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Abstract. The work is devoted to the study of questions of existence and uniqueness of a continuous bounded
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1. INTRODUCTION. PROBLEM STATEMENT

Consider a system of nonlinear multivariate integral equations

fi(x1, . . . , xn) =

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn))dt1 . . . dtn, i = 1, N, (1)

with respect to the vector-function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))
T with non-negative

continuous and bounded on the set Rn coordinates f (x1, . . . , xn), i = 1, N, where (x1, . . . , xn) ∈ Rn,
R = (−∞,+∞), T is the transpose sign. In system (1) the matrix kernel

K(x, t) := (Kij(x1, . . . , xn, t1, . . . , tn))i,j=1,N

satisfies the following conditions:
1) Kij(x1, . . . , xn, t1, . . . , tn) > 0, (x1, . . . , xn, t1, . . . , tn) ∈ R2n,Kij ∈ C(R2n), i, j = 1, N ;
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2) there exist aij := sup(x1,...,xn)∈Rn

∫
Rn Kij(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn < +∞, i, j = 1, N , with

r(A) = 1, A = (aij)i,j=1,N , where r(A) is the spectral radius of the matrix A, i.e., the modulus of the
largest modulo eigenvalue.

According to Perron’s theorem (see [1, p. 260]), there exists a vector η = (η1, . . . , ηN )T with positive coordi-
nates ηi such that

N∑
j=1

aijηj = ηi, i = 1, N. (2)

Let us fix the vector η and impose the following conditions on the nonlinearities of {Gj(u)}j=1,N (Fig. 1):

a) Gj ∈ C(R+),R+ = [0,+∞), Gj(u) are monotonically increasing on the set R+, j = 1, N ;

b) Gj(0) = 0, Gj(ηj) = ηj , j = 1, N ;

c) Gj(u), j = 1, N , are strictly concave (convex upwards) on R+ and there exists a continuous mapping φ :
[0, 1] → [0, 1] with properties

φ(0) = 0, φ(1) = 1, φmonotonically increases on the interval [0, 1], (3)

φ strictly concave on the segment [0, 1], (4)

such that the following inequalities hold:

Gj(σu) ≥ φ(σ)Gj(u), u ∈ [0, ηj ], σ ∈ [0, 1], j = 1, N ;

d) there exists a number r > 0 such that the functional equations Gi(u) = u/εi(r), i = 1, N , have positive
solutions di, where

εi(r) := min
j=1,N

{
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn

}
∈ (0, 1), i = 1, N,

Br := {x := (x1, . . . , xn) : |x| =
√
x2
1 + · · ·+ x2

n ≤ r}.

Fig. 1. Graph of the function y = Gi(u)

The main purpose of this paper is to investigate the existence and uniqueness of a continuous bounded and
positive solution of system (1), as well as the uniform convergence to the solution of the corresponding iterative
process with the rate of decreasing geometric progression.
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concavity of the graph of Gj∗(u), it follows that the function
Gj∗ (u)

u is monotonically decreasing at (0,+∞). So
Gj∗ (γj∗ )

γj∗
<

Gj∗ (ηj∗ )

ηj∗
= 1. The latter inequality contradicts the inequality γj∗ ≤ Gj∗(γj∗) obtained above. Thus,

γj∗ ≤ ηj∗ . By virtue of this evaluation, relation (6) and conditions a), b), we arrive from (5) at the inequality
γi ≤ ηi, i = 1, N . The lemma is proved.

The following is also useful
Lemma 2. Let conditions a), b), d), 1), and 2) be satisfied and f(x1, . . . , xn) be an arbitrary generically non-

negative and continuous on Rn solution of system (1). Then if there exists an index j0 ∈ {1, 2, . . . , N} such that
δj0 := inf(x1,...,xn)∈Rn\Br

fj0(x1, . . . , xn) > 0, then inf(x1,...,xn)∈Rn fi(x1, . . . , xn) > 0, i = 1, N , where the num-
ber r is defined under condition d).

Proof. First of all, note that it follows from conditions a), b), d), 1) and, 2) that

fi(x1, . . . , xn) ≥
N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn))dt1 . . . dtn ≥

≥
∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)Gj0(fj0(t1, . . . , tn))dt1 . . . dtn ≥

≥ Gj0(δj0)

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn. (7)

Next, let us consider the functions

C̃ij0(x1, . . . , xn) :=

∫

Rn\Br

Kij0(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn, i = 1, N,

and the following possible cases: A) (x1, . . . , xn) ∈ Rn\Br, B) (x1, . . . , xn) ∈ Br.
In case A), considering the definition of numbers εi(r) in condition d) and inequality (7), we obtain

fi(x1, . . . , xn) ≥ Gj0(δj0)εi(r), (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (8)

Let us now consider the case B). It immediately follows from conditions 1), 2), that C̃ij0 ∈ C(Rn),
C̃ij0(x1, . . . , xn) > 0, (x1, . . . , xn) ∈ Rn, i = 1, N . Given the compactness of the ball Br, according to the
Weierstrass theorem, we can assert that for each i ∈ {1, 2, . . . , N} there exists a point xi = (xi

1, . . . , x
i
n) ∈ Br such

that
min

(x1,...,xn)∈Br

{C̃ij0(x1, . . . , xn)} = C̃ij0(x
i
1, . . . , x

i
n) > 0. (9)

From (7)–(9) we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) ≥ min{εi(r), C̃ij0(x
i
1, . . . , x

i
n)}Gj0(δj0), (x1, . . . , xn) ∈ Rn, i = 1, N.

