + 2δ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds,

therefore

−ωε1(τi) ≥ −2ωε1(t)− 2ωδ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds.

Thus, at t ∈ δi the inequality is true

−2ωε1(t) ≤ −ωε(τi) + 2ωδ

∫ t

τi

|ẏh(s)− ẏ(t)|2Nds.

Hence, after integration at t ∈ [τi, τi+1], we obtain

−2ω

∫ t

τi

ε1(s)ds ≤ −ωδε1(τi) + 2ωδ2
∫ t

τi

|ẏh(s)− ẏ(s)|2Nds. (42)

From (41), (42), considering in (42) t = τi+1, we deduce

ε1(τi+1) ≤ (1− ωδ)ε1(τi) + Ĩ1i +

3∑
j=1

∫ τi+1

τi

Iji(s)ds, (43)

where
Ĩ1i = 4ωδ2

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

Further, taking into account the definition of uh
i (see (5), (37)), we conclude that the following inequality holds

∫ τi+1

τi

(I1i(t) + α(|uh
i |2r − |u∗(t)|2r))dt ≤ 0. (44)

It’s not hard to see that ∫ τi+1

τi

I2i(t)dt ≤ c0h
2 + Ĩ2i, (45)

where
Ĩ2i = δ

∫ τi+1

τi

(|uh
i |2r + |u∗(t)|2r)dt.

In turn, by virtue of (5), (37) and (3), the inequality is true

|uh
i |r ≤ α−1c1(h+ ε1(τi)),

3. SOLUTION ALGORITHM IN CASE OF NONLINEAR SYSTEM

Let us specify the algorithm for solving the problemunder consideration in the casewhen the system is nonlinear
in phase variable. Let the system (1) have the following form:

ẏ(t) = f(t, y(t)) +Bu(t), (35)

whereB is a constant matrix of dimensionN × r. Let us assume that the function f is continuous on t, monotone
on x, i.e., at some ω ≥ 0 the inequality is satisfied

(f(t, x)− f(t, y), x− y) ≤ −ω|x− y|2N , t ∈ T, x, y ∈ RN ,

and satisfies the growth condition

|f(t, x)|N ≤ c(1 + |x|N ), t ∈ T, x ∈ RN ,

where c => 0. If these conditions are satisfied, it is known that at any u(·) ∈ L2(T ;Rr), there exists a single
solution of the system (35), understood in the sense of Carathéodory. As a model, we take a copy of (35), namely
the system

ẏh(t) = f(t, yh(t)) +Buh(t) (36)

with initial state of
yh(0) = ξh0 .

The algorithm for solving the problem, in this case, is similar to the algorithm described above for the linear
system. First of all, we select some family ∆h (8) of partitions of the segment T , as well as the function
α(h) : (0, 1) → (0, 1).

The values h ∈ (0, 1), α = α(h) and the partition ∆h = {τh,i}i=0,mh
of the form (8) are fixed before the

algorithm starts. The work of the algorithm is divided into m − 1, m = mh steps of the same type. At i-th step,
carried out at the time interval δi = [τi, τi+1), τi = τh,i, the following operations are performed. First (at the
moment τi), the vector uh

i is calculated according to formula (5), in which

U(τi, ξ
h
i , y

h(τi)) = α−1B′(ξhi − yh(τi)). (37)

Then, the control uh(t) of the form (5), (37) is applied to the input of the system (36). Under the action of this
control, the system (36) changes from the state yh(τi) to the state yh(τi+1). The operation of the algorithm ends
at the moment ϑ.

As in the linear case, it turns out that at a certain agreement of the values h, δ(h) and α(h) the function uh(·)
is an approximation of u∗(·). Before proceeding to the proof of this fact, we give a lemma that will be needed later.

Lemma 5. It is possible to specify such a number d10 > 0, such that the inequality is satisfied uniformly over all
t ∈ T , y0 ∈ RN , u(·) ∈ L2(T ;Rr).

∫ t

0

|ẏ(s; y0, u(·))|2Nds ≤ d10

(
|y0|2N +

∫ t

0

|u(s)|2rds
)
.

