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1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

5utt — Uty — Q2Utzy — Q1Uty + BQurzzx + Blurz + Tu = uxatf/(uz)a (1)

where (t,7) € Ry x R, Ry = (0,400), R = (—00, +00); the dash in the equation denotes differentiation by
Uy = O,u = du/Ox; the coefficients o, 8;,1 = 1,2, v, § are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), » € R, for which the modulus |f(r)| at » > 0 is a non-decreasing
function and the estimates are valid

sup £ (g())| < | £ ((suplg()])

z€R z€R

, 1=0,1, g(z) € C[R],

& <x(@©If(r)], £€>0, r=0, (@)

X — a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at + — +oo and the norm is ||g||c = sup,.cg |g(x)|, with initial conditions

uli—o = ©(), Ul=o = P(z), z€R. 3)

The sought classical solution u = u(t, z), (t,z) € Ry x R, R, = [0, +00), and its partial derivatives included in
equation (1), for all values of the temporary variable ¢ on the variable x belong to the space C[R]. (By a classical
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solution of the equation we mean a sufficiently smooth function having all continuous derivatives of the desired order
and satisfying the equation at every point in the domain of its setting.)

By CM[R] = {g(z) € C[R] : ¢'(2),...,g%)(z) € C[R]}, k = 1,2,..., we denote subsets of differentiable
functions in C[R].

Recall [5, Chap. 8, § 1; 6, § 2] that in the space C[R] the differential operator 9, with domain of definition
D(0,) = CV[R] generates a compressive strongly continuous group U (7; 9, )g(z) = g(z+7), T € R, of left shifts,
and the operator 92 with domain of definition D(92) = C?[R] is the derivative operator of the strongly continuous
semigroup U(t;0%)g(z) = (2v/mt)~! f0+oc e~ /W g(x 4 €)de, t € Ry; and for the resolvents (A — 9,)~*,
(A — 92)~! the estimates ||[(A] — 0,) || < 1/Xand ||[(A] — 92)71|| < 1/Aare valid at A > 0.

Let us investigate the Cauchy problem (1), (3) according to the following plan.

1. Let us make sure that the formulation of the Cauchy problem (1), (3) is correct and its classical solution
exists locally in time. For this purpose, we find the solution of the Cauchy problem for the linear homogeneous
equation corresponding to (1).

2. Let us introduce an auxiliary Cauchy problem

5Utt — Uttgax — Q2Vtzqy — X1 V¢p + BQUmmzm + Blvmm + YU = agf(”% (4)
V)= = @' (x), vili=o = (x), xR, ®)

for which we find the time interval [0, ¢;] of existence and uniqueness of its classical solution and estimate the norm
in C[R] of this local solution.

3. Let us establish the relation between the solutions of equations (1) and (4) by assuming that on the segment
[0,1, the solution u = w(t, ) at the variable = belongs to the intersection of the subset CW[R] C C[R] with
the Sobolev space Wi (R), and the temporary partial derivatives u; = wu;(t,x) and uy = uy(t, z) belong to the
intersection C? [R] N W3 (R).

4. Let us find sufficient conditions for the existence of a single classical global (¢ > 0) solution and destruction
on a finite time interval of the solution of the Cauchy problem (1), (3).

2. CAUCHY PROBLEM FOR A LINEAR HOMOGENEOUS EQUATION

Consider the linear homogeneous equation corresponding to (1):
(61 — 02)up — (202 + 19 )uy + (B20y + B102 + yI)u = 0. (6)
Let’s introduce in (6) a new unknown function
v(t,z) = ou(t,x) — uge(t, ), 7)

assuming that the partial derivatives of ., 1, are continuous at t € R,. From substitution (7), provided that
the initial functions ¢ (), (z) belong to C)[R], we can uniquely determine the initial values of the function
v=uv(t,x):

vli=o = vo(x) = 0p(x) — ¢"(2), vili=o = v1(z) = 69b(x) — " (x),

and, using the membership of the positive semi-axis to the resolvent set of the differential operator 92, express the
solution u(t, z) of equation (6) through the new unknown function v (¢, x):