The lemma is proved.
Now consider the functions Cij(x1, . . . , xn), i, j = 1, N and suppose that
e) there exist a point (x1, . . . , xn) ∈ Rn and indices i1, j1 ∈ {1, 2, . . . , N} such that

Ci1,j1(x1, . . . , xn) < ai1j1 .

Lemma 3. Let the conditions of Lemma 1 and e) be satisfied. Then, any continuous bounded and coordinate
non-negative solution f(x1, . . . , xn) of system (1) satisfies the inequalities fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn,
i = 1, N .

Proof. According to lemma1, the solution is fi(x1, . . . , xn) ≤ ηi, i = 1, N . Let us verify that fi(x1, . . . , xn) ̸≡ ηi,
i = 1, N . Indeed, otherwise, from (1) with condition b) we obtain

N∑
j=1

Cij(x1, . . . , xn)ηj ≡ ηi, i = 1, N.

The scalar analog of the system of nonlinear integral equations (1), besides purely theoretical interest, has a
number of important applications to the study of various applied problems from physics and biology. In particular,
under specific representations of the matrix kernel K and nonlinearities {Gj(u)}j=1,N , the scalar system (1) is
encountered in problems from the dynamical theory of p-adic open, closed, and open-closed strings (see [2–5])
and in the mathematical theory of spatial and temporal pandemic propagation in the framework of the modified
Atkinson–Roiter and Dickman–Kaper models (see [6, p. 318] and [7, p. 121], respectively).

Mathematical investigations of the system of the form (1) were mainly carried out in the one-dimensional case
at n = 1. Thus, for example, in the case when n = 1 and the kernelK depends on the difference of its arguments,
the system (1) is studied in [8–10]. The corresponding scalar analog of system (1) (N = 1) in themultidimensional
case is studied in [5, 11–13], when the kernelK either depends on the difference of its arguments or is majorized
by such a kernel. It should also be noted that the corresponding scalar one-dimensional equations under different
restrictions on the kernel and on the nonlinearity have been studied (by different methods) in [2, 3, 14–17].

In this paper, under conditions 1), 2) and a)–d), we will first prove the constructive theorem of existence of
a positive continuous and bounded solution of system (1). In the course of the proof of this theorem, we obtain
a uniform estimate of the difference between the constructed solution and the corresponding successive approxi-
mations, with the right-hand side of the obtained inequality tending to zero as an infinitely decreasing geometric
progression when the number of m-th approximation tends to infinity. Further, using some estimates for strictly
concave and monotone functions, we prove the uniqueness of the solution of the system (1) in a sufficiently wide
subclass of continuous bounded and coordinately nonnegative vector-functions. In the case when

Cij(x1, . . . , xn) :=

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn = aij

for all (x1, . . . , xn) ∈ Rn and i, j = 1, N , we show that in the above mentioned subclass of vector-functions, the
only solution of the system (1) is only the vector η = (η1, . . . , ηN )T . In this paper, we give specific examples of
the matrix kernelK and nonlinearities {Gj(u)}j=1,N , satisfying all conditions of the proved statements. Some of
these examples have applications in the above-mentioned areas of physics and biology.

2. KEY NOTATIONS AND SUPPORTING RESULTS

The following lemma plays an important role in our further reasoning.
Lemma1. Let conditions a), b), 1), 2) be satisfied, and the graphs of the functions {Gj(u)}j=1,N are strictly concave

at R+. Then the inequality is true for any ordinally non-negative and bounded on Rn solution f∗(x1, . . . , xn) =
(f∗

1 (x1, . . . , xn), . . . , f
∗
N (x1, . . . , xn))

T of the system (1):

f∗
i (x1, . . . , xn) ≤ ηi, (x1, . . . , xn) ∈ Rn, i = 1, N,

where η = (η1, . . . , ηN )T is the fixed vector of the matrix A (see (2)).
Proof. Let us denote γi := sup(x1,...,xn)∈Rn f∗

i (x1, . . . , xn), i = 1, N . Then from system (1) by virtue of
conditions 1), 2), a) and relation (2) we will have

f∗
i (x1, . . . , xn) ≤

N∑
j=1

aijGj(γj) ≤ max
j=1,N

{
Gj(γj)

ηj

} N∑
j=1

aijηj = ηi max
j=1,N

{
Gj(γj)

ηj

}
,

(x1, . . . , xn) ∈ Rn, i = 1, N.

It follows that
γi ≤ ηi max

j=1,N

{
Gj(γj)

ηj

}
, i = 1, N. (5)

Obviously, there exists an index j∗ ∈ {1, 2, . . . , N} such that

max
j=1,N

{
Gj(γj)

ηj

}
=

Gj∗(γj∗)

ηj∗
. (6)

Replacing in inequality (5) the index i by the index j∗, we obtain γj∗ ≤ Gj∗(γj∗). Let us see that the last inequality
implies the evaluation of γj∗ ≤ ηj∗ . Assume the opposite: γj∗ > ηj∗ . By virtue of conditions a), b) and the strict
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i
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that
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(x1,...,xn)∈Br

{C̃ij0(x1, . . . , xn)} = C̃ij0(x
i
1, . . . , x

i
n) > 0. (9)
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Suppose that conditions a)–d), 1), and 2) are satisfied. By induction onm, it is not difficult to check the validity
of the following statements:

f
(m)
i (x1, . . . , xn)monotonically decreasing onm, m = 0, 1, 2, . . . , i = 1, N, (13)

f
(m)
i ∈ C(Rn), i = 1, N, (14)

f
(m)
i (x1, . . . , xn) > 0, m = 0, 1, 2, . . . , i = 1, N. (15)

Let us prove that for all (x1, . . . , xn) ∈ Rn\Br the following lower bound estimates hold:

f
(m)
i (x1, . . . , xn) ≥ di, m = 0, 1, 2, . . . , i = 1, N, (16)

where the numbers di are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions Gi(u)/u are monotonically decreasing at

(0,+∞), i = 1, N , then from the estimation of

1 =
Gi(ηi)

ηi
<

1

εi(r)
=

Gi(di)

di

we get that di < ηi = f
(0)
i (x1, . . . , xn), i = 1, N .