Here y(·; y0, u(·)) is the solution of system (1) with initial state (2) generated by u(·) ∈ L2(T ;Rr).
Lemma 6. Let α(h) → 0, δ(h)α−2(h) → 0 at h → 0. Then we can specify such a number h1 ∈ (0, 1), such that

for all h ∈ (0, h1), t ∈ T for some positive d11, d12, d13, the inequalities are true.

max
i=0,mh−1

ε1(τi) ≤ d11(α+ δ + h2δ−1), (38)

∫ ϑ

0

|uh(τ)|2rdτ ≤ (1 + d12δα
−2)

∫ ϑ

0

|u∗(τ)|2rdτ + d13(h
2(αδ)−1 + δα−1), (39)

where ε1(t) = |yh(t)− y(t)|2N , α = α(h), δ = δ(h).
Proof. Consider the change in the value of ε1(t) at t ∈ T . For t ∈ δi = [τi, τi+1), i = 0,m− 1, we have

dε1(t)

dt
= 2(yh(t)− y(t), f(t, yh(t))− f(t, y(t)) +B(uh

i − u∗(t))) ≤
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≤ −2ωε1(t) + 2(yh(t)− y(t), B(uh
i − u∗(t))) ≤ −2ωε1(t) +

3∑
j=1

Iji(t), (40)

where
I1i(t) = 2(yh(τi)− ξhi , B(uh

i − u∗(t))),

I2i(t) = 2∥B∥h(|uh
i |r + |u∗(t)|r),

I3i(t) = 2∥B∥(|uh
i |N + |u∗(t)|N )

∫ τi+1

τi

|ẏh(s)− ẏ(s)|Nds.

From (40) follows the inequality

ε1(τi+1) ≤ ε1(τi)− 2ω

∫ τi+1

τi

ε1(s)ds+

∫ τi+1

τi

3∑
j=1

Iji(s)ds. (41)

Further, at t ∈ δi we have

ε1(τi) =

∣∣∣∣yh(t)− y(t)−
∫ t

τi

(ẏh(s)− ẏ(s))ds

∣∣∣∣
2

N

≤ 2ε1(t) + 2δ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds,

therefore

−ωε1(τi) ≥ −2ωε1(t)− 2ωδ

∫ t

τi

|ẏh(s)− ẏ(s)|2Nds.

Thus, at t ∈ δi the inequality is true

−2ωε1(t) ≤ −ωε(τi) + 2ωδ

∫ t

τi

|ẏh(s)− ẏ(t)|2Nds.

Hence, after integration at t ∈ [τi, τi+1], we obtain

−2ω

∫ t

τi

ε1(s)ds ≤ −ωδε1(τi) + 2ωδ2
∫ t

τi

|ẏh(s)− ẏ(s)|2Nds. (42)

From (41), (42), considering in (42) t = τi+1, we deduce

ε1(τi+1) ≤ (1− ωδ)ε1(τi) + Ĩ1i +

3∑
j=1

∫ τi+1

τi

Iji(s)ds, (43)

where
Ĩ1i = 4ωδ2

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

Further, taking into account the definition of uh
i (see (5), (37)), we conclude that the following inequality holds

∫ τi+1

τi

(I1i(t) + α(|uh
i |2r − |u∗(t)|2r))dt ≤ 0. (44)

It’s not hard to see that ∫ τi+1

τi

I2i(t)dt ≤ c0h
2 + Ĩ2i, (45)

where
Ĩ2i = δ

∫ τi+1

τi

(|uh
i |2r + |u∗(t)|2r)dt.

In turn, by virtue of (5), (37) and (3), the inequality is true

|uh
i |r ≤ α−1c1(h+ ε1(τi)),



92

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

MAKSIMOV

Note that
ε1(0) ≤ h2, exp{c9(i+ 1)δ2α−2} ≤ exp{c9ϑδα−2}.

Furthermore, if δ(h)α−2(h) → 0 at h → 0, then the inequalities are satisfied at h ∈ (0, h1), h1 ∈ (0, 1)

exp{c9ϑδα−2} ≤ 1 + c10δα
−2, δα−2 ≤ c11,

where c10 = c10(h1) > 0, c11 = c11(h1) > 0.
Thus, in view of (54) at h ∈ (0, h1), i = 0,m− 1, the inequality is true

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤ α(1 + c12δα
−2)

∫ τi+1

0

|u∗(s)|2rds+ c13(h
2δ−1 + δ),

from which inequalities (38) and (39) follow. The lemma is proved.
By means of lemma 6, it can be proved that
Theorem 2. Let the conditions of lemma 6 be satisfied. Suppose also h2(α(h)δ(h))−1 → 0 at h → 0. Then, there

is convergence of uh(·) → u∗(·) at h → 0.
As in the case of a linear system, we can write out an estimate of the convergence rate of the algorithm.
Lemma 7. Let the conditions of Theorem 2 be satisfied. Let also the function y → f(t, y) be a Lipschitz function,

r ≤ N , rank B = r. Then at h ∈ (0, h1), the following estimate of the convergence rate of the algorithm takes place:
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤ d14(α
1/2 + δ1/2 + hδ−1/2 + hα−1/2 + δα−2 + h2(αδ)−1). (55)

Proof. The proof of the lemma is similar to the proof of Lemma 4. Indeed, let L be the Lipschitz constant of
the function f . It is easy to see that at a.e. t ∈ δi, the following relation is true

ε̇1(t) ≤ −2ωε1(t) + I4i(t) + I3i(t) ≤ I4i(t) + I3i(t), (56)

where
I4i(t) = 2(yh(τi)− y(τi), B(uh

i − u∗(t))).

