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Исследованы вопросы существования и единственности непрерывного ограниченного и
положительного решения системы нелинейных многомерных интегральных уравнений,
скалярный аналог которой при различных представлениях соответствующего матрич-
ного ядра и нелинейностей имеет важное прикладное значение в ряде задач физики
и биологии. Предложен специальный итерационный подход для построения положи-
тельного непрерывного и ограниченного решения исследуемой системы. Показано, что
соответствующие итерации равномерно сходятся к непрерывному решению указанной
системы. С использованием некоторых априорных оценок для функций со строго вогну-
тыми графиками доказана единственность решения в достаточно широком подклассе
непрерывных ограниченных и покоординатно неотрицательных вектор-функций. В слу-
чае когда интеграл матричного ядра имеет единичный спектральный радиус, уста-
новлено, что в определённом подклассе непрерывных ограниченных и покоординатно
неотрицательных вектор-функций данная система имеет только тривиальное решение,
являющееся собственным вектором матрицы интегрального ядра.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим систему нелинейных многомерных интегральных уравнений

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)=

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛, 𝑖=1, 𝑁, (1)

относительно вектор-функции 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))
т с неотрица-

тельными непрерывными и ограниченными на множестве R𝑛 координатами 𝑓𝑖(𝑥1, . . . , 𝑥𝑛),
𝑖= 1, 𝑁 , где (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, R= (−∞,+∞), т — знак транспонирования. В системе (1)
матричное ядро

𝐾(x, 𝑡) := (𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛))𝑖,𝑗=1,𝑁

удовлетворяет следующим условиям:
1) 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)> 0, (𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)∈R2𝑛, 𝐾𝑖𝑗 ∈𝐶(R2𝑛), 𝑖, 𝑗=1, 𝑁 ;
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2) существуют 𝑎𝑖𝑗 := sup(𝑥1,...,𝑥𝑛)∈R𝑛

´
R𝑛 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛<+∞, 𝑖, 𝑗=1, 𝑁 ,

причём 𝑟(𝐴) = 1, 𝐴= (𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , где 𝑟(𝐴) — спектральный радиус матрицы 𝐴, т.е. модуль
наибольшего по модулю собственного значения.

Согласно теореме Перрона (см. [1, с. 260]) существует вектор 𝜂=(𝜂1, . . . , 𝜂𝑁 )т с положи-
тельными координатами 𝜂𝑖 такой, что

𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖, 𝑖=1, 𝑁. (2)

Зафиксируем вектор 𝜂 и наложим следующие условия на нелинейности {𝐺𝑗(𝑢)}𝑗=1,𝑁 (рис. 1):
a) 𝐺𝑗 ∈𝐶(R+), R+= [0,+∞), 𝐺𝑗(𝑢) монотонно возрастают на множестве R+, 𝑗=1, 𝑁 ;
b) 𝐺𝑗(0)= 0, 𝐺𝑗(𝜂𝑗)= 𝜂𝑗 , 𝑗=1, 𝑁 ;
c) 𝐺𝑗(𝑢), 𝑗 = 1, 𝑁 , строго вогнуты (выпуклы вверх) на R+ и существует непрерывное

отображение 𝜙 : [0, 1]→ [0, 1] со свойствами

𝜙(0)= 0, 𝜙(1)= 1, 𝜙 монотонно возрастает на отрезке [0, 1], (3)

𝜙 строго вогнута на отрезке [0, 1], (4)

такое, что имеют место следующие неравенства:

𝐺𝑗(𝜎𝑢)⩾𝜙(𝜎)𝐺𝑗(𝑢), 𝑢∈ [0, 𝜂𝑗 ], 𝜎 ∈ [0, 1], 𝑗=1, 𝑁 ;

d) существует число 𝑟>0 такое, что функциональные уравнения 𝐺𝑖(𝑢)=𝑢/𝜀𝑖(𝑟), 𝑖=1, 𝑁 ,
имеют положительные решения 𝑑𝑖, где

𝜀𝑖(𝑟) := min
𝑗=1,𝑁

{︃
inf

(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛

}︃
∈ (0, 1), 𝑖=1, 𝑁,

𝐵𝑟 :=
{︁
x := (𝑥1, . . . , 𝑥𝑛) : |x|=

√︁
𝑥21+ . . .+𝑥

2
𝑛⩽ 𝑟

}︁
.

Рис. 1. График функции 𝑦=𝐺𝑖(𝑢)

Основная цель настоящей работы — исследовать вопросы существования и единствен-
ности непрерывного ограниченного и положительного решения системы (1), а также рав-
номерную сходимость к решению соответствующего итерационного процесса со скоростью
убывающей геометрической прогрессии.

Скалярный аналог системы нелинейных интегральных уравнений (1), кроме чисто тео-
ретического интереса, имеет ряд важных приложений к исследованиям различных приклад-
ных задач из физики и биологии. В частности, при конкретных представлениях матричного
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ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 скалярная система (1) встречается в задачах из дина-
мической теории 𝑝-адических открытых, замкнутых и открыто-замкнутых струн (см. [2–5])
и в математической теории пространственно-временно́го распространения пандемии в рам-
ках модифицированных моделей Аткинсона–Ройтера и Дикмана–Капера (см. [6, с. 318] и
[7, с. 121] соответственно).