Suppose now that for (x1, . . . , xn) ∈ Rn\Br, inequality (16) holds for some naturalm. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

f
(m+1)
i (x1, . . . , xn) ≥

N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn ≥

≥
N∑
j=1

Gj(dj)

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn ≥ Gi(di)εi(r) = di, i = 1, N.

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

f
(m)
i (x1, . . . , xn) < ηi, m = 1, 2, . . . , i = 1, N, (x1, . . . , xn) ∈ Rn. (17)

Taking into account (14), (15) and the compactness of the ball Br, we can say that for every i ∈ {1, 2, . . . , N}
andm ∈ {0, 1, 2, . . . }, there exists a point (x(m,i)

1 , . . . , x
(m,i)
n ) ∈ Br such that

min
(x1,...,xn)∈Br

f
(m)
i (x1, . . . , xn) = f

(m)
i (x

(m,i)
1 , . . . , x(m,i)

n ) > 0, (x1, . . . , xn) ∈ Br. (18)

Thus, it follows from (16) and (18) for (x1, . . . , xn) ∈ Rn, that

f
(m)
i (x1, . . . , xn) ≥ min{f (m)

i (x
(m,i)
1 , . . . , x(m,i)

n ), di} > 0, m = 0, 1, 2, . . . , i = 1, N. (19)

Let us now consider the functions χi(x1, . . . , xn) =
f
(2)
i (x1,...,xn)

f
(1)
i (x1,...,xn)

, i = 1, N , on the set Rn. From (13), (14),
and (19) we have

χi ∈ C(Rn), i = 1, N,

αi

ηi
≤ χi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N, (20)

where by virtue of (17), (19),

0 < αi := min{f (2)
i (x

(2,i)
1 , . . . , x(2,i)

n ), di} < ηi, i = 1, N.

Let us denote by σ0 = mini=1,N (αiηi). Obviously, σ0 ∈ (0, 1).

Taking into account (2), we come to the equality

N∑
j=1

ηj(Cij(x1, . . . , xn)− aij) ≡ 0, i = 1, N. (10)

Since Cij(x1, . . . , xn) ≤ aij , ηj > 0, i, j = 1, N , we arrive at a contradiction in (10) by virtue of condition e).
Hence, there exists a point (x∗

1, . . . , x
∗
n) ∈ Rn and an index j∗ ∈ {1, 2, . . . , N} such that fj∗(x∗

1, . . . , x
∗
n) < ηj∗ .

Hence, by continuity of the function fj∗ it follows. That there exists a neighborhood Oδ(x
∗
1, . . . , x

∗
n) of the point

(x∗
1, . . . , x

∗
n) such that

fj∗(x1, . . . , xn) < ηj∗ , (x1, . . . , xn) ∈ Oδ(x
∗
1, . . . , x

∗
n). (11)

By virtue of (11), relation (2) and inequality Cij(x1, . . . , xn) ≤ aij from (1), taking into account conditions a), b)
we will have

fi(x1, . . . , xn) =
∑
j ̸=j∗

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(fj(t1, . . . , tn)) dt1 . . . dtn +

+

∫

Rn

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn ≤

≤
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj +

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn+

+

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn ≤

≤
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + ηj∗

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn +

+

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)Gj∗(fj∗(t1, . . . , tn)) dt1 . . . dtn <

<
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + ηj∗

∫

Rn\Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn) dt1 . . . dtn +

+ηj∗

∫

Oδ(x∗
1 ,...,x

∗
n)

Kij∗(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn =

=
∑
j ̸=j∗

Cij(x1, . . . , xn)ηj + Cij∗(x1, . . . , xn)ηj∗ ≤
N∑
j=1

aijηj = ηi, i, j = 1, N.

The lemma is proved.

3. THEOREMOF EXISTENCE OF BOUNDED SOLUTION

Let us now consider the following successive approximations for system (1):

f
(m+1)
i (x1, . . . , xn) =

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn,

f
(0)
i (x1, . . . , xn) ≡ ηi, (x1, . . . , xn) ∈ Rn, i = 1, N,m = 0, 1, 2, . . . (12)
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Suppose that conditions a)–d), 1), and 2) are satisfied. By induction onm, it is not difficult to check the validity
of the following statements:

f
(m)
i (x1, . . . , xn)monotonically decreasing onm, m = 0, 1, 2, . . . , i = 1, N, (13)

f
(m)
i ∈ C(Rn), i = 1, N, (14)

f
(m)
i (x1, . . . , xn) > 0, m = 0, 1, 2, . . . , i = 1, N. (15)

Let us prove that for all (x1, . . . , xn) ∈ Rn\Br the following lower bound estimates hold:

f
(m)
i (x1, . . . , xn) ≥ di, m = 0, 1, 2, . . . , i = 1, N, (16)

where the numbers di are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions Gi(u)/u are monotonically decreasing at

(0,+∞), i = 1, N , then from the estimation of

1 =
Gi(ηi)

ηi
<

1

εi(r)
=

Gi(di)

di

we get that di < ηi = f
(0)
i (x1, . . . , xn), i = 1, N .

