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1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

δutt − uttxx − α2utxx − α1utx + β2uxxxx + β1uxx + γu = uxxf
′(ux), (1)

where (t, x) ∈ R+ × R, R+ = (0,+∞), R = (−∞,+∞); the dash in the equation denotes differentiation by
ux = ∂xu = ∂u/∂x; the coefficients αi, βi, i = 1, 2, γ, δ are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), r ∈ R, for which the modulus |f(r)| at r ≥ 0 is a non-decreasing
function and the estimates are valid

sup
x∈R

|f (i)(g(x))| ≤
∣∣∣f (i)

(
sup
x∈R

|g(x)|
)∣∣∣, i = 0, 1, g(x) ∈ C[R],

|f(ξr)| ≤ χ(ξ)|f(r)|, ξ > 0, r ≥ 0, (2)

χ– a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at x → ±∞ and the norm is ∥g∥C = supx∈R |g(x)|, with initial conditions

u|t=0 = φ(x), ut|t=0 = ψ(x), x ∈ R. (3)

The sought classical solution u = u(t, x), (t, x) ∈ R+ × R, R+ = [0,+∞), and its partial derivatives included in
equation (1), for all values of the temporary variable t on the variable x belong to the space C[R]. (By a classical
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The bounded operator A1 generates a uniformly continuous group U(τ ;A1), τ ∈ R, represented by a degree
series

U(τ ;A1) =

+∞∑
n=0

τn

n!
An

1 ,

uniformly converging on τ at eachfinite segment fromR, and by virtue of the permutationof operators (
√
δI − ∂x)

−1

and (δI − ∂2
x)

−1, the representation is true

U(τ ;A1) = eα2τU
(
−α1τ ; (

√
δI − ∂x)

−1
)
U
(
−(α2

√
δ − α1)

√
δτ ; (δI − ∂2

x)
−1

)
=

= eα2τ

(
+∞∑
n=0

(−1)
n
αn
1 τ

n

n!
(
√
δI − ∂x)

−n

)(
+∞∑
m=0

(−1)m(α2

√
δ − α1)

mδm/2τm

m!
(δI − ∂2

x)
−m

)
,

as well as the evaluation
∥U(t;A1)∥ ≤ e(α2+α1/

√
δ+|α2−α1/

√
δ|)t, t ∈ R+.

In equation (9) we substitute the unknown function

w(t, x) = U(t/2;A1)v(t, x), (10)

then we can uniquely determine the initial values of the function w(t, x):

w|t=0 = w0(x) = v0(x),

wt|t=0 = w1(x) =
A1v0(x)

2
+ v1(x) =

=
α2v0(x)

2
− α2

√
δ − α1

4

∫ +∞

−∞
e−|s|

√
δv0(x+ s)ds −

− α1

2

∫ +∞

0

e−r
√
δv0(x+ r)dr + v1(x)

and express the solution v(t, x) of equation (9) through a new unknown function w(t, x):

v(t, x) = U(−t/2;A1)w(t, x). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

wtt =

(
A2

1

4
−A2

)
w, (12)

in which the operator coefficient

A2
1

4
−A2 = B = B0 +B1, D(B) = C(2)[R],

where B0 = β2∂
2
x and

B1 =

(
β2δ + β1 +

α2
2

4

)
I −

(
b2δ

2 + β1δ + γ +
α2(α2

√
δ − α1)

2

√
δ

)
(δI − ∂2

x)
−1 −

− α2α1

2
(
√
δI − ∂x)

−1 +
1

4

(
α1(

√
δI − ∂x)

−1 + (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1

)2

.

Equation (12) can be written as an abstract ordinary differential equation

Wtt = BW, t ∈ R+, (13)

whereW = W (t) : t → w(t, x) is the sought vector-function defined for t ∈ R+ with values in the space C[R].

solution of the equationwemean a sufficiently smooth function having all continuous derivatives of the desired order
and satisfying the equation at every point in the domain of its setting.)

By C(k)[R] = {g(x) ∈ C[R] : g′(x), . . . , g(k)(x) ∈ C[R]}, k = 1, 2, . . . , we denote subsets of differentiable
functions in C[R].