Математические исследования системы вида (1) в основном проводились в одномерном
случае при 𝑛=1. Так, например в случае, когда 𝑛=1 и ядро 𝐾 зависит от разности своих
аргументов, система (1) достаточно подробно изучена в работах [8–10]. Соответствующий
скалярный аналог системы (1) (𝑁 =1) в многомерном случае рассмотрен в работах [5, 11–
13], когда ядро 𝐾 либо зависит от разности своих аргументов, либо мажорируется таким
ядром. Следует также отметить, что соответствующие скалярные одномерные уравнения при
различных ограничениях на ядро и на нелинейность исследовались (разными методами) в
статьях [2, 3, 14–17].

В настоящей работе при условиях 1), 2) и a)–d) докажем сначала конструктивную тео-
рему существования положительного непрерывного и ограниченного решения системы (1).
В ходе доказательства этой теоремы получим равномерную оценку разности построенного
решения и соответствующих последовательных приближений, причём правая часть получен-
ного неравенства стремится к нулю как бесконечно убывающая геометрическая прогрессия,
когда номер 𝑚-го приближения стремится к бесконечности. Далее, используя некоторые
оценки для строго вогнутых и монотонных функций, докажем единственность решения си-
стемы (1) в достаточно широком подклассе непрерывных ограниченных и покоординатно
неотрицательных вектор-функций. В случае когда

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛) :=
ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛= 𝑎𝑖𝑗

для всех (𝑥1, . . . , 𝑥𝑛)∈R𝑛 и 𝑖, 𝑗=1, 𝑁 , покажем, что в отмеченном выше подклассе вектор-
функций единственным решением системы (1) является только вектор 𝜂 = (𝜂1, . . . , 𝜂𝑁 )т.
В работе приводятся конкретные примеры матричного ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 ,
удовлетворяющих всем условиям доказанных утверждений. Некоторые из этих примеров
имеют прикладное значение в указанных выше областях физики и биологии.

2. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ И ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Следующая лемма играет важную роль в наших дальнейших рассуждениях.
Лемма 1. Пусть выполняются условия a), b), 1), 2), причём на R+ графики функций

{𝐺𝑗(𝑢)}𝑗=1,𝑁 строго вогнуты. Тогда для любого покоординатно неотрицательного и огра-
ниченного на R𝑛 решения 𝑓*(𝑥1, . . . , 𝑥𝑛) = (𝑓*1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓

*
𝑁 (𝑥1, . . . , 𝑥𝑛))

т системы (1)
справедливо неравенство

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

где 𝜂=(𝜂1, . . . , 𝜂𝑁 )т — неподвижный вектор матрицы 𝐴 (см. (2)).
Доказательство. Обозначим 𝛾𝑖 := sup(𝑥1,...,𝑥𝑛)∈R𝑛 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁 . Тогда из систе-

мы (1) в силу условий 1), 2), a) и соотношения (2) будем иметь

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽
𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝐺𝑗(𝛾𝑗)⩽ max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂ 𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖 max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.
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Отсюда следует, что

𝛾𝑖⩽ 𝜂𝑖 max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
, 𝑖=1, 𝑁. (5)

Очевидно, что существует индекс 𝑗* ∈{1, 2, . . . , 𝑁} такой, что

max
𝑗=1,𝑁

{︂
𝐺𝑗(𝛾𝑗)

𝜂𝑗

}︂
=
𝐺𝑗*(𝛾𝑗*)

𝜂𝑗*
. (6)

Заменив в неравенстве (5) индекс 𝑖 на индекс 𝑗*, получим 𝛾𝑗* ⩽𝐺𝑗*(𝛾𝑗*). Убедимся, что из
последнего неравенства следует оценка 𝛾𝑗* ⩽ 𝜂𝑗* . Предположим обратное: 𝛾𝑗* >𝜂𝑗* . В силу
условий a), b) и строгой вогнутости графика 𝐺𝑗*(𝑢) следует, что функция 𝐺𝑗*(𝑢)/𝑢 мо-
нотонно убывает на (0,+∞). Значит, 𝐺𝑗*(𝛾𝑗*)/𝛾𝑗* <𝐺𝑗*(𝜂𝑗*)/𝜂𝑗* =1. Последнее неравенство
противоречит полученному выше неравенству 𝛾𝑗* ⩽𝐺𝑗*(𝛾𝑗*). Таким образом, 𝛾𝑗* ⩽ 𝜂𝑗* . В си-
лу этой оценки, соотношения (6) и условий a), b) приходим из (5) к неравенству 𝛾𝑖 ⩽ 𝜂𝑖,
𝑖=1, 𝑁 . Лемма доказана.

Полезна также следующая
Лемма 2. Пусть выполняются условия a), b), d), 1) и 2) и 𝑓(𝑥1, . . . , 𝑥𝑛) — произвольное

покоординатно неотрицательное и непрерывное на R𝑛 решение системы (1). Тогда если
существует индекс 𝑗0∈{1, 2, . . . , 𝑁} такой, что 𝛿𝑗0 := inf(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

𝑓𝑗0(𝑥1, . . . , 𝑥𝑛)>0, то
inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁 , где число 𝑟 определено в условии d).