Suppose now that for (x1, . . . , xn) ∈ Rn\Br, inequality (16) holds for some naturalm. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

f
(m+1)
i (x1, . . . , xn) ≥

N∑
j=1

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(m)
j (t1, . . . , tn))dt1 . . . dtn ≥

≥
N∑
j=1

Gj(dj)

∫

Rn\Br

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn ≥ Gi(di)εi(r) = di, i = 1, N.

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

f
(m)
i (x1, . . . , xn) < ηi, m = 1, 2, . . . , i = 1, N, (x1, . . . , xn) ∈ Rn. (17)

Taking into account (14), (15) and the compactness of the ball Br, we can say that for every i ∈ {1, 2, . . . , N}
andm ∈ {0, 1, 2, . . . }, there exists a point (x(m,i)

1 , . . . , x
(m,i)
n ) ∈ Br such that

min
(x1,...,xn)∈Br

f
(m)
i (x1, . . . , xn) = f

(m)
i (x

(m,i)
1 , . . . , x(m,i)

n ) > 0, (x1, . . . , xn) ∈ Br. (18)

Thus, it follows from (16) and (18) for (x1, . . . , xn) ∈ Rn, that

f
(m)
i (x1, . . . , xn) ≥ min{f (m)

i (x
(m,i)
1 , . . . , x(m,i)

n ), di} > 0, m = 0, 1, 2, . . . , i = 1, N. (19)

Let us now consider the functions χi(x1, . . . , xn) =
f
(2)
i (x1,...,xn)

f
(1)
i (x1,...,xn)

, i = 1, N , on the set Rn. From (13), (14),
and (19) we have

χi ∈ C(Rn), i = 1, N,

αi

ηi
≤ χi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N, (20)

where by virtue of (17), (19),

0 < αi := min{f (2)
i (x

(2,i)
1 , . . . , x(2,i)

n ), di} < ηi, i = 1, N.

Let us denote by σ0 = mini=1,N (αiηi). Obviously, σ0 ∈ (0, 1).
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Fig. 2. Graph of the function y = φ(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T satisfies the system (1) and the evaluation from
below

fi(x1, . . . , xn) ≥ di, (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (27)

Given the estimate (27) and lemma 2, we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) > 0, i = 1, N. (28)

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N. (29)

Now in evaluation (26), instead of m, we takem + 1,m + 2, . . . ,m + p. As a result, we obtain the following
inequalities:

0 ≤ f
(m+2)
i (x1, . . . , xn)− f

(m+3)
i (x1, . . . , xn) < ηi(1− σ0)k

m+1,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

0 ≤ f
(m+3)
i (x1, . . . , xn)− f

(m+4)
i (x1, . . . , xn) < ηi(1− σ0)k

m+2,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ≤ f
(m+p+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m+p,

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0 ≤ f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)(k

m + km+1 + · · ·+ km+p),

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N. (30)

From (30), in particular, it follows that

0 < f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (31)

Consequently, considering (20) and (12) and conditions 1), a), we will have

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(σ0f
(1)
j (t1, . . . , tn))dt1 . . . dtn ≤

≤ f
(3)
i (x1, . . . , xn) ≤

N∑
j=1

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)Gj(f
(1)
j (t1, . . . , tn))dt1 . . . dtn =

= f
(2)
i (x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N.

Hence, by virtue of condition c), we arrive at the inequalities

φ(σ0)f
(2)
i (x1, . . . , xn) ≤ f

(3)
i (x1, . . . , xn) ≤ f

(2)
i (x1, . . . , xn), i = 1, N. (21)

Now, using (21), (12), conditions 1), a), and c), let us write down

φ(φ(σ0))f
(3)
i (x1, . . . , xn) ≤ f

(4)
i (x1, . . . , xn) ≤ f

(3)
i (x1, . . . , xn), i = 1, N.

Continuing this reasoning, atm-step we obtain the following estimate:

Fm(σ0)f
(m+1)
i (x1, . . . , xn) ≤ f

(m+2)
i (x1, . . . , xn) ≤ f

(m+1)
i (x1, . . . , xn),

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, Fm(σ) := φ(φ . . . φ(σ))︸ ︷︷ ︸
m times

, σ ∈ [0, 1]. (22)

Then, using properties (3) and (4) of the function φ, we prove the validity of the inequality

Fm(σ0) ≥ kmσ0 + 1− km, m = 1, 2, . . . , (23)

where
k :=

1− φ(σ0

2 )

1− σ0

2

∈ (0, 1), σ0 = min
i=1,N

{
αi

ηi

}
∈ (0, 1). (24)

For this purpose, consider the line y = ku + 1 − k, passing through the points (1, 1) and (σ0

2 , φ(σ0

2 )), where
the number k is given according to formula (24). From properties (3) and (4), it immediately follows that (Fig. 2)

φ(σ0) ≥ kσ0 + 1− k. (25)

Since kσ0 +1− k ∈ (0, 1), then taking into account the properties of concavity of the graph and monotonicity
of the function φ from (25) we will have

F2(σ0) = φ(φ(σ0)) ≥ φ(kσ0 + 1− k) ≥ k(kσ0 + 1− k) + 1− k = k2σ0 + 1− k2.