I
u(t,z) = (01 — 0%)  o(t, z :—/ e IsIVey t,x+ s)ds. 8
(t,x) = ( .,)()2\/5700 ( ) ®)
As a result of substitution (7) we obtain the equivalent (6) integro-differential equation
v + Ajvg + Agv = 0, )

in which the operator coefficients are

Ay = axl — (aVe — a)Vo(6I — 2)F — o (VI — 8,)~Y,  D(A,) = C[R],
Ay = =202 — (B2d + BT + (820 + P16 +7) (01 — 02)™!,  D(4z) = CO[R].
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BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY 59

The bounded operator A; generates a uniformly continuous group U(7; A1), 7 € R, represented by a degree
series
TL
Ulr; Ay) = Z AL

uniformly converging on 7 at each finite segment from R, and by virtue of the permutation of operators (\/5 I-0,)7!
and (61 — 02)~!, the representation is true

U(r; Ay) = U (—ayT; (VoI — 8x)71)U(—(0¢2\/S — oy )Vor; (61 — o)) =
_ ea”(f (—1)"0(?7'”(\/1 0,)- ) (Ji (=1)" (a6 — ag)™ 6™/ 2™ (6T — %)~ )

m)!
n=0

m=0

as well as the evaluation
|U(t; Ay)|| < eleaten/Votlaz—ea/ VoDt -y c R

In equation (9) we substitute the unknown function
w(t,x) = U(t/27A1)v(ta‘T>7 (10)

then we can uniquely determine the initial values of the function w(¢, x):

w|t:0 = wo(ff) = Uo(ﬂf)
We|p—o = w(z) = A1v20( 2) +oi(x) =

_aowg(r) Vi —ay T lslVE
2 4

Svo(x + s)ds —

— 0o

+
Y LV N
0

and express the solution v (¢, z) of equation (9) through a new unknown function w(t, ):
v(t,x) =U(—t/2; Ay)w(t, z). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

2
Wi = (i - A2> (12)

in which the operator coefficient

2
AT — Ay =B=By+B;, DB)=CHR],

where By = 3,0? and

- (,826 + 61+ Of)l - <b262 + B8+ v+ W\/S) (61 —93)~ ' —

1 2
- 0‘22“1 (VoI =0, + 7 (al(\faf —9,) 7+ (a2VE — an)VE (5T — ag)*l) .
Equation (12) can be written as an abstract ordinary differential equation
Wi = BW, teR,, (13)

where W = W (t) : t — w(t, z) is the sought vector-function defined for ¢ € R, with values in the space C[R].
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For equation (13), we consider an abstract Cauchy problem with initial conditions
Wli—o = Wo, W'|=o = W1, (14)

where Wy = wq(z), Wi = wy (x) are elements of the space C[R].

The Cauchy problem (13), (14) is uniformly correct [6, § 1.4], only when the operator B is the producing
operator of a strongly continuous cosine operator-function C(7; B), 7 € R.

Inthe space C'[R], the operator B is the derivative operator of the strongly continuous cosine operator-function
C(1;By), T € R 6, § 1.5]:

C(7; Bo)g(x) = 27 [U(T/B23 0:) + U(=7+/ B3 0:)]g(x) = 27 [g(w + 71/ Ba) + gl — 7\/B2)],
for which the estimate of the norm is fair
|C(t; Bo)| <1, teRy.
The corresponding sine operator-function S(7; By), 7 € R, has the form
1 z+7v/Bz

- d
N g(§)d¢

S(T;Bo)g(x):/ C(s; By)g(z)ds

0

and the norm estimation is valid for it B
IS(t; Bo)l| <t, teRy.

The bounded operator B; generates a strongly continuous cosine operator-function C(7; By), for which the
representation [6, §§ 1.4, 4.2] is valid on an arbitrary element g(x) € C[R]

+too  _on
-
C(r;B1)g(x) = Z WB?Q(@; TER,
n=0 :

and the power series converges uniformly on 7 on each finite segment from R. Note that the operator-valued
function C(7; By) is continuous in the uniform operator topology, and the norm estimate is valid for it

+oo t2n

lcw Bl <Y

n=0

B < chiet), te TRy,

(2n)!

where C% = 2ﬁ25 —+ 261 + ")//(S + (042\/5+ a1 + |042\/(§ — C¥1|)2/(4§)

The operator B is obtained by perturbing the unbounded operator B, by the bounded operator B, but the
perturbation by the bounded operator preserves [6, § 8.2] the ability of the operator By to generate the cosine
operator-function, so B = B\ + B; is the derivative operator of the strongly continuous cosine operator-function
C(1; B), 7 € R, and hence the abstract Cauchy problem (13), (14) is uniformly correct.