Доказательство. Прежде всего заметим, что из условий a), b), 1) и 2) следует, что

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾
𝑁∑︁
𝑗=1

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗0(𝑓𝑗0(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾𝐺𝑗0(𝛿𝑗0)
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛. (7)

Далее рассмотрим функции

𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛) :=
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗0(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

и следующие возможные случаи: A) (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟, B) (𝑥1, . . . , 𝑥𝑛)∈𝐵𝑟.
В случае A), учитывая определение чисел 𝜀𝑖(𝑟) в условии d) и неравенство (7), получаем

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾𝐺𝑗0(𝛿𝑗0)𝜀𝑖(𝑟), (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟, 𝑖=1, 𝑁. (8)

Рассмотрим теперь случай B). Из условий 1), 2) немедленно следует, что 𝐶𝑖𝑗0 ∈𝐶(R𝑛),
𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛) > 0, (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑖 = 1, 𝑁 . Учитывая компактность шара 𝐵𝑟, согласно
теореме Вейерштрасса можно утверждать, что для каждого 𝑖 ∈ {1, 2, . . . , 𝑁} существует
точка x𝑖=(𝑥𝑖1, . . . , 𝑥

𝑖
𝑛)∈𝐵𝑟 такая, что

min
(𝑥1,...,𝑥𝑛)∈𝐵𝑟

{𝐶𝑖𝑗0(𝑥1, . . . , 𝑥𝑛)}=𝐶𝑖𝑗0(𝑥
𝑖
1, . . . , 𝑥

𝑖
𝑛)> 0. (9)
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Из (7)–(9) заключаем, что

inf
(𝑥1,...,𝑥𝑛)∈R𝑛

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾min{𝜀𝑖(𝑟), 𝐶𝑖𝑗0(𝑥
𝑖
1, . . . , 𝑥

𝑖
𝑛)}𝐺𝑗0(𝛿𝑗0), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Лемма доказана.
Рассмотрим теперь функции 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛), 𝑖, 𝑗=1, 𝑁 , и предположим, что
e) существуют точка (𝑥1, . . . , 𝑥𝑛)∈R𝑛 и индексы 𝑖1, 𝑗1 ∈{1, 2, . . . , 𝑁} такие, что

𝐶𝑖1,𝑗1(𝑥1, . . . , 𝑥𝑛)<𝑎𝑖1𝑗1 .

Имеет место
Лемма 3. Пусть выполняются условия леммы 1 и e). Тогда любое непрерывное ограни-

ченное и покоординатно неотрицательное решение 𝑓(𝑥1, . . . , 𝑥𝑛) системы (1) удовлетворяет
неравенствам 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁 .

Доказательство. Согласно лемме 1 решение 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 𝜂𝑖, 𝑖=1, 𝑁 . Убедимся, что
𝑓𝑖(𝑥1, . . . , 𝑥𝑛) ̸≡ 𝜂𝑖, 𝑖=1, 𝑁 . Действительно, в противном случае из (1) с учётом условия b)
получим

𝑁∑︁
𝑗=1

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗 ≡ 𝜂𝑖, 𝑖=1, 𝑁.

Принимая во внимание (2), приходим к равенству

𝑁∑︁
𝑗=1

𝜂𝑗(𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)−𝑎𝑖𝑗)≡ 0, 𝑖=1, 𝑁. (10)

Так как 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)⩽ 𝑎𝑖𝑗 , 𝜂𝑗 > 0, 𝑖, 𝑗 =1, 𝑁 , то в силу условия e) приходим в (10) к
противоречию. Следовательно, существуют точка (𝑥*1, . . . , 𝑥

*
𝑛)∈R𝑛 и индекс 𝑗*∈{1, 2, . . . , 𝑁}

такие, что 𝑓𝑗*(𝑥
*
1, . . . , 𝑥

*
𝑛) < 𝜂𝑗* . Отсюда в силу непрерывности функции 𝑓𝑗* следует, что

существует окрестность 𝑂𝛿(𝑥
*
1, . . . , 𝑥

*
𝑛) точки (𝑥*1, . . . , 𝑥

*
𝑛) такая, что

𝑓𝑗*(𝑥1, . . . , 𝑥𝑛)<𝜂𝑗* , (𝑥1, . . . , 𝑥𝑛)∈𝑂𝛿(𝑥
*
1, . . . , 𝑥

*
𝑛). (11)

В силу (11), соотношения (2) и неравенства 𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)⩽𝑎𝑖𝑗 из (1) с учётом условий a), b)
будем иметь

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)=
∑︁
𝑗 ̸=𝑗*

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓𝑗(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

R𝑛

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝜂𝑗*
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗*(𝑓𝑗*(𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛<
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<
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝜂𝑗*
ˆ

R𝑛∖𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛+

+𝜂𝑗*
ˆ

𝑂𝛿(𝑥
*
1,...,𝑥

*
𝑛)

𝐾𝑖𝑗*(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝑑𝑡1 . . . 𝑑𝑡𝑛=

=
∑︁
𝑗 ̸=𝑗*

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)𝜂𝑗+𝐶𝑖𝑗*(𝑥1, . . . , 𝑥𝑛)𝜂𝑗* ⩽
𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜂𝑗 = 𝜂𝑖, 𝑖, 𝑗=1, 𝑁.

Лемма доказана.

3. ТЕОРЕМА СУЩЕСТВОВАНИЯ ОГРАНИЧЕННОГО РЕШЕНИЯ

Рассмотрим теперь следующие последовательные приближения для системы (1):

𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)=

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(𝑚)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛,

𝑓
(0)
𝑖 (𝑥1, . . . , 𝑥𝑛)≡ 𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, 𝑚=0, 1, 2, . . . (12)

Предположим, что выполняются условия a)–d), 1) и 2). Индукцией по 𝑚 несложно
проверить достоверность следующих утверждений:

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛) монотонно убывают по 𝑚, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁, (13)

𝑓
(𝑚)
𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁, (14)

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)> 0, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (15)

Докажем, что для всех (𝑥1, . . . , 𝑥𝑛)∈R𝑛∖𝐵𝑟 имеют место следующие оценки снизу:

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾ 𝑑𝑖, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁, (16)

где числа 𝑑𝑖 определены в условии d).
Проверим неравенство (16) при 𝑚=0. Действительно, так как функции 𝐺𝑖(𝑢)/𝑢 моно-

тонно убывают на (0,+∞), 𝑖=1, 𝑁 , то из оценки

1=
𝐺𝑖(𝜂𝑖)

𝜂𝑖
<

1

𝜀𝑖(𝑟)
=
𝐺𝑖(𝑑𝑖)

𝑑𝑖

получаем, что 𝑑𝑖<𝜂𝑖= 𝑓
(0)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁 .

Предположим теперь, что для (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛∖𝐵𝑟 неравенство (16) выполняется при
некотором натуральном 𝑚. Тогда, используя условия a), b), d), 1) и 2), из (12) и (15) будем
иметь

𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾

𝑁∑︁
𝑗=1

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(𝑚)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾
𝑁∑︁
𝑗=1

𝐺𝑗(𝑑𝑗)
ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾𝐺𝑖(𝑑𝑖)𝜀𝑖(𝑟)= 𝑑𝑖, 𝑖=1, 𝑁.

При выполнении условия e) по аналогии с доказательством леммы 3 можно также убедиться,
что имеют место неравенства

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, (𝑥1, . . . , 𝑥𝑛)∈R𝑛. (17)
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Принимая во внимание (14), (15) и компактность шара 𝐵𝑟, можно утверждать, что для
каждых 𝑖∈{1, 2, . . . , 𝑁} и 𝑚∈{0, 1, 2, . . .} существует точка (𝑥𝑚,𝑖

1 , . . . , 𝑥𝑚,𝑖
𝑛 )∈𝐵𝑟 такая, что

min
(𝑥1,...,𝑥𝑛)∈𝐵𝑟

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)= 𝑓

(𝑚)
𝑖 (𝑥𝑚,𝑖

1 , . . . , 𝑥𝑚,𝑖
𝑛 )> 0, (𝑥1, . . . , 𝑥𝑛)∈𝐵𝑟. (18)

Итак, из (16) и (18) для (𝑥1, . . . , 𝑥𝑛)∈R𝑛 следует, что

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩾min{𝑓 (𝑚)

𝑖 (𝑥𝑚,𝑖
1 , . . . , 𝑥𝑚,𝑖

𝑛 ), 𝑑𝑖}> 0, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (19)

Рассмотрим теперь функции 𝜒𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛)/𝑓

(1)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖= 1, 𝑁 , на

множестве R𝑛. Из (13), (14) и (19) имеем

𝜒𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁,

𝛼𝑖

𝜂𝑖
⩽𝜒𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 1, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, (20)

где в силу (17), (19)

0<𝛼𝑖 :=min{𝑓 (2)𝑖 (𝑥2,𝑖1 , . . . , 𝑥2,𝑖𝑛 ), 𝑑𝑖}<𝜂𝑖, 𝑖=1, 𝑁.

Обозначим через 𝜎0=min𝑖=1,𝑁 (𝛼𝑖/𝜂𝑖). Очевидно, что 𝜎0 ∈ (0, 1).
Следовательно, учитывая (20) и (12), а также условия 1), a), будем иметь

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝜎0𝑓
(1)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩽

⩽ 𝑓
(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽

𝑁∑︁
𝑗=1

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛)𝐺𝑗(𝑓
(1)
𝑗 (𝑡1, . . . , 𝑡𝑛)) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Отсюда в силу условия c) приходим к неравенствам

𝜙(𝜎0)𝑓
(2)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(2)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁. (21)

Теперь, используя (21), (12), условия 1), a) и c), запишем

𝜙(𝜙(𝜎0))𝑓
(3)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(4)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(3)
𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖=1, 𝑁.

Продолжая эти рассуждения, на 𝑚-м шаге получим следующую оценку:

𝐹𝑚(𝜎0)𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(𝑚+2)
𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓

(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, 𝐹𝑚(𝜎) :=𝜙(𝜙 . . . 𝜙(𝜎))⏟  ⏞  
𝑚 раз

, 𝜎 ∈ [0, 1]. (22)

Далее, используя свойства (3) и (4) функции 𝜙, докажем справедливость неравенства

𝐹𝑚(𝜎0)⩾ 𝑘𝑚𝜎0+1−𝑘𝑚, 𝑚=1, 2, . . . , (23)
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где

𝑘 :=
1−𝜙(𝜎0/2)
1−𝜎0/2

∈ (0, 1), 𝜎0= min
𝑖=1,𝑁

{𝛼𝑖/𝜂𝑖}∈ (0, 1). (24)

Для этого рассмотрим прямую 𝑦=𝑘𝑢+1−𝑘, проходящую через точки (1, 1) и (𝜎0/2, 𝜙(𝜎0/2)),
где число 𝑘 задаётся согласно формуле (24). Из свойств (3) и (4) немедленно следует, что
(рис. 2)

𝜙(𝜎0)⩾ 𝑘𝜎0+1−𝑘. (25)
Так как 𝑘𝜎0+1−𝑘∈(0, 1), то с учётом свойств вогнутости графика и монотонности функции 𝜙
из (25) будем иметь

𝐹2(𝜎0)=𝜙(𝜙(𝜎0))⩾𝜙(𝑘𝜎0+1−𝑘)⩾ 𝑘(𝑘𝜎0+1−𝑘)+1−𝑘= 𝑘2𝜎0+1−𝑘2.

Продолжив этот процесс, на 𝑚-м шаге получим неравенство (23).