Continuing this process, atm-th step we obtain inequality (23).
Thus, in view of (22), (23), (17) and (13) we arrive at the following uniform estimate for successive approxima-

tions of (12):
0 ≤ f

(m+1)
i (x1, . . . , xn)− f

(m+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N. (26)

From (26), we obtain uniform convergence of the sequence of continuous vector functions f (m)(x1, . . . , xn) =

(f
(m)
1 (x1, . . . , xn), . . . , f

(m)
N (x1, . . . , xn))

T ,m = 0, 1, 2, . . . , on the set Rn:

lim
m→∞

f
(m)
i (x1, . . . , xn) = fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N,

and fi ∈ C(Rn), i = 1, N .
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Fig. 2. Graph of the function y = φ(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T satisfies the system (1) and the evaluation from
below

fi(x1, . . . , xn) ≥ di, (x1, . . . , xn) ∈ Rn\Br, i = 1, N. (27)

Given the estimate (27) and lemma 2, we conclude that

inf
(x1,...,xn)∈Rn

fi(x1, . . . , xn) > 0, i = 1, N. (28)

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

fi(x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N. (29)

Now in evaluation (26), instead of m, we takem + 1,m + 2, . . . ,m + p. As a result, we obtain the following
inequalities:

0 ≤ f
(m+2)
i (x1, . . . , xn)− f

(m+3)
i (x1, . . . , xn) < ηi(1− σ0)k

m+1,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

0 ≤ f
(m+3)
i (x1, . . . , xn)− f

(m+4)
i (x1, . . . , xn) < ηi(1− σ0)k

m+2,

(x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ≤ f
(m+p+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)k

m+p,

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0 ≤ f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)(k

m + km+1 + · · ·+ km+p),

(x1, . . . , xn) ∈ Rn, p,m = 1, 2, . . . , i = 1, N. (30)

From (30), in particular, it follows that

0 < f
(m+1)
i (x1, . . . , xn)− f

(m+p+2)
i (x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (31)
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Consider the functions Bi(x1, . . . , xn) = f∗
i (x1, . . . , xn)/fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N .

. Since f, f∗ ∈ H, then by virtue of (28), (29), (35), (36), (38), we have that Bi ∈ C(Rn), i = 1, N , and

α∗
i

ηi
≤ Bi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N.

Let us denote σ∗ = mini∈1,N{α∗
i /ηi}. By virtue of (35) and (36), the number σ∗ ∈ (0, 1). Thus, we obtain the

inequality

σ∗fi(x1, . . . , xn) ≤ f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

0 ≤ fi(x1, . . . , xn)− f∗
i (x1, . . . , xn) ≤ ηi(1− σ∗)km∗ , (x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, (40)

where k∗ =
1−φ(σ∗

2 )
1−σ∗

2

∈ (0, 1).
In (40), by decreasing the numberm → ∞, we arrive at the equality fi(x1, . . . , xn) = f∗

i (x1, . . . , xn),
(x1, . . . , xn) ∈ Rn, i = 1, N . The theorem is proved.

Similarly, the following is proved
Theorem 3. Let the conditions a)–d), 1), 2) be satisfied and the following relations hold

Cij(x1, . . . , xn) = aij , (x1, . . . , xn) ∈ Rn, i, j = 1, N.

Then the system (1) in the classH possesses only a trivial solution η = (η1, . . . , ηN )T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernelK and nonlinearities
{Gj(u)}j=1,N .

Core K examples:

p1) Kij(x1, . . . , xn, t1, . . . , tn) = K̊ij(x1−t1, x2−t2, . . . , xn−tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn, 2i, j = 1, N ,
where K̊ij(τ1, τ2, . . . , τn) > 0, K̊ij ∈ C(Rn),

∫
Rn K̊ij(τ1, . . . , τn) dτ1 . . . dτn = aij < 1, i, j = 1, N ,

r(A) = 1, A = (aij)i,j=1,N , (τ1, . . . , τn) ∈ Rn.

p2) Kij(x1,...,xn,t1,...,tn) = λij(|x|)K̊ij(x1 − t1,x2 − t2,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,
|x| =

√
x2
1 + . . .+ x2

n, 0 < infv≥0 λij(v) ≤ λij(v) < 1, v ≥ 0, 1− λij ∈ L1(0,+∞), i, j = 1, N .

p3) Kij(x1,...,xn,t1,...,tn) = C∗
ij(x1,...,xn)K̊ij(x1 − t1,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,

inf(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) > 0, C∗

ij ∈ C(Rn), sup(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) = 1, i, j = 1, N .

Here are also examples of functions K̊ij, λij, C∗
ij, i, j = 1, N :

q1) K̊ij(τ1, . . . , τn) = π−n/2aije
−(τ2

1+...+τ2
n), r(A) = 1, A = (aij)i,j=1,N , τj ∈ R, i, j = 1, N ,

q2) K̊ij(τ1, . . . , τn) =
∫ b

a
e−(|τ1|+...+|τn|)s dQij(s), τj ∈ R, i, j = 1, N , where Qij(s) — are monotonically

increasing functions on [a, b), 0 < a < b ≤ +∞, with

2n
b∫

a

1

sn
dQij(s) = aij , i, j = 1, N ;

q3) λij(|x|) = 1− εije
−(x2

1+...+x2
n), 0 < εij < 1— are parameters, (x1, . . . , xn) ∈ Rn, i, j = 1, N ,

q4) C∗
ij(x1, . . . , xn) = 1− εije

−(|x1|+...|xn|), (x1, . . . , xn) ∈ Rn, i, j = 1, N .
Let us now turn to examples of nonlinearities {Gj(u)}j=1,N :