The solution of the Cauchy problem (13), (14) for any initial data W, € D(B) and W, € C;[R] is defined by
the formula

W(t) = C(t; B)Wy + S(t; B)Wh,

where S(t; B) is the sine operator-function associated with C'(¢; B):
¢
SB)g= [ ClriBlgir, g€ ClR)
0

Ci[R] = {g € C[R] : C(t; B)g € CV (R, C[R])} is a linear manifold. It is obvious that D(B) = C?[R] ¢ C4[R].
In order to derive an estimate of the norm of the solution of equation (13) that is the abstract function W (¢),
we find estimates of the norms of the cosine and sine of the operator functions generated by the operator B, for
which we obtain a representation of the operator-valued function C'(¢; B) via C(t; By) and C(t; By).
Considering the derivative operator B as the result of perturbing the derivative operator B by the operator By,
that in turn gives rise to the cosine operator-function, for g(x) € D(By) N D(B;) = C®[R], we obtain [6, § 8.2]
the representation of

C{t: Bile) = Clts Bogla) + 5 [ eV T= 37, Bo)Clts Br)glo)is,
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BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY
where ji (¢, Bo)g(z) = 2 fol V1 —=1r2C(tr; Bo)g(x)dr.
For ¢t € R, we obtain estimates of the norms: ||j; (¢, By)|| < %fol V1 —1r2dr =1and
, 1
t t
IC(t; B)|| <1+ bl /Ch (c1ts)ds =1+ So0 sh(cit) = o1 (t), (15)
/ 1
1 / h
IS(t; B)|| <t+ — /T sh(cim)dr <t|1+ ¢ (czlt) = oo(1). (16)
201 261
0
Using formulas (11) and (8) of inverse substitutions we have
u(t,z) = (61 — 02) tu(t,z) = (61 — 02) " U(~t/2; A )w(t, z). (17)

Then, using the permutability of the resolvent (61 —92)~! and the semigroup U (—t/2; A;) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t,x) = U(—t/2; A1) [C(t B)g(x) + S(t; B) (Arp(w)/2 + (). (13)

Thus, there is

Theorem 1. Let the initial functions () and (x) belong to the subset C'*)[R] of the space C[R|, then the Cauchy
problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup |u(t, )| < e~ (@2=er/Vo-laz—ar/Volt/2,

z€R

% |0 (t) sup ()| + () <§g§¢<x>+am+“wgmaliggwnﬂ, e,

z€R

Remark 1. The classical solution W () of the abstract Cauchy problem (13), (14) belongs to C®) (R, , C[R])
and for it BW (t) € C(R4,C[R]), hence w(t,z) = U(t/2; A1) x (61 — 8%)u(t,z) € C*%(R,,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t,z) € C**(R,,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting u, = v (the left parts of these equations coincide).
Let’s act on both parts of equation (4) by the operator (51 — 92)~! and obtain the equivalent equation

v + Aoy + Agv = fi(v), (19)
in which the nonlinearity fi(u) = [§(6] — 8%)~' — I]f(u), and the operators A; and A, are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(—t/2; Ay )w(t, x)
Wi = BW + fo(t,U(=t/2; A1)W), (20)
where the operator B is the same as in (13) and the nonlinear operator f5 is defined by the formula
folt,-) = Ut/2; A)[8(81 = 07) ™" = 1] f (),

here f(-) is the superposition operator: f(g) = f(g(x)), g(x) € C[R].

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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62 UMAROV
Givent € R, it is fair to estimate the norm of the operator f»(t, -) in the space C[R]:
|F(t g)llo < 2elexton/Vatloaar VD2 £(] gl ). 21
For equation (20) we consider an abstract Cauchy problem with initial conditions
Wlimo = W5,  W'|imo = W7, (22)

where W = (wo(x))" and W] = (w1 (x))’ are elements of the space C[R].