Note that the inequality is true at t ∈ δi
∣∣∣∣
∫ t

τi

I4i(s)ds

∣∣∣∣
N

≤ ε1(τi) + 2∥B∥2Ĩ2i,

therefore (see (49)) for all t ∈ δi, the estimate is true:
∣∣∣∣
∫ t

τi

(I4i(s) + I3i(s))ds

∣∣∣∣
N

≤ ε1(τi) + Ĩ3i + (1 + 2∥B∥2)Ĩ2i. (57)

Under the conditions of Theorem 2, we can consider that at h ∈ (0, h1), the following relations take place:

max
i=0,mh

ε1(τi) ≤ k1, δα−2 ≤ k2. (58)

Using (39), we obtain ∫ ϑ

0

|uh(s)|2Nds ≤ k3(1 + δα−2 + h2δ−1α−1). (59)

In turn, by virtue of (46), (50), (58), (59) and lemma 6, the inequalities are true at h ∈ (0, h1)

Ĩ2i ≤ k4δ + k5δ
2α−2(h2 + ε1(τi)) ≤ k6δ, (60)

Ĩ3i ≤ k7δ + k8δ

∫ τi

0

|uh(s)|2rds ≤ k9δ + k10(h
2α−1 + δ2α−2) ≤ k11(δ + h2α−1). (61)

In view of (58)
α−1 ≤ k12δ

−1/2 ≤ k13δ
−1.

therefore
δ

∫ τi+1

τi

|uh(s)|2rds ≤ 2δ2α−2c21(h
2 + ε1(τi)), (46)

hence,

δ

∫ τi+1

0

|uh(s)|2rds ≤ 2δ2α−2c21




i∑
j=0

ε1(τj) + ϑh2δ−1


 . (47)

Considering (47), we obtain

i∑
j=0

Ĩ2j ≤ δ

∫ τi+1

0

|u∗(s)|2rds+ 2ϑc21δh
2α−2 + 2c21δ

2α−2
i∑

j=0

ε1(τj). (48)

Then we have ∫ τi+1

τi

I3i(t)dt ≤ Ĩ3i + Ĩ2i, (49)

where
Ĩ3i = ∥B∥2δ

∫ τi+1

τi

(|ẏh(s)|2N + |ẏ(s)|2N )ds.

By virtue of lemma 5, for all i = 1,m, the following relation is correct
∫ τi

0

(|ẏh(s)|2N + |ẏ(s)|2N )ds ≤ c2

(
1 +

∫ τi

0

(|uh(s)|2r + |u∗(s)|2r)ds
)
. (50)

Then,
i∑

j=0

Ĩ1j ≤ c3δ


1 +

i∑
j=0

Ĩ2j


 ,

i∑
j=0

Ĩ3j ≤ c4


δ +

i∑
j=0

Ĩ2j


 .

In this case, taking into account (49), we conclude that the inequality holds

i∑
j=0

∫ τj+1

τj

I3j(s)ds ≤ c5δ + c6

i∑
j=0

Ĩ2j . (51)

Then from (45), (47), (48), and (51), we obtain

i∑
j=0

(
Ĩ1j +

∫ τj+1

τj

(I2j(t) + I3j(t))dt

)
≤ c7h

2δ−1 + c8δ + c9


δ2α−2

i∑
j=0

ε1(τj) + δh2α−2


 . (52)

In turn, from (43), taking advantage of (44) and (52), we derive the estimation

ε1(τi+1) + α

∫ τi+1

0

(|uh(s)|2r − |u∗(s)|2r)ds ≤

≤ ε1(0) + c7h
2δ−1 + c8δ + c9δh

2α−2 + c9δ
2α−2

i∑
j=0

ε1(τj). (53)

By virtue of the discrete Gronwall inequality (see lemma 1) from (53), we have

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤

≤
(
ε0(0) + c7h

2δ−1 + c8δ + c9δh
2α−2 + α

∫ τi+1

0

|u∗(s)|2rds
)
exp{c9(i+ 1)δ2α−2}. (54)
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Note that
ε1(0) ≤ h2, exp{c9(i+ 1)δ2α−2} ≤ exp{c9ϑδα−2}.