Fixing the indexm and decreasing p → ∞ in (31), we obtain

0 < f
(m+1)
i (x1, . . . , xn)− fi(x1, . . . , xn) < ηi(1− σ0)

km

1− k
. (32)

Note also that if the functions {Cij(x1, . . . , xn)}i,j=1,N satisfy the additional condition

aij − Cij(x1, . . . , xn) ∈ L1(Rn), i, j = 1, N, (33)

then, reasoning similarly to the proof of the main theorem (on the integral asymptotics of the solution) from [13],
we can assert that there exist positive constantsD1, D2, . . . , DN such that

0 ≤
∫

Rn

(ηi − f
(m)
i (x1, . . . , xn))dx1 . . . dxn ≤ Di, m = 0, 1, 2, . . . , i = 1, N.

Hence, according to the theorem of B. Levi, we conclude that ηi − fi ∈ L1(Rn), i = 1, N , and
∫

Rn

(ηi − fi(x1, . . . , xn))dx1 . . . dxn ≤ Di, i = 1, N.

Based on the above, the following is true
Theorem1. If conditions a)–e), 1), 2) are satisfied, the systemof nonlinearmultivariate integral equations (1) has an

ordinally positive continuous and bounded on Rn solution f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))
T ,

that is a uniform limit of successive approximations (12). Moreover, the estimates (27)–(29) and (32) hold. If in addition
condition (33) is satisfied, then ηi − fi ∈ L1(Rn), i = 1, N .

4. SINGULARITY OF THE SOLUTION OF THE SYSTEM (1)

Let us consider the following subclass of continuous nonnegative and bounded vector functions on Rn:

H :=
{
f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fN (x1, . . . , xn))

T : fi ∈ CM (Rn),

fi(x1, . . . , xn) ≥ 0, (x1, . . . , xn) ∈ Rn, i = 1, N,

there is such j0 ∈ {1, 2, . . . , N} that inf
(x1,...,xn)∈Rn\Br

fj0(x1, . . . , xn) > 0
}
, (34)

where the number r > 0 is defined in condition d), through CM (Rn), the space of continuous and bounded
functions on the set Rn is denoted. The following holds

Theorem 2. If conditions a)–e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has
no other solutions in the classH except for the solution f , constructed by means of successive approximations (13).

Proof. Suppose the converse: the system (1) besides the solution f ∈ H, constructed by means of successive
approximations (12), also possesses another solution f∗ ∈ H. Then, using lemmas 2 and 3, we conclude that

f∗
i (x1, . . . , xn) < ηi, (x1, . . . , xn) ∈ Rn, i = 1, N, (35)

α∗
i := inf

(x1,...,xn)∈Rn
f∗
i (x1, . . . , xn) > 0, i = 1, N. (36)

Applying the method of induction bym, it is easy to verify the validity of the following inequalities:

f∗
i (x1, . . . , xn) < f

(m)
i (x1, . . . , xn), (x1, . . . , xn) ∈ Rn,m = 0, 1, 2, . . . , i = 1, N. (37)

In (37) by decreasingm → ∞, we arrive at the inequality

f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (38)
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Consider the functions Bi(x1, . . . , xn) = f∗
i (x1, . . . , xn)/fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N .

. Since f, f∗ ∈ H, then by virtue of (28), (29), (35), (36), (38), we have that Bi ∈ C(Rn), i = 1, N , and

α∗
i

ηi
≤ Bi(x1, . . . , xn) ≤ 1, (x1, . . . , xn) ∈ Rn, i = 1, N.

Let us denote σ∗ = mini∈1,N{α∗
i /ηi}. By virtue of (35) and (36), the number σ∗ ∈ (0, 1). Thus, we obtain the

inequality

σ∗fi(x1, . . . , xn) ≤ f∗
i (x1, . . . , xn) ≤ fi(x1, . . . , xn), (x1, . . . , xn) ∈ Rn, i = 1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

0 ≤ fi(x1, . . . , xn)− f∗
i (x1, . . . , xn) ≤ ηi(1− σ∗)km∗ , (x1, . . . , xn) ∈ Rn,m = 1, 2, . . . , i = 1, N, (40)

where k∗ =
1−φ(σ∗

2 )
1−σ∗

2

∈ (0, 1).
In (40), by decreasing the numberm → ∞, we arrive at the equality fi(x1, . . . , xn) = f∗

i (x1, . . . , xn),
(x1, . . . , xn) ∈ Rn, i = 1, N . The theorem is proved.

Similarly, the following is proved
Theorem 3. Let the conditions a)–d), 1), 2) be satisfied and the following relations hold

Cij(x1, . . . , xn) = aij , (x1, . . . , xn) ∈ Rn, i, j = 1, N.

Then the system (1) in the classH possesses only a trivial solution η = (η1, . . . , ηN )T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernelK and nonlinearities
{Gj(u)}j=1,N .