From the continuous differentiability of the superposition operator in the space of continuous functions and
boundedness of the operators U (/2; A1) and (61 — §%)~!, the continuous Fréchet differentiability of the operator
fa(t,-) inthe space C[R] follows and, consequently, there exists an interval [0, ¢y ), within which the abstract Cauchy
problem (20), (22) has [7, § 3] the only classical solution W = W () (provided that the initial data W, W7 belong
to the domain of definition of the operator B) that satisfies the integral equation

t
W(t) = C(t; B)W, + S(t; B)W/ + /0 S(t —7;B) fo(r,U(—7/2; A1) W)dr. (23)

From equation (23), using estimates (15), (16), (21), and (2), we derive the integral inequality

Wl < ar()IWglle +o2(D)Wille +

t
+2 / oot — T)e(a2+m/\/3+\az—m/\/Sl)T/ZX(e—(a2—al/ﬁ—laz—al/ﬁ\)fﬂ)f(HW(T)HC) dr, (24)
0

where
IW5llc =l wole)) llo = en(e) lle = sup |54 (z) — )],
Wille = s @)Y lle = @)Y llo = [Arwo(@)/2 + na (@) le <
< caViten LloaVd el g 15t (a) — ()] + sup 80/ (@) — ()]
2\/5 T€eR z€ER
Denoting

o3(t) = o1 () [Wollc + o2() [Wilic,
0-4(7—) _ 6(042+041/\/5+\042*a1/\/EDT/QX(B*(OQ*al/\/gﬂaz*al/\/g\)‘f/z)
and using the inequality

o5(t) = t(1 + ch(eit)/(2¢2) = (t — 7)(1 + ch(cy(t — 7))/ (2¢3) = oot —7), t=7>0,

let us write the integral inequality (24) in the form

W)l < os(t) +205(t)/0 as(T) fIW(7)llc)dr. (25)

From inequality (25), we derive [3] an estimate of the norm in the space C'[R] of the solution of equation (20)
on the segment [0, ¢1]:
W)l < o3(H)@7H(¥(1) = a6(t),
where

W(t) = (I)(l) +205(t)A 0'4(7-)X(0'O?;3(’(r7;))d7_

3

o) = f;o |f(s)|~tds for &,& > 0; @1 is the inverse function to @, the segment [0,¢1] C [0,t0) is defined by

those values ¢ for which the values of the function ¥(#) belong to the region of existence Dom(® 1) of the inverse
function &1
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BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY 63

Thus, there is

Theorem 2. Let the function f satisfy the conditions (2), and the initial functions o(x), ¥ (x) of the Cauchy problem
(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup [v(t, z)| = sup |uy (¢, )| < e~ (2mer/Volaa—on VO 250 1) — Gu(t), t e [0,t).
z€eR rER

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space Lo (R) of functions with integrable square.
Recall that the scalar product and norm in Lo (R) are defined by the formulas (¢, 1)) = fj’;j o(x)(x)dr and

1/2
lell2 = ( ijO: \ga(:z:)|2dx) , respectively, and that for functions g(x) belonging to the intersection of the space

of continuous bounded functions C(IR) with the Sobolev space W3 (R), the following estimate is valid

+oo 1/2
|g|c§|g||w21</ [<g<x>>2+<g’<x>>21dx) , (26)

— 00

and if g(x) € C®(R), then [8] the limits of the functions g(x), ¢'(x) at 2 — o0 are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t € [0,t1], of equation (4) follows the existence
of a corresponding solution of

u=u(t,z) = lim ”v(t,s)ds: . v(t, s)ds (27)
zo—=—00 Jo. o

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled
u(t,z) € CORINWL(R), w(t,z), un(t,z) € CHRINWER), tel0,t]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

Brf Ofu(t,z) =0, k=0,4;

lim 00 u(t,x) =0, n=1,2, m=0,2; tec][0,t]. (29)

r—+oo

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, ¢1]. Then, using relations (29),
we obtain the equations

/ 0idv(t, s)ds = / (0idTu(t,s))sds = 0idu(t,x) — lim 0jdIu(t,s) = djdlu(t,x).
o o s§——00
Further, by virtue of continuity of the function f’, we have

/ D2 f(v(t,s))ds = (f(uz(t,z)))s — f ( l_i>m uw(t,mo)) 1_i>m Uze (£, 00) = Uga (t, 1) f (ug(t, 1)).
— 00 Zxo —0o0 o — 0o

