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Abstract. The work is devoted to the study of questions of existence and uniqueness of a continuous bounded
and positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue of
the indicated system of integral equations, with different representations of the corresponding matrix kernel
and nonlinearities, has important applied significance in a number of areas of physics and biology. This article
proposes a special iterative approach for constructing a positive continuous and bounded solution to the system
under study. It is possible to prove that the corresponding iterations uniformly converge to a continuous solution
ofthe specified system. Using some a priori estimates for strictly concave functions, we also prove the uniqueness
of the solution in a fairly wide subclass of continuous bounded and coordinately nonnegative vector functions.
In the case when the integral of the matrix kernel has a unit spectral radius, it is proved that in a certain subclass of
continuous bounded and coordinate-wise non-negative vector functions, this system has only a trivial solution,
that is an eigenvector of the kernel integral matrix.
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1. INTRODUCTION. PROBLEM STATEMENT

Consider a system of nonlinear multivariate integral equations

N
fi(.’ﬂl,...,l’n):Z/ Kij(l'l,...,iL’n,tl,...,tn)Gj(fj(tl,...,tn))dtl...dtn, iil,N, (1)

]71 R'ﬁ,
with respect to the vector-function f(x1,...,2,) = (fi(z1,...,2n)s-.., fn(x1,...,2,))T with non-negative
continuous and bounded on the set R™ coordinates f (z1,...,z,), ¢ = 1,N, where (z1,...,2,) € R”,

R = (—o0,+0), T is the transpose sign. In system (1) the matrix kernel

K({E,t) = (Kij(xl, e 7£Cn,t1, e ’t”))i,jzl,N

satisfies the following conditions:
1) Kij(fL'l, . ,$n,t1, . ,tn) > 0, (CUl, . ,l’n,tl, . ,tn) S ]Rzn, Kij S C(Rzn), Z,] = ].,N,
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2) there exist A5 = sup(mh___’mn)eRn fR" Kij(mla e ,.’En,tl, R ,tn) dtl A dtn < +o00, Z,] = 1, N, with
r(A) =1, A = (ai;); j_7> where r(A) is the spectral radius of the matrix A, i.e., the modulus of the
largest modulo eigenvalue.

According to Perron’s theorem (see [1, p. 260]), there exists a vector n = (11, ..., ny)" with positive coordi-
nates 7); such that

N
j=1

Let us fix the vector 1 and impose the following conditions on the nonlinearities of {G(u)} =T N (Fig. 1):

a) G; € C(R"),RT = [0, +00), G,(u) are monotonically increasing on the set R*,j = 1, N;

b) G;(0) =0,G;(n;) =n;.j =1, N;
¢) Gj(u),j = 1, N, are strictly concave (convex upwards) on R* and there exists a continuous mapping ¢ :
[0,1] — [0, 1] with properties

©(0) =0, p(1) = 1, pmonotonically increases on the interval [0, 1], 3)

 strictly concave on the segment [0, 1], 4)

such that the following inequalities hold:

Gj(O'u) > W(U)Gj(u% u € [O;Uj]vo— € [Oa 1]7] = m;

d) there exists a number » > 0 such that the functional equations G;(u) = u/e;(r),7 = 1, N, have positive
solutions d;, where

67;(7‘) = m& inf / Kij(l’h...,I",tl,...,tn)dtl...dtn G(O,].), Z':LN,
j=1,N | (z1,...,z5,) ER™\ B, R"\ B,

24

0 d; s

Fig. 1. Graph of the function y = G;(u)
The main purpose of this paper is to investigate the existence and uniqueness of a continuous bounded and

positive solution of system (1), as well as the uniform convergence to the solution of the corresponding iterative
process with the rate of decreasing geometric progression.
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The scalar analog of the system of nonlinear integral equations (1), besides purely theoretical interest, has a
number of important applications to the study of various applied problems from physics and biology. In particular,
under specific representations of the matrix kernel & and nonlinearities {G(u)},_17. the scalar system (1) is
encountered in problems from the dynamical theory of p-adic open, closed, and open-closed strings (see [2—5])
and in the mathematical theory of spatial and temporal pandemic propagation in the framework of the modified
Atkinson—Roiter and Dickman—Kaper models (see [6, p. 318] and [7, p. 121], respectively).