Рис. 2. График функции 𝑦=𝜙(𝑢)

Таким образом, ввиду (22), (23), (17) и (13) приходим к следующей равномерной оценке
для последовательных приближений (12):

0⩽ 𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁. (26)

Из (26) получаем равномерную сходимость последовательности непрерывных вектор-функ-
ций 𝑓 (𝑚)(𝑥1, . . . , 𝑥𝑛)=(𝑓

(𝑚)
1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑓

(𝑚)
𝑁 (𝑥1, . . . , 𝑥𝑛))

т, 𝑚=0, 1, 2, . . . , на множестве R𝑛:

lim
𝑚→∞

𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛)= 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

причём 𝑓𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁 .
В силу (13), условий 1), 2), a), (14), (16), (26) и теоремы Б. Леви (см. [18, с. 303])

предельная вектор-функция 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))
т удовлетворяет

системе (1) и оценке снизу

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾ 𝑑𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛 ∖𝐵𝑟, 𝑖=1, 𝑁. (27)

Учитывая оценку (27) и лемму 2, заключаем, что

inf
(𝑥1,...,𝑥𝑛)∈R𝑛

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁. (28)

Далее, принимая во внимание условие e), утверждение леммы 3 и свойство монотонности (13),
приходим к строгому неравенству

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (29)
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Теперь в оценке (26) вместо 𝑚 возьмём 𝑚+1, 𝑚+2, . . . , 𝑚+𝑝. В результате получим
следующие неравенства:

0⩽ 𝑓
(𝑚+2)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+3)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+1,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁,

0⩽ 𝑓
(𝑚+3)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+4)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+2,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0⩽ 𝑓
(𝑚+𝑝+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)𝑘𝑚+𝑝,

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑝,𝑚=1, 2, . . . , 𝑖=1, 𝑁.

Суммируя их с неравенством (26), приходим к двусторонней оценке

0⩽ 𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)(𝑘𝑚+𝑘𝑚+1+ . . .+𝑘𝑚+𝑝),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑝,𝑚=1, 2, . . . , 𝑖=1, 𝑁. (30)

Из (30), в частности, следует, что

0<𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓 (𝑚+𝑝+2)

𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)
𝑘𝑚

1−𝑘
. (31)

Зафиксировав индекс 𝑚 и устремив 𝑝→∞ в (31), получим

0<𝑓
(𝑚+1)
𝑖 (𝑥1, . . . , 𝑥𝑛)−𝑓𝑖(𝑥1, . . . , 𝑥𝑛)<𝜂𝑖(1−𝜎0)

𝑘𝑚

1−𝑘
. (32)

Заметим также, что если функции {𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)}𝑖,𝑗=1,𝑁 удовлетворяют дополнительному
условию

𝑎𝑖𝑗−𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)∈𝐿1(R𝑛), 𝑖, 𝑗=1, 𝑁, (33)

то, рассуждая аналогично доказательству основной теоремы (об интегральной асимптотике
решения) из работы [13], можно утверждать, что существуют положительные постоянные
𝒟1, 𝒟2, . . . , 𝒟𝑁 такие, что

0⩽
ˆ

R𝑛

(𝜂𝑖−𝑓 (𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛))𝑑𝑥1 . . . 𝑑𝑥𝑛⩽𝒟𝑖, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁.

Отсюда согласно теореме Б. Леви заключаем, что 𝜂𝑖−𝑓𝑖 ∈𝐿1(R𝑛), 𝑖=1, 𝑁 , и
ˆ

R𝑛

(𝜂𝑖−𝑓𝑖(𝑥1, . . . , 𝑥𝑛)) 𝑑𝑥1 . . . 𝑑𝑥𝑛⩽𝒟𝑖, 𝑖=1, 𝑁.

На основании изложенного выше справедлива следующая
Теорема 1. При выполнении условий a)–e), 1), 2) система нелинейных многомерных

интегральных уравнений (1) имеет покоординатно положительное непрерывное и ограни-
ченное на R𝑛 решение 𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))

т, являющееся равно-
мерным пределом последовательных приближений (12). Более того, имеют место оцен-
ки (27)–(29) и (32). Если к тому же выполняется условие (33), то 𝜂𝑖−𝑓𝑖∈𝐿1(R𝑛), 𝑖=1, 𝑁 .
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4. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ СИСТЕМЫ (1)

Рассмотрим следующий подкласс непрерывных покоординатно неотрицательных и огра-
ниченных на R𝑛 вектор-функций:

H :=
{︁
𝑓(𝑥1, . . . , 𝑥𝑛)= (𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑁 (𝑥1, . . . , 𝑥𝑛))

т : 𝑓𝑖 ∈𝐶𝑀 (R𝑛),

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩾ 0, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁,

существует 𝑗0 ∈{1, 2, . . . , 𝑁} такое, что inf
(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

𝑓𝑗0(𝑥1, . . . , 𝑥𝑛)> 0
}︁
, (34)

где число 𝑟 > 0 определяется в условии d), через 𝐶𝑀 (R𝑛) обозначено пространство непре-
рывных и ограниченных функций на множестве R𝑛. Имеет место следующая

Теорема 2. При выполнении условий a)–e), 1), 2) система нелинейных многомерных
интегральных уравнений (1) кроме решения 𝑓, построенного при помощи последовательных
приближений (13), в классе H других решений не имеет.