Recall [5, Chap. 8, § 1; 6, § 2] that in the space C[R] the differential operator ∂x with domain of definition
D(∂x) = C(1)[R] generates a compressive strongly continuous groupU(τ ; ∂x)g(x) = g(x+τ), τ ∈ R, of left shifts,
and the operator ∂2

x with domain of definitionD(∂2
x) = C(2)[R] is the derivative operator of the strongly continuous

semigroup U(t; ∂2
x)g(x) = (2

√
πt)−1

∫ +∞
0

e−ξ2/(4t)g(x + ξ)dξ, t ∈ R+; and for the resolvents (λI − ∂x)
−1,

(λI − ∂2
x)

−1 the estimates ∥(λI − ∂x)
−1∥ ≤ 1/λ and ∥(λI − ∂2

x)
−1∥ ≤ 1/λ are valid at λ > 0.

Let us investigate the Cauchy problem (1), (3) according to the following plan.
1. Let us make sure that the formulation of the Cauchy problem (1), (3) is correct and its classical solution

exists locally in time. For this purpose, we find the solution of the Cauchy problem for the linear homogeneous
equation corresponding to (1).

2. Let us introduce an auxiliary Cauchy problem

δvtt − vttxx − α2vtxx − α1vtx + β2vxxxx + β1vxx + γv = ∂2
xf(v), (4)

v|t=0 = φ′(x), vt|t=0 = ψ′(x), x ∈ R, (5)

for which we find the time interval [0, t1] of existence and uniqueness of its classical solution and estimate the norm
in C[R] of this local solution.

3. Let us establish the relation between the solutions of equations (1) and (4) by assuming that on the segment
[0, t1, the solution u = u(t, x) at the variable x belongs to the intersection of the subset C(4)[R] ⊂ C[R] with
the Sobolev space W 4

2 (R), and the temporary partial derivatives ut = ut(t, x) and utt = utt(t, x) belong to the
intersection C(2)[R] ∩W 2

2 (R).
4. Let us find sufficient conditions for the existence of a single classical global (t ≥ 0) solution and destruction

on a finite time interval of the solution of the Cauchy problem (1), (3).

2. CAUCHY PROBLEM FOR A LINEAR HOMOGENEOUS EQUATION

Consider the linear homogeneous equation corresponding to (1):

(δI − ∂2
x)utt − (α2∂

2
x + α1∂x)ut + (β2∂

4
x + β1∂

2
x + γI)u = 0. (6)

Let’s introduce in (6) a new unknown function

v(t, x) = δu(t, x)− uxx(t, x), (7)

assuming that the partial derivatives of uxx, utxx are continuous at t ∈ R+. From substitution (7), provided that
the initial functions φ(x), ψ(x) belong to C(2)[R], we can uniquely determine the initial values of the function
v = v(t, x):

v|t=0 = v0(x) = δφ(x)− φ′′(x), vt|t=0 = v1(x) = δψ(x)− ψ′′(x),

and, using the membership of the positive semi-axis to the resolvent set of the differential operator ∂2
x, express the

solution u(t, x) of equation (6) through the new unknown function v(t, x):

u(t, x) = (δI − ∂2
x)

−1v(t, x) =
1

2
√
δ

∫ +∞

−∞
e−|s|

√
δv(t, x+ s)ds. (8)

As a result of substitution (7) we obtain the equivalent (6) integro-differential equation

vtt +A1vt +A2v = 0, (9)

in which the operator coefficients are

A1 = α2I − (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1 − α1(

√
δI − ∂x)

−1, D(A1) = C[R],

A2 = −β2∂
2
x − (β2δ + β1)I + (β2δ

2 + β1δ + γ)(δI − ∂2
x)

−1, D(A2) = C(2)[R].
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The bounded operator A1 generates a uniformly continuous group U(τ ;A1), τ ∈ R, represented by a degree
series

U(τ ;A1) =

+∞∑
n=0

τn

n!
An

1 ,

uniformly converging on τ at eachfinite segment fromR, and by virtue of the permutationof operators (
√
δI − ∂x)

−1

and (δI − ∂2
x)