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, ¢;], whence it follows that function (27) is a solution of equation (1). The lemma is

proved.
Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, ), the conditions
that the initial functions must satisfy are required to follow:

() € CVRINWL(R), (z) € CORINW(R). (30)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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5. EXISTENCE OF A GLOBAL SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Consider the so-called energy integral for equation (1):

y(t) = 6(u, u) + (ug, uz) = /m(éu2 +u)dz, te0,t]. (31)

— 00

Applying the Cauchy-Bunyakovsky inequality |(¢,1)| < [l¢ll2ll¢||2 to the derivative of the energy integral
y'(t) = 2(6(ug, u) + (uge, ug)), we derive an auxiliary estimate on the segment ¢ € [0, ¢4]:

y'(t) < y(t) + 2(1), (32)
where
+oo
2(t) = 0(ug, ug) + (Uie, Use) =/ (6ui +ui,)dx, t€[0,t], (33)

is the second integral of energy for equation (1).
Theorem 3. Let the conditions of lemma and theorem 2 be satisfied and let the parameters o;, B;,i = 1,2,7,6 of
equation (1), the nonlinearity [ and the initial functions p(x), ¥ (x) satisfy conditions (30) and

+oo
Eo = ol 5+ 197115 + Balle” I3 + vliells + 2/ F(¢/())dz = Bull'll3 > 0;

— 00

meﬂMQﬂ neR; F(o(2) € L(R).

Then, there exists a single global solution of the Cauchy problem (1), (3) and for it the estimation is valid

Ve [6eIHBI2 0 <5 < 1,
t>0

sup [u(t, )] < \ﬁe(1+51)t/2 §>1, -7

z€R

where
c2 = (Eo+ (1+81)0llel3 + 1€'115)) /(1 + B1).

Proof. Multiply both parts of equation (1) by the partial time derivative u; = u,(¢, z) and integrate from —oo to
+oco. Then, integrating by parts and taking into account, by virtue of (29), the equality to zero outside the integral
summands, we obtain

6 d « +oo
\WM(WMw+wwMW—i/ (u2)oda +

2dt 2 J_ o
+62(urm7utmm) 7ﬂl(uz7ut:r) 9 dt” ||2 ( ( ),utz) = 0 (34)
Let us introduce the potential (7 fo s)ds, generated by the nonlinearity f of equation (1), and, taking
into account that f T () pdr = U \+°° = 0, we rewrite the equality (34) as
1d
——FE(t)=0 35

where
E(t) = 0llucll3 + [lucall + Balluaalls — Bulluzll +lull5 +

+00 ¢
+2/ F(um)d:C—FQaQ/ s |3dT
0

—00

is the energy functional of equation (1).
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BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY 65

From relation (35) it follows that the energy functional £(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) = Ey, (36)

where
—+o00

Eo = 8|[9[I3 + [1¥'13 + Balle” I3 — Billel13 +lell3 + 2 F(¢'(x))dx

— 00
is the initial energy.
Let us require that the initial energy is non-negative: Ey > 0, i.e., the inequality

“+o0
Sl 113 + 197115 + Balle”lI3 + vllll3 + 2/ F(¢'(@)dz > B3,

— 00

where the function F/(¢’(z)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

Slluell3 + llueell3 + Balluwa 3 +llull3+

—+o0 t
+2/ Flun)dz + 205 [ [ussl2ds = Eo + Bul|ua]. 37)
0

— 00

Suppose that
F(n) >0, nekR, (38)

then from equality (37), reducing the left part, we obtain

2(t) < Bo + B1(0]|ull3 + [lus]13) = Eo + Bry(t), t € [0,t1]. (39)

From inequalities (32) and (39), the integral inequality follows

t
y(t) < Ept +y(0) + (1 + Bl)/ y(s)ds, te0,t1]. (40)
0
Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral
y(t) < ( B y(0>> P! = gy (1), (41)
“A\1l+5

true on the entire positive semi-axis of t € R, and hence the classical solution of u = u(t, z) att € R belongs
to the Sobolev space W4 (R):

(1+52)y(t) < Los(t), 0<d<1,
Yy

a2 = [lull3 + [Jus|3 <
Wa 20T 6full3 + lusll3 = y(t) < os(t), 6> 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t,x), t € R of the Cauchy
problem (1), (3) in the space C[R]:

sl <5<
ullc = SUEIU(t,x)I < lulwy < { LI ’
xre

V US(t)7 52 ]-7

ensuring the existence of a global solution. The theorem is proved.
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6. DECOMPOSITION OF THE SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Let us find sufficient conditions for the occurrence of a gap of the second kind for the energy integral (31) on
the segment [0, t3] C [0, %], that we choose so that the inequality y(¢) > 0, following from the initial condition
y(0) = 8llel3 + '3 > 0, holds.