Доказательство. Предположим обратное: система (1) кроме решения 𝑓 ∈H, построен-
ного при помощи последовательных приближений (12), обладает также другим решением
𝑓*∈H. Тогда, используя леммы 2 и 3, заключаем, что

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)<𝜂𝑖, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁, (35)

𝛼*
𝑖 := inf

(𝑥1,...,𝑥𝑛)∈R𝑛
𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)> 0, 𝑖=1, 𝑁. (36)

Применив метод индукции по 𝑚, несложно убедиться в достоверности следующих нера-
венств:

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)<𝑓
(𝑚)
𝑖 (𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=0, 1, 2, . . . , 𝑖=1, 𝑁. (37)

В (37) устремляя 𝑚→∞, приходим к неравенству

𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (38)

Рассмотрим функции 𝐵𝑖(𝑥1, . . . ,𝑥𝑛)=𝑓
*
𝑖 (𝑥1, . . . ,𝑥𝑛)/𝑓𝑖(𝑥1, . . . ,𝑥𝑛), (𝑥1, . . . ,𝑥𝑛)∈R𝑛, 𝑖=1,𝑁 .

Так как 𝑓, 𝑓*∈H, то в силу (28), (29), (35), (36), (38) имеем, что 𝐵𝑖 ∈𝐶(R𝑛), 𝑖=1, 𝑁 , и

𝛼*
𝑖

𝜂𝑖
⩽𝐵𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 1, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁.

Обозначим 𝜎* =min𝑖∈1,𝑁{𝛼*
𝑖 /𝜂𝑖}. В силу (35) и (36) число 𝜎* ∈ (0, 1). Таким образом,

получаем неравенство

𝜎*𝑓𝑖(𝑥1, . . . , 𝑥𝑛)⩽ 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽ 𝑓𝑖(𝑥1, . . . , 𝑥𝑛), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁. (39)

Далее, рассуждая как при доказательстве теоремы 1, из (39) получаем следующие оценки:

0⩽𝑓𝑖(𝑥1, . . . , 𝑥𝑛)−𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛)⩽𝜂𝑖(1−𝜎*)𝑘𝑚* , (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑚=1, 2, . . . , 𝑖=1, 𝑁, (40)

где 𝑘*=(1−𝜙(𝜎*/2))/(1−𝜎*/2)∈ (0, 1).
В (40) устремляя число 𝑚→ ∞, приходим к равенству 𝑓𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑓*𝑖 (𝑥1, . . . , 𝑥𝑛),

(𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖=1, 𝑁 . Теорема доказана.
Аналогичным образом доказывается следующая
Теорема 3. Пусть выполняются условия a)–d), 1), 2) и имеют место соотношения

𝐶𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 𝑎𝑖𝑗 , (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁.

Тогда система (1) в классе H обладает только тривиальным решением 𝜂=(𝜂1, . . . , 𝜂𝑁 )т.
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5. ПРИМЕРЫ

Для наглядности полученных теоретических результатов приведём примеры матричного
ядра 𝐾 и нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 .

Примеры ядра 𝐾:
p1) 𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) =𝐾𝑖𝑗(𝑥1− 𝑡1, 𝑥2− 𝑡2, . . . , 𝑥𝑛− 𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛) ∈R𝑛,

𝑖, 𝑗=1,𝑁 , где 𝐾𝑖𝑗(𝜏1, 𝜏2, . . . , 𝜏𝑛)>0, 𝐾𝑖𝑗∈𝐶(R𝑛),
´
R𝑛𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) 𝑑𝜏1 . . .𝑑𝜏𝑛=𝑎𝑖𝑗<1, 𝑖, 𝑗=1,𝑁 ,

𝑟(𝐴)= 1, 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , (𝜏1, . . . , 𝜏𝑛)∈R𝑛.
p2) 𝐾𝑖𝑗(𝑥1,...,𝑥𝑛,𝑡1,...,𝑡𝑛)=𝜆𝑖𝑗(|𝑥|)𝐾𝑖𝑗(𝑥1−𝑡1,𝑥2−𝑡2,...,𝑥𝑛−𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛)∈R𝑛,

|𝑥|=
√︀
𝑥21+ . . .+𝑥

2
𝑛, 0< inf𝑣⩾0 𝜆𝑖𝑗(𝑣)⩽𝜆𝑖𝑗(𝑣)< 1, 𝑣⩾ 0, 1−𝜆𝑖𝑗 ∈𝐿1(0,+∞), 𝑖, 𝑗=1, 𝑁 .

p3) 𝐾𝑖𝑗(𝑥1,...,𝑥𝑛,𝑡1,...,𝑡𝑛)=𝐶
*
𝑖𝑗(𝑥1,...,𝑥𝑛)𝐾𝑖𝑗(𝑥1−𝑡1,...,𝑥𝑛−𝑡𝑛), (𝑥1, . . . , 𝑥𝑛), (𝑡1, . . . , 𝑡𝑛)∈R𝑛,

inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)> 0, 𝐶*

𝑖𝑗 ∈𝐶(R𝑛), sup(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 1, 𝑖, 𝑗=1, 𝑁 .

Приведём также примеры функций 𝐾𝑖𝑗 , 𝜆𝑖𝑗 , 𝐶*
𝑖𝑗 , 𝑖, 𝑗=1, 𝑁 :

q1) 𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛)=𝜋−𝑛/2𝑎𝑖𝑗𝑒
−(𝜏21+...+𝜏2𝑛), 𝑟(𝐴)= 1, 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 , 𝜏𝑗 ∈R, 𝑖, 𝑗=1, 𝑁 ,

q2) 𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) =
´ 𝑏
𝑎 𝑒

−(|𝜏1|+...+|𝜏𝑛|)𝑠 𝑑𝑄𝑖𝑗(𝑠), 𝜏𝑗 ∈ R, 𝑖, 𝑗 = 1, 𝑁 , где 𝑄𝑖𝑗(𝑠) — монотонно
возрастающие функции на [𝑎, 𝑏), 0<𝑎<𝑏⩽+∞, причём