−1, the representation is true

U(τ ;A1) = eα2τU
(
−α1τ ; (

√
δI − ∂x)

−1
)
U
(
−(α2

√
δ − α1)

√
δτ ; (δI − ∂2

x)
−1

)
=

= eα2τ

(
+∞∑
n=0

(−1)
n
αn
1 τ

n

n!
(
√
δI − ∂x)

−n

)(
+∞∑
m=0

(−1)m(α2

√
δ − α1)

mδm/2τm

m!
(δI − ∂2

x)
−m

)
,

as well as the evaluation
∥U(t;A1)∥ ≤ e(α2+α1/

√
δ+|α2−α1/

√
δ|)t, t ∈ R+.

In equation (9) we substitute the unknown function

w(t, x) = U(t/2;A1)v(t, x), (10)

then we can uniquely determine the initial values of the function w(t, x):

w|t=0 = w0(x) = v0(x),

wt|t=0 = w1(x) =
A1v0(x)

2
+ v1(x) =

=
α2v0(x)

2
− α2

√
δ − α1

4

∫ +∞

−∞
e−|s|

√
δv0(x+ s)ds −

− α1

2

∫ +∞

0

e−r
√
δv0(x+ r)dr + v1(x)

and express the solution v(t, x) of equation (9) through a new unknown function w(t, x):

v(t, x) = U(−t/2;A1)w(t, x). (11)

As a result of substitution (10), we obtain the integro-differential equation equivalent to (9)

wtt =

(
A2

1

4
−A2

)
w, (12)

in which the operator coefficient

A2
1

4
−A2 = B = B0 +B1, D(B) = C(2)[R],

where B0 = β2∂
2
x and

B1 =

(
β2δ + β1 +

α2
2

4

)
I −

(
b2δ

2 + β1δ + γ +
α2(α2

√
δ − α1)

2

√
δ

)
(δI − ∂2

x)
−1 −

− α2α1

2
(
√
δI − ∂x)

−1 +
1

4

(
α1(

√
δI − ∂x)

−1 + (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1

)2

.

Equation (12) can be written as an abstract ordinary differential equation

Wtt = BW, t ∈ R+, (13)

whereW = W (t) : t → w(t, x) is the sought vector-function defined for t ∈ R+ with values in the space C[R].
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where j1(t, B0)g(x) =
4
π

∫ 1

0

√
1− r2C(tr;B0)g(x)dr.

For t ∈ R+ we obtain estimates of the norms: ∥j1(t, B0)∥ ≤ 4
π

∫ 1

0

√
1− r2dr = 1 and

∥C(t;B)∥ ≤ 1 +
t2

2

1∫

0

ch (c1ts) ds = 1 +
t

2c1
sh(c1t) = σ1(t), (15)

∥S(t;B)∥ ≤ t+
1

2c1

t∫

0

τ sh(c1τ) dτ ≤ t

(
1 +

ch (c1t)

2c21

)
= σ2(t). (16)

Using formulas (11) and (8) of inverse substitutions we have

u(t, x) = (δI − ∂2
x)

−1v(t, x) = (δI − ∂2
x)

−1U(−t/2;A1)w(t, x). (17)

Then, using the permutability of the resolvent (δI−∂2
x)

−1 and the semigroupU(−t/2;A1) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t, x) = U(−t/2;A1)
[
C(t;B)φ(x) + S(t;B)(A1φ(x)/2 + ψ(x))

]
. (18)

Thus, there is
Theorem 1. Let the initial functions φ(x) and ψ(x) belong to the subsetC(4)[R] of the spaceC[R], then the Cauchy

problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup
x∈R

|u(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2×

×

[
σ1(t) sup

x∈R
|φ(x)|+ σ2(t)

(
sup
x∈R

|ψ(x)|+ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|φ(x)|

)]
, t ∈ R+.

Remark 1. The classical solution W (t) of the abstract Cauchy problem (13), (14) belongs to C(2)(R+, C[R])
and for it BW (t) ∈ C(R+, C[R]), hence w(t, x) = U(t/2;A1) × (δI − ∂2

x)u(t, x) ∈ C2,2(R+,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t, x) ∈ C2,4(R+,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting ux = v (the left parts of these equations coincide).