Mathematical investigations of the system of the form (1) were mainly carried out in the one-dimensional case
at n = 1. Thus, for example, in the case when n = 1 and the kernel K depends on the difference of its arguments,
the system (1) is studied in [8—10]. The corresponding scalar analog of system (1) (/N = 1) in the multidimensional
case is studied in [5, 11—13], when the kernel K either depends on the difference of its arguments or is majorized
by such a kernel. It should also be noted that the corresponding scalar one-dimensional equations under different
restrictions on the kernel and on the nonlinearity have been studied (by different methods) in [2, 3, 14—17].

In this paper, under conditions 1), 2) and a)—d), we will first prove the constructive theorem of existence of
a positive continuous and bounded solution of system (1). In the course of the proof of this theorem, we obtain
a uniform estimate of the difference between the constructed solution and the corresponding successive approxi-
mations, with the right-hand side of the obtained inequality tending to zero as an infinitely decreasing geometric
progression when the number of m-th approximation tends to infinity. Further, using some estimates for strictly
concave and monotone functions, we prove the uniqueness of the solution of the system (1) in a sufficiently wide
subclass of continuous bounded and coordinately nonnegative vector-functions. In the case when

Cij(l'l,...,,fbn) Z:/ Kij(l’l,...,l‘n,tl,...,tn)dtl .. dtn = aij

forall (xq,...,2,) € R"and4,j = 1, N, we show that in the above mentioned subclass of vector-functions, the
only solution of the system (1) is only the vector = (71,...,nx)7. In this paper, we give specific examples of
the matrix kernel K and nonlinearities {G;(u) },_i, satisfying all conditions of the proved statements. Some of
these examples have applications in the above-mentioned areas of physics and biology.

2. KEY NOTATIONS AND SUPPORTING RESULTS

The following lemma plays an important role in our further reasoning.
Lemma 1. Let conditions a), b), 1), 2) be satisfied, and the graphs of the functions {G ;(u) } 1. arestrictly concave

at RY. Then the inequality is true for any ordinally non-negative and bounded on R™ solution f*(x1,...,1,) =
(ff(m1, . smn), . flo(mr, .. 20)) T of the system (1):

fixe, oo zn) <miy, (x1,...,25) €R™, i=1,N,

where ) = (11, ...,nn)" is the fixed vector of the matrix A (see (2)).
Proof. Let us denote v; := sup(,, . jern fi(21,...,24),7 = 1,N. Then from system (1) by virtue of
conditions 1), 2), a) and relation (2) we will have

Gi(1) | © Gi()
fi* Liy-woy < al '7 < ax{ L ai;n; = 1; Mmax — ;
( Z P v A G z:: o =8 L 7y

(ll?l,...7 )GRH i=1,N.

It follows that o

i < 1 max {j(%)}, i=1,N. (3)
J=L,N 7;

Obviously, there exists an index j* € {1,2,..., N} such that
max {Gj(%)} _ Gir(e), (6)
j=LN j Ui

Replacing in inequality (5) the index ¢ by the index j*, we obtain y;« < G,«(7;~). Let ussee that the last inequality
implies the evaluation of v;« < 7;-. Assume the opposne Vi > 1 By v1rtue of conditions a), b) and the strict
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Gj* (u)

u

concavity of the graph of G- (u), it follows that the function

G’;(zj D G n("f) = 1. The latter inequality contradicts the inequality v;- < G« (7;,-) obtained above. Thus,
J

J
v+ < m;-. By virtue of this evaluation, relation (6) and conditions a), b), we arrive from (5) at the inequality
v; < m;,i =1, N. The lemma is proved.
The following is also useful

is monotonically decreasing at (0, +00). So

Lemma 2. Let conditions a), b), d), 1), and 2) be satisfied and f(x1,...,x,) be an arbitrary generically non-
negative and continuous on R™ solution of system (1). Then if there exists an index jo € {1,2,..., N} such that
05 i= inf(y, o yerm\B, fio(®1,. .., 2n) > 0, theninf,, . yern fi(21,...,2,) > 0,4 = 1, N, where the num-

ber r is defined under condition d).
Proof. First of all, note that it follows from conditions a), b), d), 1) and, 2) that