2𝑛
𝑏ˆ

𝑎

1

𝑠𝑛
𝑑𝑄𝑖𝑗(𝑠)= 𝑎𝑖𝑗 , 𝑖, 𝑗=1, 𝑁 ;

q3) 𝜆𝑖𝑗(|𝑥|)= 1−𝜀𝑖𝑗𝑒−(𝑥2
1+...+𝑥2

𝑛), 0<𝜀𝑖𝑗 < 1 — параметры, (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁 ,
q4) 𝐶*

𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 1−𝜀𝑖𝑗𝑒−(|𝑥1|+...|𝑥𝑛|), (𝑥1, . . . , 𝑥𝑛)∈R𝑛, 𝑖, 𝑗=1, 𝑁 .
Перейдем теперь к примерам нелинейностей {𝐺𝑗(𝑢)}𝑗=1,𝑁 :

r1) 𝐺𝑗(𝑢)=𝑢𝛽𝑗𝜂
1−𝛽𝑗

𝑗 , 𝑢∈ [0,+∞), 𝛽𝑗 ∈ (0, 1), 𝑗=1, 𝑁 ;

r2) 𝐺𝑗(𝑢)= 𝜂𝑗(𝑢
𝛽𝑗 +𝑢𝛿𝑗 )/(𝜂

𝛽𝑗

𝑗 +𝜂
𝛿𝑗
𝑗 ), 𝑢∈ [0,+∞), 𝛽𝑗 , 𝛿𝑗 ∈ (0, 1), 𝑗=1, 𝑁 ;

r3) 𝐺𝑗(𝑢)= 𝑙𝑗(1−𝑒−𝑢𝛽𝑗
), 𝑢∈ [0,+∞), 𝛽𝑗 ∈ (0, 1), 𝑙𝑗 = 𝜂𝑗/(1−exp{−𝜂𝛽𝑗

𝑗 }), 𝑗=1, 𝑁 .
Подробно остановимся на примерах p3), q1), r3) и проверим выполнение условий 2) и d).

Прежде всего заметим, что в данном случае

sup
(𝑥1,...,𝑥𝑛)∈R𝑛

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1, . . . , 𝑥𝑛, 𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= sup
(𝑥1,...,𝑥𝑛)∈R𝑛

(︂
𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)

ˆ

R𝑛

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛
)︂
=

= sup
(𝑥1,...,𝑥𝑛)∈R𝑛

(︂
𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)

ˆ

R𝑛

𝐾𝑖𝑗(𝜏1, . . . , 𝜏𝑛) 𝑑𝜏1 . . . 𝑑𝜏𝑛

)︂
=

= 𝑎𝑖𝑗 sup
(𝑥1,...,𝑥𝑛)∈R𝑛

𝐶*
𝑖𝑗(𝑥1, . . . , 𝑥𝑛)= 𝑎𝑖𝑗 , 𝑖, 𝑗=1, 𝑁.

Так как 𝑟(𝐴)=1 (см. пример q1)), то условие 2) выполняется. Для полноты изложения при-
ведём пример матрицы 𝐴=(𝑎𝑖𝑗)𝑖,𝑗=1,𝑁 с единичным спектральным радиусом и с элементами
𝑎𝑖𝑗 ∈ (0, 1), 𝑖, 𝑗=1, 𝑁 (в случае когда 𝑁 =2):

𝐴=

⎛⎝7/9 1/3

1/3 1/2

⎞⎠.
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Проверим условие d). Сначала оценим интеграл от функции 𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) по
множеству R𝑛 ∖𝐵𝑟:

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

=
ˆ

R𝑛

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛−
ˆ

𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑎𝑖𝑗−
ˆ

𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾ 𝑎𝑖𝑗−
𝑟ˆ

−𝑟

ˆ

R𝑛−1

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛=

= 𝑎𝑖𝑗−
𝑟ˆ

−𝑟

Φ𝑖𝑗(𝑥𝑛− 𝑡𝑛) 𝑑𝑡𝑛= 𝑎𝑖𝑗−
𝑥𝑛+𝑟ˆ

𝑥𝑛−𝑟

Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛,

где Φ𝑖𝑗(𝜏) :=
´
R𝑛−1 𝐾𝑖𝑗(𝑡1, . . . , 𝑡𝑛−1, 𝜏) 𝑑𝑡1 . . . 𝑑𝑡𝑛−1.

Рассмотрим функции 𝐹𝑖𝑗(𝑥𝑛) :=
´ 𝑥𝑛+𝑟
𝑥𝑛−𝑟 Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛, 𝑖, 𝑗 =1, 𝑁 , 𝑥𝑛 ∈R. Так как 𝐹𝑖𝑗(𝑥𝑛)→ 0

при |𝑥𝑛| →∞, то для каждых фиксированных 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} существует число 𝑟0 > 0
такое, что при |𝑥𝑛|>𝑟0

𝐹𝑖𝑗(𝑥𝑛)⩽
𝑎𝑖𝑗
2
.

Но поскольку 𝐹𝑖𝑗 ∈𝐶(R) и 𝐾𝑖𝑗(𝑡1, . . . , 𝑡𝑛)> 0, (𝑡1, . . . , 𝑡𝑛)∈R𝑛, то для 𝑥𝑛 ∈ [−𝑟0, 𝑟0]

𝐹𝑖𝑗(𝑥𝑛)⩽ max
𝑥𝑛∈[−𝑟0,𝑟0]

{︃ 𝑥𝑛+𝑟ˆ

𝑥𝑛−𝑟

Φ𝑖𝑗(𝜏𝑛) 𝑑𝜏𝑛

}︃
=: 𝛿𝑖𝑗 <𝑎𝑖𝑗 .