Core K examples:

p1) Kij(x1, . . . , xn, t1, . . . , tn) = K̊ij(x1−t1, x2−t2, . . . , xn−tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn, 2i, j = 1, N ,
where K̊ij(τ1, τ2, . . . , τn) > 0, K̊ij ∈ C(Rn),

∫
Rn K̊ij(τ1, . . . , τn) dτ1 . . . dτn = aij < 1, i, j = 1, N ,

r(A) = 1, A = (aij)i,j=1,N , (τ1, . . . , τn) ∈ Rn.

p2) Kij(x1,...,xn,t1,...,tn) = λij(|x|)K̊ij(x1 − t1,x2 − t2,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,
|x| =

√
x2
1 + . . .+ x2

n, 0 < infv≥0 λij(v) ≤ λij(v) < 1, v ≥ 0, 1− λij ∈ L1(0,+∞), i, j = 1, N .

p3) Kij(x1,...,xn,t1,...,tn) = C∗
ij(x1,...,xn)K̊ij(x1 − t1,...,xn − tn), (x1, . . . , xn), (t1, . . . , tn) ∈ Rn,

inf(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) > 0, C∗

ij ∈ C(Rn), sup(x1,...,xn)∈Rn C∗
ij(x1, . . . , xn) = 1, i, j = 1, N .

Here are also examples of functions K̊ij, λij, C∗
ij, i, j = 1, N :

q1) K̊ij(τ1, . . . , τn) = π−n/2aije
−(τ2

1+...+τ2
n), r(A) = 1, A = (aij)i,j=1,N , τj ∈ R, i, j = 1, N ,

q2) K̊ij(τ1, . . . , τn) =
∫ b

a
e−(|τ1|+...+|τn|)s dQij(s), τj ∈ R, i, j = 1, N , where Qij(s) — are monotonically

increasing functions on [a, b), 0 < a < b ≤ +∞, with

2n
b∫

a

1

sn
dQij(s) = aij , i, j = 1, N ;

q3) λij(|x|) = 1− εije
−(x2

1+...+x2
n), 0 < εij < 1— are parameters, (x1, . . . , xn) ∈ Rn, i, j = 1, N ,

q4) C∗
ij(x1, . . . , xn) = 1− εije

−(|x1|+...|xn|), (x1, . . . , xn) ∈ Rn, i, j = 1, N .
Let us now turn to examples of nonlinearities {Gj(u)}j=1,N :
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Thus, we have
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥

≥ inf
(x1,...,xn)∈Rn

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥ aij −max{aij/2, δij} > 0, i, j = 1, N,

whence it follows that
εi(r) ≥ min

j=1,N
{C0

ij(aij −max{aij
2
, δij})} > 0,

where C0
ij := inf(x1,...,xn)∈Rn C∗

ij(x1, . . . , xn).
On the other hand, it is obvious that εi(r) ≤ aij < 1, i, j = 1, N .
We now verify that, for Example p3), the equations Gi(u) = u/εi(r) have positive solutions di. Indeed, since

Gi ∈ C(R+), Gi(ηi) = ηi, limu→+0 Gi(u)/u = +∞, limu→+∞ Gi(u)/u = 0, i = 1, N , and εi(r) ∈ (0, 1); and
Gi(u)/u decreases monotonically at (0,+∞), then for every i ∈ {1, 2, . . . , N}, there exists a single di > 0 such
thatGi(di)/di = 1/εi(r).

The verification of conditions 2) and d) for the rest of the examples is done in the same way.
Now let us give a specific example of a nonlinear multidimensional integral equation having an application in

the theory of p-adic string (see [5]):

φp(x1, . . . , xn) = π−n/2

∫

Rn

e−((x1−t1)
2+···+(xn−tn)

2)φ(t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn,

where p > 2 is an odd number. Using the notation f(x1, . . . , xn) = φp(x1, . . . , xn), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(x1, . . . , xn).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(x) = a

∫ ∞

−∞
K(x− t)(1− e−f(t))dt, x ∈ R,

where a > 1 is a numerical parameter, the kernel K(x) > 0, x ∈ R,
∫∞
−∞ K(x)dx = 1 (see [6, p. 318] in the

formulation of Theorem 1 (f(x) = −χ(x))).
The authors would like to thank the reviewers for helpful comments.
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r1) Gj(u) = uβjη
1−βj

j , u ∈ [0,+∞), βj ∈ (0, 1), j = 1, N ;

r2) Gj(u) = ηj(u
βj + uδj )/(η

βj

j + η
δj
j ), u ∈ [0,+∞), βj , δj ∈ (0, 1), j = 1, N ;

r3) Gj(u) = lj(1− e−uβj
), u ∈ [0,+∞), βj ∈ (0, 1), lj = ηj/(1− exp{−η

βj

j }), j = 1, N .

Let us elaborate on examples p3), q1), r3) and verify that conditions 2) and d) are satisfied. First of all, note
that in this case

sup
(x1,...,xn)∈Rn

∫

Rn

Kij(x1, . . . , xn, t1, . . . , tn)dt1 . . . dtn =

= sup
(x1,...,xn)∈Rn

(
C∗

ij(x1, . . . , xn)

∫

Rn

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn

)
=

= sup
(x1,...,xn)∈Rn

(
C∗

ij(x1, . . . , xn)

∫

Rn

K̊ij(τ1, . . . , τn)dτ1 . . . dτn

)
=

= aij sup
(x1,...,xn)∈Rn

C∗
ij(x1, . . . , xn) = aij , i, j = 1, N.

Since r(A) = 1 (see Example q1)), condition 2) is satisfied. For completeness, let us give an example of the
matrix A = (aij)i,j=1,N with unit spectral radius and with elements aij ∈ (0, 1), i, j = 1, N (in the case when
N = 2):

A =

(
7/9 1/3
1/3 1/2

)
.