Applying the Cauchy-Bunyakovsky inequality to the square of the derivative of the energy integral y(¢) on the
segment ¢ € [0, ¢2], we have

W (1)) < dy(t)=(t).

Let us derive an estimate of the square of the norm of the partial derivative u;;, using the representation of
equation (1) in an equivalent form

ug = —Ajup — Agu + (61 — ag)*lumf/(um),

obtained by acting on both parts of equation (1) by a linear bounded operator (61 — 92)~*. For this purpose, we
obtain auxiliary estimates

+o0
2
e ()} < 500 (we))? [ e < (4 (s0plual) ) o} < 09(0) s,

where oo (t) = (f(o7(t)))* — is a continuous function on the segment [0, #1];
1A |3 < [enue — (aV/8 — an)VE(ST — 2) tuy — on (VOI — 8,) L <

g

Ve
where ¢3 = (ag + a1 /V6 + |ag — ca1 /V6])?%;

aq

2
s(agnutnw o ut||2+ﬁ|ut2) < esllwll? < es(t),

| Agu||3 < ||~ B202u — (B26 + Br)u + (8282 + 18 +~)(5] — 82) M| <
< (B2lluaellz + (820 + B1)|Jull2 + (B20 + B1 + ’7/5)||UH2)2 <

< 2(B3 w13 + (20820 + B1) +7/6) [ull3) < 283wz |3 + sy ®),

where ¢y = 2(2(B820 + 1) +v/6)>%.
Taking them into account, we have

_ 2
ueell3 < ([Avuellz + [|A2ullz + 161 = 02) ™ e f' (ua)l2)” <

1 , og(t
< 3 (vl + 1420l + g lhuen (0o 13) < 3(cos(0) + 2680l + o) + 75 s ).

whence follows the inequality
w3 < Beaz(t) + 3eay(t) + cslluae 3, ¢ € [0,22], (42)

where ¢5 = 653 + 3¢66°, ¢g = MaXyeo,¢,] oo (1)
Let’s return to the conservation law (37) and obtain the relation from it

t —+o0
2(t) + Ballusa 3 + yllull + 2&2/ luszll3ds < Eo + Bulluall3 + 2 ’/ F(ug)dx
0

— 00

. (43)

Earlier, when proving the existence of a global solution, we assumed the fulfillment of condition (38) — non-
negativity of the potential F'(1) on the whole numerical axis 7 € R. Now, when considering the destruction of the
solution, we require to fulfill the inequality for the nonlinearity f

‘/_;00 dx /Ow(w) f(s)ds

<|f T ule) )

; (44)
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where w(x) is an arbitrary function from C[R], for which the functions F'(w(x)) and w(z) f (w(x)) belong to the
space L (R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

+o00 +oo +0o0
2{/ F(ug)dz| <2 /f(ugu)du(x) = |u(m) f(ug)| T2 — / wf! (g ) gy dz| <
< 2| (uf' (ue), tze)| < 2/uf (uz) |2 luselle < lluf(ue)ll3 + lluzel3 <
+oo
< Slélﬂ'@{(f'(um))2 / uy dz + [[uge |3 < (' (o7 (0))?[ull3 + l[usl13 = oo()[[ull3 + luzll3,
x
whence follows the inequality
+oo
2| [ Flute] < olulf + sl 1€ 0] )
Applying the estimation (45) to the relation (43) under the condition
ﬁQ > 1; (46)

we obtain the inequality

Ey B1+ce 1
”uszgg 62_1 + ﬁg—lyt /82_12@)7 te [Oth]a

using which we increase the right part of the estimate (42):

w%gz%%mm%:mww@gﬁﬁmxmmﬂ

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

Y (t) 4 2(up, Uge) — 20 (upe, u) = 22(1).