N
fl(xl,,xn)EZ/ \ Kij(xl,...,l'n,tl,...,tn)Gj(fj(tl,...,tn))dtl...dtn2
j=1 R\ B

Z / Kij()(l'la ey CBn,tl, ‘e ,tn)Gjo(ij(tl, AN ,tn))dtl ‘e dtn Z
R™\ B,

szo(éj )/R 5 Kijo(xl,...,l‘n,tl,...,tn)dtl...dtn, (J}l,...,.’L‘n) c R"™. 7

Next, let us consider the functions

Cijo(l‘l,...,.’l,‘n> Z:/ Kijo(.’l,‘l,...,$n,t1,...7tn)dt1...dt»,“ (3’)1,...,37n)E]R",Z':l,]\[7
R\ B,

and the following possible cases: A) (x1,...,2,) € R"\B,, B) (x1,...,2,) € B;.
In case A), considering the definition of numbers ¢;(r) in condition d) and inequality (7), we obtain

fi(z1, ... xn) > Gy (8,)ei(r),  (21,...,2,) € R™\B,,i =1,N. 6))

Let us now consider the case B). It immediately follows from conditions 1), 2), that éijo e C(R™),
Cijo(x1,...,2) > 0, (z1,...,2,) € R", ¢ = 1, N. Given the compactness of the ball B,, according to the
Weierstrass theorem, we can assert that foreach i € {1,2,..., N} there exists a point z° = (z%,...,2%) € B, such
that

i Cii R =C;; i,...,’;",b > 0.
(wl,..r.r,la:lil)eBr{ Jo(xl Z )} Jo(xl T ) )

From (7)—(9) we conclude that

( lnf) R fi(xla"'vxn) Zmln{gl(r)véljo(xlla7sz)}G]0(6jo)? (1:17~'-3I71,) GR”7Z:17N
T1,...,Tpn)ER™

The lemma is proved.
Now consider the functions C;;(x1, ..., z,),%,j = 1, N and suppose that
e) there exist a point (z1,...,x,) € R" and indices i1, j; € {1,2,..., N} such that

Ciy i (T15 0 0) < @4y, -

Lemma 3. Let the conditions of Lemma 1 and ¢) be satisfied. Then, any continuous bounded and coordinate
non-negative solution f(x1,...,x,) of system (1) satisfies the inequalities f;(x1,...,2,) < 0, (21,...,2,) € R,
i=1,N.

Proof. Accordingtolemma 1, the solutionis f;(z1,...,x,) < n;,¢ = 1, N. Letusverifythat f;(x1,...,2,) Z 7,
i =1, N. Indeed, otherwise, from (1) with condition b) we obtain

N
> Cijlarommy =m, i=TN.

Jj=1
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Taking into account (2), we come to the equality

N
> ni(Cijlar,. .. ) —ay) =0, i=TN. (10)
j=1

Since Cjj(x1,...,x,) < ai;,nm; > 0,4,7 =1, N, we arrive at a contradiction in (10) by virtue of condition e).
Hence, there exists a point (z7,...,z}) € R and an index j* € {1,2,..., N} such that f;-(z7,...,2}) < n;-.

*

Hence, by continuity of the function f;- it follows. That there exists a neighborhood O;(z7, . .., z},) of the point
(z7,...,2}) such that
fi=(x1, ..o xn) <nj=,  (21,...,2,) € Os(a],...,x}). (11)

By virtue of (11), relation (2) and inequality C;;(x1, ..., z,) < a;; from (1), taking into account conditions a), b)
we will have

fi(.’L‘l,...,.’L‘n) = Z Ki]‘(l‘l,...,$n,t1,...,tn)Gj(fj(tl,... ,tn))dtl dtn +
]#J* R’!L