Furthermore, if δ(h)α−2(h) → 0 at h → 0, then the inequalities are satisfied at h ∈ (0, h1), h1 ∈ (0, 1)

exp{c9ϑδα−2} ≤ 1 + c10δα
−2, δα−2 ≤ c11,

where c10 = c10(h1) > 0, c11 = c11(h1) > 0.
Thus, in view of (54) at h ∈ (0, h1), i = 0,m− 1, the inequality is true

ε1(τi+1) + α

∫ τi+1

0

|uh(s)|2rds ≤ α(1 + c12δα
−2)

∫ τi+1

0

|u∗(s)|2rds+ c13(h
2δ−1 + δ),

from which inequalities (38) and (39) follow. The lemma is proved.
By means of lemma 6, it can be proved that
Theorem 2. Let the conditions of lemma 6 be satisfied. Suppose also h2(α(h)δ(h))−1 → 0 at h → 0. Then, there

is convergence of uh(·) → u∗(·) at h → 0.
As in the case of a linear system, we can write out an estimate of the convergence rate of the algorithm.
Lemma 7. Let the conditions of Theorem 2 be satisfied. Let also the function y → f(t, y) be a Lipschitz function,

r ≤ N , rank B = r. Then at h ∈ (0, h1), the following estimate of the convergence rate of the algorithm takes place:
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤ d14(α
1/2 + δ1/2 + hδ−1/2 + hα−1/2 + δα−2 + h2(αδ)−1). (55)

Proof. The proof of the lemma is similar to the proof of Lemma 4. Indeed, let L be the Lipschitz constant of
the function f . It is easy to see that at a.e. t ∈ δi, the following relation is true

ε̇1(t) ≤ −2ωε1(t) + I4i(t) + I3i(t) ≤ I4i(t) + I3i(t), (56)

where
I4i(t) = 2(yh(τi)− y(τi), B(uh

i − u∗(t))).

Note that the inequality is true at t ∈ δi
∣∣∣∣
∫ t

τi

I4i(s)ds

∣∣∣∣
N

≤ ε1(τi) + 2∥B∥2Ĩ2i,

therefore (see (49)) for all t ∈ δi, the estimate is true:
∣∣∣∣
∫ t

τi

(I4i(s) + I3i(s))ds

∣∣∣∣
N

≤ ε1(τi) + Ĩ3i + (1 + 2∥B∥2)Ĩ2i. (57)

Under the conditions of Theorem 2, we can consider that at h ∈ (0, h1), the following relations take place:

max
i=0,mh

ε1(τi) ≤ k1, δα−2 ≤ k2. (58)

Using (39), we obtain ∫ ϑ

0

|uh(s)|2Nds ≤ k3(1 + δα−2 + h2δ−1α−1). (59)

In turn, by virtue of (46), (50), (58), (59) and lemma 6, the inequalities are true at h ∈ (0, h1)

Ĩ2i ≤ k4δ + k5δ
2α−2(h2 + ε1(τi)) ≤ k6δ, (60)

Ĩ3i ≤ k7δ + k8δ

∫ τi

0

|uh(s)|2rds ≤ k9δ + k10(h
2α−1 + δ2α−2) ≤ k11(δ + h2α−1). (61)

In view of (58)
α−1 ≤ k12δ

−1/2 ≤ k13δ
−1.
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In this case, taking into account (57), (60), (61), from (56) we obtain the relations valid at t ∈ δi

ε1(t) ≤ 2ε1(τi) + k11(δ + h2α−1) ≤ 2ε(τi) + k14(δ + h2δ−1). (62)

Hence, by virtue of (38) and (62) at t ∈ δi there is a chain of inequalities
∣∣∣∣
∫ t

0

(uh(s)− u∗(s))ds

∣∣∣∣
r

≤ k15

∣∣∣∣
∫ t

0

(ẏh(s)− ẏ(s)− f(s, yh(s)) + f(s, y(s)))ds

∣∣∣∣
N

≤

≤ k15

(
ε
1/2
1 (t) + ε

1/2
1 (0) + L

∫ t

0

ε
1/2
1 (s)ds

)
≤ k16(α+ δ + h2δ−1 + h2α−1)1/2.

In addition, similarly to (33), (34), the estimates are established
∫ ϑ

0

|uh(s)− u∗(s)|2rds ≤

≤ 2

∫ ϑ

0

(u∗(s)− uh(s), u∗(s))ds+ d12δα
−2

∫ ϑ

0

|u∗(s)|2rds+ d13(h
2(αδ)−1 + δα−1), (63)

sup
t∈T

∣∣∣∣
∫ t

0

(uh(s)− u∗(s), u∗(s))ds

∣∣∣∣ ≤ k18(α+ δ + h2δ−1 + h2α−1)1/2. (64)

Lemma 3 is used to derive inequality (64). Inequality (55) follows from inequalities (63) and (64). The lemma
is proved.
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