Следовательно, 𝐹𝑖𝑗(𝑥𝑛)⩽max{𝑎𝑖𝑗/2, 𝛿𝑖𝑗}<𝑎𝑖𝑗 , 𝑥𝑛 ∈R, 𝑖, 𝑗=1, 𝑁 .
Таким образом, имеем

inf
(𝑥1,...,𝑥𝑛)∈R𝑛∖𝐵𝑟

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾

⩾ inf
(𝑥1,...,𝑥𝑛)∈R𝑛

ˆ

R𝑛∖𝐵𝑟

𝐾𝑖𝑗(𝑥1− 𝑡1, . . . , 𝑥𝑛− 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛⩾ 𝑎𝑖𝑗−max
{︁𝑎𝑖𝑗

2
, 𝛿𝑖𝑗

}︁
> 0, 𝑖, 𝑗=1, 𝑁,

откуда вытекает, что

𝜀𝑖(𝑟)⩾ min
𝑗=1,𝑁

{︁
𝐶0
𝑖𝑗

(︁
𝑎𝑖𝑗−max

{︁𝑎𝑖𝑗
2
, 𝛿𝑖𝑗

}︁)︁}︁
> 0,

где 𝐶0
𝑖𝑗 := inf(𝑥1,...,𝑥𝑛)∈R𝑛 𝐶*

𝑖𝑗(𝑥1, . . . , 𝑥𝑛).
С другой стороны, очевидно, что 𝜀𝑖(𝑟)⩽ 𝑎𝑖𝑗 < 1, 𝑖, 𝑗=1, 𝑁 .
Теперь убедимся, что для примера p3) уравнения 𝐺𝑖(𝑢) = 𝑢/𝜀𝑖(𝑟) имеют положитель-

ные решения 𝑑𝑖. Действительно, так как 𝐺𝑖 ∈ 𝐶(R+), 𝐺𝑖(𝜂𝑖) = 𝜂𝑖, lim𝑢→+0𝐺𝑖(𝑢)/𝑢 = +∞,
lim𝑢→+∞𝐺𝑖(𝑢)/𝑢= 0, 𝑖= 1, 𝑁 , а 𝜀𝑖(𝑟) ∈ (0, 1) и 𝐺𝑖(𝑢)/𝑢 монотонно убывает на (0,+∞), то
при каждом 𝑖∈{1, 2, . . . , 𝑁} существует единственное 𝑑𝑖> 0 такое, что 𝐺𝑖(𝑑𝑖)/𝑑𝑖= 𝜀𝑖(𝑟).

Проверка условий 2) и d) для остальных примеров выполняется аналогично.
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Теперь приведём конкретный пример нелинейного многомерного интегрального уравне-
ния, имеющего приложение в теории 𝑝-адической струны (см. [5]):

𝜙𝑝(𝑥1, . . . , 𝑥𝑛)=𝜋−𝑛/2
ˆ

R𝑛

𝑒−((𝑥1−𝑡1)2+...+(𝑥𝑛−𝑡𝑛)2)𝜙(𝑡1, . . . , 𝑡𝑛) 𝑑𝑡1 . . . 𝑑𝑡𝑛, (𝑥1, . . . , 𝑥𝑛)∈R𝑛,

где 𝑝 > 2 — нечётное число. С помощью обозначения 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝜙𝑝(𝑥1, . . . , 𝑥𝑛) данное
уравнение сводится к многомерному уравнению вида (1) с вогнутой нелинейностью относи-
тельно искомой неотрицательной функции 𝑓(𝑥1, . . . , 𝑥𝑛).

Приведём также пример одномерного интегрального уравнения свёрточного типа с экспо-
ненциальной нелинейностью, возникающего в математической теории географического рас-
пространения эпидемии:

𝑓(𝑥)= 𝑎

∞̂

−∞

𝐾(𝑥− 𝑡)(1−𝑒−𝑓(𝑡)) 𝑑𝑡, 𝑥∈R,

где 𝑎 > 1 — числовой параметр, ядро 𝐾(𝑥) > 0, 𝑥 ∈ R,
´∞
−∞𝐾(𝑥) 𝑑𝑥 = 1 (см. [6, с. 318] в

формулировке теоремы 1 (𝑓(𝑥)=−𝜒(𝑥))).
Авторы выражают благодарность рецензентам за полезные замечания.
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ON THE SOLVABILITY OF A SYSTEM OF MULTIDIMENSIONAL INTEGRAL EQUATIONS
WITH CONCAVE NONLINEARITIES
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The work is devoted to the study of questions of existence and uniqueness of a continuous bounded and
positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue
of the indicated system of integral equations, with different representations of the corresponding matrix
kernel and nonlinearities, has important applied significance in a number of areas of physics and biology.
This article proposes a special iterative approach for constructing a positive continuous and bounded
solution to the system under study. It is possible to prove that the corresponding iterations uniformly
converge to a continuous solution of the specified system. Using some a priori estimates for strictly
concave functions, we also prove the uniqueness of the solution in a fairly wide subclass of continuous
bounded and coordinately nonnegative vector functions. In the case when the integral of the matrix
kernel has a unit spectral radius, it is proved that in a certain subclass of continuous bounded and
coordinate-wise non-negative vector functions, this system has only a trivial solution, which is an
eigenvector of the kernel integral matrix.

Keywords: nonlinear integral equation, system of integral equations, positive solution, continuous solu-
tion, limited solution, trivial solution, iterative process
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