+/Kij*(l'1,...,.Tn,tl,...,tn)Gj*(fj*(tl,...,tn))dtl dtn S
Rﬂ

< ZCij(xh...,xn)nj—&— / Kij*(fl'}l,...7.’1?7“7517...,tn)Gj*(fj*(tl,...,tn))dtl...dtn+
373" R™\O5 (2} ,...v23)

+ / Kij*(.’th...,$n,t1,...,tn)Gj*(fj*(tl,...,tn))dtl...dtnS

Os(x7,...,27%,)

< ZC’ij(ccl,...,;vn)nj+nj* / Kij*(zl,...,ZCn,tl,...,tn)dtl...dtn+
I#I” R\Os (23 ,...,a%)

+ / Kij*(l'l,...,Jjn,tl,...,tn)Gj*(fj*(tl,...,tn))dtl...dtn<

Os (a7, o27,)

< ZC’ij(xl,...,xn)nj—&—nj* / Kij*(xl,...,il'n,tl,...,tn)dtl...dtn+
J#I* R™\Ogs (275 ,...,z%)

+77j* / Kij*(Il,...,In,tl,...7tn)dt1...dtn:

Os(x7,...,x%)

N
= Z Oij('rlv s 73%)773' + Cij*(xla s 7$n)7]j* S Zat_]n_] = i, Za.] = 1a N.
j=1

J#I*

The lemma is proved.

3. THEOREM OF EXISTENCE OF BOUNDED SOLUTION

Let us now consider the following successive approximations for system (1):

N
fi(erl)((El, e 71‘n) = Z/ Kij(xl, e ,l’n,tl, . 7tn)Gj(f](m)(t1, e ,tn))dtl . dtn,
j=1"%"

fﬁo)(xl,...,xn) =n, (r1,...,2,) €ER"i=1,Nm=0,1,2,... (12)

7
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Suppose that conditionsa)—d), 1), and 2) are satisfied. By induction on m, it is not difficult to check the validity
of the following statements:

F™ (x4, ..., 2,,) monotonically decreasing onm, m = 0,1,2,..., i =1, N, (13)
£ e cr), i= TN, (14
F @y, ) >0, m=0,1,2,...,i=1,N. (15)
Let us prove that for all (x1, ..., z,) € R™\B, the following lower bound estimates hold:
™ @ wn) > diy, m=0,1,2,...,i=1,N, (16)

where the numbers d; are defined under condition d).
Let us check inequality (16) at m = 0. Indeed, since the functions GG;(u)/u are monotonically decreasing at
(0, 4+00),i = 1, N, then from the estimation of

Gi(ni) L Gildy)
M = ei(r) d;

1=

we get that d; < n; = fi(o)(xl,...,xn),i =1,N.
Suppose now that for (z1,...,z,) € R™\B,, inequality (16) holds for some natural /. Then, using the con-
ditions a), b), d), 1), and 2), from (12) and (15) we will have

N
fi(7n+1) (1’1, e ,mn) Z Z/ Kij($17 ey In,tl, e ,tn)Gj(f](lm) (t17 e ,tn))dtl e dtn 2
Rn\BT

j=1

N
ZZG](CZ])/ Kij(l‘l,...,xn,tl,...,ﬁn)dtl...dtn ZGi(di)Ei(T)Zdi, izl,N.
=1 R"\ B,

If condition e) is satisfied, by analogy with the proof of Lemma 3, we can also verify that the inequalities hold

fi(m)(l'lv...,xn)<7]i7 m:1,27...,2‘:1,N,(m1,.,.,xn)ERn. (17)

Taking into account (14), (15) and the compactness of the ball B,., we can say that for every i € {1,2,..., N}
andm € {0,1,2,...}, there exists a point (™" ... z{") € B, such that

min fi e, ) = f (2, Y) >0, (2, .., 2,) € B (18)

(z1,...,Tn )EB,

Thus, it follows from (16) and (18) for (z1,...,z,) € R™, that

fi(m)(xl, R min{fi(m)(xgm’i), ™Y iy >0, m=0,1,2,...,i=1,N. (19)
@) _

Let us now consider the functions y;(x1,...,z,) = S (@) 5 TN on the set R™. From (13), (14),

fl( )(wlx--wxn)

and (19) we have

XiEC(Rn), i=1,N,

%Sxi(xlv"wxn)glv (Ila"'vxn)eRnai:]-aNa (20)
i

where by virtue of (17), (19),

0< ;= min{fi(z)(xgw), Lz dy <mi, i=1,N.