Using the estimates

2(ute, Uow) < 2 (e, tow)| < Jueell? + luaal3 < 3eaz(t) + 3eay(t) + (5 + 1) luaa 3 <

< ;5+1E0+ <3C4+(C5+1)%1+Cf>y(t)+ (303— Cs+1)2’(t)7
2 — 2 —

~20(uee, u) < 20| (uee, w)| < Olluee|3 + Ollull3 < 3desz(t) + 6(3ea + 1)y(t) + des|luas|f3 <

des B1+cs Cs
< _
< ﬂ2—1E0+6<384+1+05 62_1)y(t)+5<303 BQ_l)z(t),

increase the left side of it:

Y (t) + e + csy(t) > coz(t), t€[0,ta], (47)
where
0+1 1 o0+1 1
o Ot et s et o4 (64 1)+ )Ty O el gy
B2 —1 B2 — 1 B2 — 1

Let us now reduce the right-hand side of inequality (47):

y(t)y" (t) — %g(y’(t))z + ery(t) + csy®(t) > 0, ¢ € [0,to]. (48)
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We require that the coefficient at the square of the derivative in inequality (48) be greater than one, i.e., we
require the inequality ¢9 /4 > 1 or (in the detailed notation)

6(6+1)B85 — (24 3(6 + 1)cs) B2 +3(8 4 1)(cs /0% + c3) +3 > 0. (49)
Two cases arise here: if the discriminant of the quadratic trinomial
D1 = D1(5, 03,06) = (2 + 3(5 + 1)63)2 — 72(5 + 1)((5 + 1)(06/52 + 03) + ].) < 0, (50)

then inequality (49) is valid for all values of 55 > 1; If D > 0, then inequality (49) holds at

2+3(5—|—1)C3 — D1(5, 63,66) - 2+3(5—|—1)C3—|— D1(5, 63766)

1 51
<P < 125+ 1) & 1206+ 1) 1)
From condition (50), follows the inequality
1 6 T20+1)—4
2 _1q S PSR £ Yk Ak e
9c3 2(6 (5+1)2)C‘3 7252 G112 <0, (52)
and the discriminant of the quadratic trinomial
Dy = Dy(5,c6) = 36 (6 — (6 + 1)72)° + 648(52c6 + (5 + 17/18)(5 + 1)72) > 0,
therefore inequality (52), and hence (50), is satisfied at
2 _
i i 6(6 — (0 +1)72) + v/D2(6,cq)
0<ecz=|ag+ —=+|aa— —= , 53
R ) . (53)

i.e., if condition (53) is satisfied, the inequality ¢9/4 > 1 is valid for any value of the parameter S5 > 1.
In the case of D1 > 0, inequality (49) is satisfied for parameter values satisfying conditions (51), in which the
values d, c3 and cg are related by the relation
6(6—(0+1)"?) + /Da(6, co)

(Oé2+041/\/5+|042—061/\/5|)22 9 .

Comparing inequality (48) with one of the basic ordinary differential inequalities for the energy integral [ 10,
Appendix A, § 5], we conclude that if the initial conditions are fulfilled

W%M+WWW>(

Cs 2 2 C7 2 2
Sl + 1)+ =5 ) el + 11D (54

then the time ¢, of existence of the solution of the Cauchy problem (1), (3) cannot be arbitrarily large, namely,

there is an estimate from above 1

TG R e e ©
where
2 2 /12
¢ty = 4(5||¢|(|§9+_||42,|3)C9/2 ((5(so,¢) + () - (68(5|i92_+4|“" I2) cgcj 2) (Blll3 + ||ga'||§)) >0,
and for the functionality of y(t), it is fair to estimate from below
e 2 2 1
0= |G e > e e GO

and, hence, there is no time-global solution of the Cauchy problem (1), (3).

Thus, the following theorem is proven

Theorem 4. Let the conditions of lemma and theorem 2 be satisfied and let the parameters o, B;,i = 1,2,7,6
of equation (1), the nonlinearity f and the initial functions o(x), 1y (x) satisfy conditions (30), (44), (46), (49), (54),
respectively, then the time to of existence of the solution u(t, x) of the Cauchy problem (1), (3) cannot be arbitrarily large,
namely it is bounded from above and the estimation (55) takes place, and for the energy integral y(t) the estimation from
below (56) is valid.
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