Let’s check condition d). First evaluate the integral of the function K̊ij(x1 − t1, . . . , xn − tn) over the set
Rn\Br:

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

=

∫

Rn

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn −
∫

Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

= aij −
∫

Br

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn ≥ aij −
r∫

−r

∫

Rn−1

K̊ij(x1 − t1, . . . , xn − tn) dt1 . . . dtn =

= aij −
r∫

−r

Φij(xn − tn) dtn = aij −
xn+r∫

xn−r

Φij(τn) dτn,

where Φij(τ) :=
∫
Rn−1 K̊ij(t1, . . . , tn−1, τ)dt1 . . . dtn−1.

Consider the functions Fij(xn) :=
∫ xn+r

xn−r
Φij(τn)dτn, i, j = 1, N , xn ∈ R. Since Fij(xn) → 0 at |xn| → ∞,

for every fixed i, j ∈ {1, 2, . . . , N}, there exists a number r0 > 0 such that at |xn| > r0

Fij(xn) ≤
aij
2
.

But since Fij ∈ C(R) and K̊ij(t1, . . . , tn) > 0, (t1, . . . , tn) ∈ Rn, then for xn ∈ [−r0, r0]

Fij(xn) ≤ max
xn∈[−r0,r0]

{∫ xn+r

xn−r

Φij(τn)dτn

}
=: δij < aij .

Hence, Fij(xn) ≤ max{aij/2, δij} < aij, xn ∈ R, i, j = 1, N .
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Thus, we have
inf

(x1,...,xn)∈Rn\Br

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥

≥ inf
(x1,...,xn)∈Rn

∫

Rn\Br

K̊ij(x1 − t1, . . . , xn − tn)dt1 . . . dtn ≥ aij −max{aij/2, δij} > 0, i, j = 1, N,

whence it follows that
εi(r) ≥ min

j=1,N
{C0

ij(aij −max{aij
2
, δij})} > 0,

where C0
ij := inf(x1,...,xn)∈Rn C∗

ij(x1, . . . , xn).
On the other hand, it is obvious that εi(r) ≤ aij < 1, i, j = 1, N .
We now verify that, for Example p3), the equations Gi(u) = u/εi(r) have positive solutions di. Indeed, since

Gi ∈ C(R+), Gi(ηi) = ηi, limu→+0 Gi(u)/u = +∞, limu→+∞ Gi(u)/u = 0, i = 1, N , and εi(r) ∈ (0, 1); and
Gi(u)/u decreases monotonically at (0,+∞), then for every i ∈ {1, 2, . . . , N}, there exists a single di > 0 such
thatGi(di)/di = 1/εi(r).

The verification of conditions 2) and d) for the rest of the examples is done in the same way.
Now let us give a specific example of a nonlinear multidimensional integral equation having an application in

the theory of p-adic string (see [5]):

φp(x1, . . . , xn) = π−n/2

∫

Rn

e−((x1−t1)
2+···+(xn−tn)

2)φ(t1, . . . , tn)dt1 . . . dtn, (x1, . . . , xn) ∈ Rn,

where p > 2 is an odd number. Using the notation f(x1, . . . , xn) = φp(x1, . . . , xn), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(x1, . . . , xn).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(x) = a

∫ ∞

−∞
K(x− t)(1− e−f(t))dt, x ∈ R,

where a > 1 is a numerical parameter, the kernel K(x) > 0, x ∈ R,
∫∞
−∞ K(x)dx = 1 (see [6, p. 318] in the

formulation of Theorem 1 (f(x) = −χ(x))).
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Abstract. The problem of dynamic reconstruction of input actions in a system of ordinary differential equations
and the problem of tracking a trajectory of a system by some trajectory of another one influenced by an un-
known disturbance are under consideration. An input action is assumed to be an unbounded function, namely,
an element of the space of square integrable functions. Two solving algorithms, which are stable with respect
to informational noises and computational errors and oriented to program realization, are designed. Upper es-
timates of their convergence rates are established. The algorithms are based on constructions from feedback
control theory. They operate under conditions of (inaccurate) measuring the phase states of the given systems
at discrete times.
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1. INTRODUCTION. PROBLEM STATEMENT

We consider a system of ordinary differential equations

ẏ(t) = f(t, y(t)) +Bu(t), t ∈ T = [0, ϑ], (1)

with the initial condition
y(0) = y0. (2)

Here 0 < ϑ < +∞, y ∈ RN , u ∈ Rr is the input influence, f(t, y) is a Lipschitz (with Lipschitz constantL) vector
function over a set of variables, B – a stationary matrix of dimensionN × r, n, r ∈ N.

It is assumed that the system (1) is subjected to an unknown input influence u(·) ∈ L2(T ;Rr). At discrete,
sufficiently frequent, moments of time τi ∈ ∆ = {τi}i=0,m (τ0 = 0, τm = ϑ, τi+1 = τi + δ) the phase states
y(τi) = y(τi; y0, u(·)) of system (1) are measured. The states y(τi), i = 0,m− 1, are measured with error. The
measurement results are vectors ξhi ∈ RN , satisfying the inequalities

|y(τi)− ξhi |N ≤ h, (3)

where h ∈ (0, 1) is the level of measurement error, | · |N denotes the Euclidean norm in the space RN .
It is required to specify an algorithm for approximate restoration of the input impact based on the results of

inaccurate measurements y(τi). For this purpose, we consider the problem consisting in the construction of an
algorithm that, based on the current measurements of values y(τi) in “real time”, forms (according to the feedback
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