Let us denote by oy = min,_75(;7;). Obviously, oy € (0, 1).
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Consequently, considering (20) and (12) and conditions 1), a), we will have

N
Z/ Kij(l‘l,...,l‘n,tl,...,tn)Gj(O'of;l)(tl,...,tn))dtl dtn S
=1 R

N
<@y, ) < Z/ Kij(@1, - @n by )G () (b))t dty =
j=17R"

= fi(z)(xl,...,xn), (1,...,2n) ER"i=1,N.

Hence, by virtue of condition c), we arrive at the inequalities

o) [P @y, ) < FP, . wn) < fP (@0, a), i=1,N. Q1)
Now, using (21), (12), conditions 1), a), and c), let us write down
@(@(UO))fi(g)(xla v vxn) < fi(4)(x17 S vxn) < fi(g)(xlv ) 7xn)7 1= ]-7 N.
Continuing this reasoning, at m-step we obtain the following estimate:
Fm(oo)fi(m+1)(x1, ey Xp) < fi(m+2) (T1,...,2n) < fi(m+1)(x1, cey X)),
(X1,..yzn) ER"m=1,2,...,i=1,N,Fp(0) :=p(p...0(0)),0 €0,1]. (22)
———
m times
Then, using properties (3) and (4) of the function (, we prove the validity of the inequality
Fm(do) kaJo-f—].—km, m:1,2,..., (23)
where ) o
k:= L(U?) €(0,1), o0p= min {ai} € (0,1). (24)
-5 i=1L,N (T

For this purpose, consider the line y = ku + 1 — k, passing through the points (1, 1) and (%, ¢(%)), where
the number £ is given according to formula (24). From properties (3) and (4), it immediately follows that (Fig. 2)

w(og) > koo + 1 — k. (25)

Since kop 4+ 1 — k € (0, 1), then taking into account the properties of concavity of the graph and monotonicity
of the function ¢ from (25) we will have

Fy(og) = p(p(o0)) > koo +1—k) > k(koo+1—k)+1—k= Klog+1— k2.

Continuing this process, at m-th step we obtain inequality (23).
Thus, in view of (22), (23), (17) and (13) we arrive at the following uniform estimate for successive approxima-
tions of (12):
0 S fi(m-‘rl)(mla ce. 7xn) - fi(m+2)(a717 e 7:6%) < 77@(1 - Uo)kma

(1,...,2n) ER", m=1,2,...,i=1,N. (26)
From (26), we obtain uniform convergence of the sequence of continuous vector functions f (™) (T1,...,zn) =
( 1(7")(3:1,. )y s ](Vm)(xl, conxn))t,m=0,1,2,..., onthe set R™:

lim fi(m)(xl,...,wn):fi(xl,...7a:n)7 (z1,...,zn) ER"i=1,N,

m—o0

and f; € C(R"),i =1, N.
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YA
y=Fn(u)

©(00/2) t---

24

e O‘ 0'0/2 (o) 1

Fig. 2. Graph of the function y = ¢(u)

By virtue of (13), conditions 1), 2), a), (14), (16), (26), and B. Levi’s theorem (see [18, p. 303]), the limit vector
function f(x1,...,2,) = (fi(x1,...,Zn), ..., fn(21,...,2,))7 satisfies the system (1) and the evaluation from
below

fi(xl,...,xn) Zd“ (xl,...,a:n) GRn\BT,i:m. (27)

Given the estimate (27) and lemma 2, we conclude that

inf  fi(zy,...,2,) >0, i=1,N. (28)

(T1,..ymn ) ER™

Then, taking into account condition e), the statement of lemma 3, and the monotonicity property (13), we
arrive at the strict inequality

filze, ..o xn) <niy  (21,...,2,) ER™i=1,N. (29)

Now in evaluation (26), instead of m, we take m + 1, m + 2,..., m + p. As a result, we obtain the following
inequalities:

0< fi(T’L+p+1)(:c1, B fi(m+p+2) (1, 2n) < ni(1 — 0g) K™ TP,

(z1,...,2n) ER"pm=1,2,...,i =1, N.

Summarizing them with inequality (26), we arrive at a two-sided estimator

0< D @y, a) — L @y ) < ni(1— o0) (™ 4 R 4 R,

(z1,...,2n) ER"pm=1,2,...,i =1, N. (30)
From (30), in particular, it follows that

m

0< fi™ D (@r,oan) = [P @, ) < il = 00) 7 =

1)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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Fixing the index m and decreasing p — oo in (31), we obtain

m
0< f" D (@r, oo wn) = fil@r, o wa) < i1 = 00) 7 (32)
Note also that if the functions {C;; (21, ..., zn)}; ;77 satisfy the additional condition
aij—CZ-j(xl,...,xn) ELl(Rn), i,7=1,N, (33)

then, reasoning similarly to the proof of the main theorem (on the integral asymptotics of the solution) from [13],
we can assert that there exist positive constants Dy, Ds, ..., Dy such that

og/ (i — f™ (@, wn))day . dey, < D;; m=0,1,2,....i=1N.

Hence, according to the theorem of B. Levi, we conclude that n; — f; € L;(R™),i =1, N, and
/ (ni — fi(z1,...,xp))dxy ... dx,, < D;y, 1 =1,N.

Based on the above, the following is true

Theorem 1. Ifconditionsa)—e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has an
ordinally positive continuous and bounded on R™ solution f(x1,...,2,) = (fi(x1,...,20), .., n(@1, ..y 20)) T,
that is a uniform limit of successive approximations (12). Moreover, the estimates (27)—(29) and (32) hold. Ifin addition
condition (33) is satisfied, then n; — f; € L1(R™),i =1, N.

4. SINGULARITY OF THE SOLUTION OF THE SYSTEM (1)

Let us consider the following subclass of continuous nonnegative and bounded vector functions on R™:

H := {f(xlv"wxn) = (f1($17"'7xn)a"'7fN(xla~~';xn))T: fZ S CJVI(Rn)v

filzr, ... xn) >0, (21,...,2,) €R", i =1,N,

there is such jo € {1,2,..., N} that inf Fiol@t, .. ) > o}, (34)
(xlw--,afn)e]Rn\Br

where the number » > 0 is defined in condition d), through C;/(R™), the space of continuous and bounded
functions on the set R” is denoted. The following holds

Theorem 2. If conditions a)—e), 1), 2) are satisfied, the system of nonlinear multivariate integral equations (1) has
no other solutions in the class H except for the solution f, constructed by means of successive approximations (13).

Proof. Suppose the converse: the system (1) besides the solution f € H, constructed by means of successive
approximations (12), also possesses another solution f* € H. Then, using lemmas 2 and 3, we conclude that

fi*(xla"'axn)<nia (zla"'axn)ERnai:laNa (35)
of = inf fi(xy,...,xn) >0, i=1,N. (36)
(z1,...,xn ) ER™

Applying the method of induction by m, it is easy to verify the validity of the following inequalities:

fi(xy, ..o xn) < fi(m)(zl, o), (x1,...,zn) €ER",m=0,1,2,...,i=1,N. (37)
In (37) by decreasing m — oo, we arrive at the inequality

[z, ..o xn) < fi(zr, .o ),  (21,...,2,) €ER™i=1,N. (38)
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Consider the functions B;(x1,...,x,) = fi(x1,...,z0)/fi(z1,. . 20), (x1,...,2,) € R", ¢ = 1,N.
. Since f, f* € H, then by virtue of (28), (29), (35), (36), (38), we have that B, € C(R"),i =1, N, and

Y < Bilwreewa) €1, (21,0..,30) ER™i =T, .

i

Let us denote o* = minieL—N{a;‘/ni}. By virtue of (35) and (36), the number o* € (0, 1). Thus, we obtain the
inequality

o filxr, . .y xn) < iz, ) < fi(zr, .o xn),  (z1,...,m,) €R™ =1, N. (39)

Then, reasoning as in the proof of Theorem 1, we obtain the following estimates from (39):

ngz(xl,,xn)—fz*(xl,7xn)§171(1—0*)k*m, (m177xn)eanm:17277Z:17N7 (40)

_ 1ze(7)
where k, = ——== € (0,1).

In (40), by deczzreasing the number m — oo, we arrive at the equality f;(x1,...,2,) = fF (21, ..., 25),
(z1,...,2,) € R" i =1, N. The theorem is proved.

Similarly, the following is proved

Theorem 3. Let the conditions a)—d), 1), 2) be satisfied and the following relations hold

Cij(l‘l,...,l'n) = Qij, (,T1,...,.%‘n) S Rn,i,j = 1,N.

Then the system (1) in the class H possesses only a trivial solution n = (1, ..., nn)T.

5. EXAMPLES

To illustrate the theoretical results obtained, we give examples of the matrix kernel X and nonlinearities

{G (W)} 1w

Core K examples:

pl) Kij(fljl,o...,l’n,tl,...,tn) = IO{ZJ(,’El—tl,ZEQ t27.. Qin tn) ($1,...7$n)7(f1,...7tn) € R”,2z’,j = 1,
where Kij(Tl,TQ,... ) > 0 K” S CR” f]R" ij Tl, ..,Tn)d’rl...d’]’n = Qjj < ]., Z,] = 1,
r(A) =1, A= (aij); j—17 (T1,..., 7 )GR"

P2) Kij(21,eosntryestn) = Nij(|2)Kij(m1 — t1,00 — toyeosn — o)y (X1, %0), (t,..oitn) € R”,
|z = /a3 4+ ...+ 22,0 < infy>0 Aij(v) < Xij(v) <1,v>0,1—X\;; € L1(0,+00),i,j =1, N.

p3) Kij(xl,...,xn,tl,...,tn) = C;‘j(xl,...,xn)f(ij(ml — tl,...,xn — tn), (xl, e ,xn), (tlv e ,t )
inf(wl,“.,mn)ER" O:](zla s ,In) >0, C?k' € C(Rn)7 sup(xl,...,:l;n)E]R" C;j(zlv cee 737”) =1, Z7.7 = 17N

Here are also examples of functions KZJ, Aij, Oy 1,5 =1, N:

q1) Io(ij(Th . ,Tn) = Wﬁn/zaijei(Tij"'JrTi), T(A) = ]., A= (aij)i7j=1,N, Tj e R, Z7j = ]., N,

Q) Kij(11,...,7m) = fab e~ (ml+HmDs 40, (s), 7, € R, 4,j = 1, N, where Q;;(s) — are monotonically
increasing functions on [a,b), 0 < a < b < 400, wWith

271

S} \e-
z‘ =
Q.
L
<
—
=
I
=
NS
\’®
<
Il
\'H
=

as) Aij(jz))=1- 57;j€_(mf+"'+xi'), 0 < &;; < 1 — are parameters, (z1,...,x,) € R", 4,5 =1, N,

d4) ij(xh ceyTy) =1-— sije_(‘wl““""”"‘), (x1,...,2n) ER™, 4,5 =1, N.

Let us now turn to examples of nonlinearities {G ; ()} =T
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rl) G]( )*Uﬁ”ll 6J,u€[0,+00),ﬂjE(O,l),j:]_,N;

rs) Gj(u) = L(1—e™"),u € [0,400), B; € (0,1),1; = m;/(1 = exp{—n,’}), j = L, N.

Let us elaborate on examples p3), q1), r3) and verify that conditions 2) and d) are satisfied. First of all, note
that in this case

sup / Kij(xl,...,xn,tl,...,tn)dtl...dtn:
(z1,...,xn)ER™ JR™

= sup <C:J(£L'1,,.’En) I%ij(Tl,...,Tn)dTl...dTn> =
)ER™

[C R7

:aij sup C*v(xl,...,xn):aij, Z,j:].,N

Since r(A) = 1 (see Example q;)), condition 2) is satisfied. For completeness, let us give an example of the
matrix A = (a;;) TN with unit spectral radius and with elements a;; € (0,1), i,j = 1, N (in the case when

N =2):
A 7/9 1/3
\1/3 1/2)°
Let’s check condition d). First evaluate the integral of the function Io(ij (r1 — t1,..., 2, — t,) over the set
R™\B,:

/ I%—ij(itl—th...,xn—tn)dtl...dtn:

R"\ B,

Z/f(ij(xl—tl,...,]}n—tn)dtl...dtn—/f(ij(ml—t1,...,$n—tn)dtl...dtn:
B,

r
:aij—/f(ij(xl—tl,...,xn—tn)dtl...dtnZaij—/ / IO(—ij(l'l—tl,...,xn—tn)dtl...dtn:
B,

—r ]R"_l

T Ty +T

= Qj5 — /@Z](xn — tn) dtn = Q5 — / (I)ij(Tn) dTn,

—r Tp—T

where @, (7 fRn VKt oty T)dE Ly
Cons1der the functions Fj; (Jin) = ff”j: ®,i(m,)dry, 1,5 =1,N, z, € R. Since Fy;(z,,) — 0at |z,,| — oo,

for every fixed i, j € {1,2,..., N}, there exists a number o > 0 such that at |x,,| > rg

s
Fpi(z,) < =L,
.7(37 ) < B

But since F;; € C'(R) and Io{l-j(tl, coytn) >0, (t1, ..., ty) € R™, then for x,, € [—7¢,70]

Ty +T
Fij(zn) < max {/ (Pij(Tn)dTn} =: 8;j < ajj.
Ty €[—T0,70] P

Hence, F;;(z,) < max{a;;/2,0;;} < aij, z, € R, 4,5 =1, N.

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025



ON THE SOLVABILITY OF A SYSTEM 81

Thus, we have

inf / Kij(x1 —t1, ... xn — tp)dty ... dt, >
(1., 20 ) ER™\ B, R"\ B,

> inf / Io(ij(:cl—tl,...,xn—tn)dtl...dtnZaij—max{aij/2,5ij}>0, i,j:17N7
(@1,.w0) ER™ JRny\ B,
whence it follows that 0
ei(r) > min {CF;(a;; — max{ =%, 8;})} > 0,
j=1,N 2

where ) :=inf,, o yern O (1, 20).

On the other hand, it is obvious that &;(r) < a;; < 1,4,5 = 1, N.

We now verify that, for Example p3), the equations G, (u) = u/e;(r) have positive solutions d;. Indeed, since
Gi € C(R+), Gz(nz) = N, lil’nu_H_o Gz(u)/u = 400, lll’l’lu_H_oo Gl(u)/u = O, 1= 1, N, and 6,;(7‘) € (0, 1), and
G;(u)/u decreases monotonically at (0, +00), then for every ¢ € {1,2,..., N}, there exists a single d; > 0 such

The verification of conditions 2) and d) for the rest of the examples is done in the same way.

Now let us give a specific example of a nonlinear multidimensional integral equation having an application in
the theory of p-adic string (see [5]):

EACTI S :7r_”/2/ e~ (@t bt @n=ta)®) oyt VAt L dt,, (24, ...,20) € R,

where p > 2 is an odd number. Using the notation f(z1,...,x,) = ¢P(x1,...,x,), this equation is reduced to a
multivariate equation of the form (1) with concave nonlinearity with respect to the sought non-negative function
f(l'l, e ,,’En).

We also give an example of a one-dimensional convolutional integral equation with exponential nonlinearity
arising in the mathematical theory of the geographical spread of an epidemic:

f(z) = a/jO Kz —t)(1—e'®)dt, zeR,

where @ > 1 is a numerical parameter, the kernel K(z) > 0, z € R, ffooo K(xz)dx = 1 (see [6, p. 318] in the
formulation of Theorem 1 (f(z) = —x(2))).
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