Let’s act on both parts of equation (4) by the operator (δI − ∂2
x)

−1 and obtain the equivalent equation

vtt +A1vt +A2v = f1(v), (19)

in which the nonlinearity f1(u) = [δ(δI − ∂2
x)

−1 − I]f(u), and the operators A1 and A2 are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(−t/2;A1)w(t, x)

Wtt = BW + f2(t, U(−t/2;A1)W ), (20)

where the operator B is the same as in (13) and the nonlinear operator f2 is defined by the formula

f2(t, ·) = U(t/2;A1)[δ(δI − ∂2
x)

−1 − I]f(·),

here f(·) is the superposition operator: f(g) = f(g(x)), g(x) ∈ C[R].

For equation (13), we consider an abstract Cauchy problem with initial conditions

W |t=0 = W0, W ′|t=0 = W1, (14)

whereW0 = w0(x),W1 = w1(x) are elements of the space C[R].
The Cauchy problem (13), (14) is uniformly correct [6, § 1.4], only when the operator B is the producing

operator of a strongly continuous cosine operator-function C(τ ;B), τ ∈ R.
In the spaceC[R], the operatorB0 is the derivative operator of the strongly continuous cosine operator-function

C(τ ;B0), τ ∈ R [6, § 1.5]:

C(τ ;B0)g(x) = 2−1[U(τ
√
β2; ∂x) + U(−τ

√
β2; ∂x)]g(x) = 2−1[g(x+ τ

√
β2) + g(x− τ

√
β2)],

for which the estimate of the norm is fair

∥C(t;B0)∥ ≤ 1, t ∈ R+.

The corresponding sine operator-function S(τ ;B0), τ ∈ R, has the form

S(τ ;B0)g(x) =

∫ τ

0

C(s;B0)g(x)ds =
1

2
√
β2

∫ x+τ
√
β2

x−τ
√
β2

g(ξ)dξ

and the norm estimation is valid for it
∥S(t;B0)∥ ≤ t, t ∈ R+.

The bounded operator B1 generates a strongly continuous cosine operator-function C(τ ;B1), for which the
representation [6, §§ 1.4, 4.2] is valid on an arbitrary element g(x) ∈ C[R]

C(τ ;B1)g(x) =

+∞∑
n=0

τ2n

(2n)!
Bn

1 g(x), τ ∈ R,

and the power series converges uniformly on τ on each finite segment from R. Note that the operator-valued
function C(τ ;B1) is continuous in the uniform operator topology, and the norm estimate is valid for it

∥C(t;B1)∥ ⩽
+∞∑
n=0

t2n

(2n)!
∥B1∥n ⩽ ch(c1t), t ∈ R+,

where c21 = 2β2δ + 2β1 + γ/δ + (α2

√
δ + α1 + |α2

√
δ − α1|)2/(4δ).

The operator B is obtained by perturbing the unbounded operator B0 by the bounded operator B1, but the
perturbation by the bounded operator preserves [6, § 8.2] the ability of the operator B0 to generate the cosine
operator-function, soB = B0 +B1 is the derivative operator of the strongly continuous cosine operator-function
C(τ ;B), τ ∈ R, and hence the abstract Cauchy problem (13), (14) is uniformly correct.

The solution of the Cauchy problem (13), (14) for any initial dataW0 ∈ D(B) andW1 ∈ C1[R] is defined by
the formula

W (t) = C(t;B)W0 + S(t;B)W1,

where S(t;B) is the sine operator-function associated with C(t;B):

S(t;B)g =

∫ t

0

C(τ ;B)gdτ, g ∈ C[R],

C1[R] = {g ∈ C[R] : C(t;B)g ∈ C(1)(R, C[R])} is a linear manifold. It is obvious thatD(B) = C(2)[R] ⊂ C1[R].
In order to derive an estimate of the norm of the solution of equation (13) that is the abstract function W (t),

we find estimates of the norms of the cosine and sine of the operator functions generated by the operator B, for
which we obtain a representation of the operator-valued function C(t;B) via C(t;B0) and C(t;B1).

Considering the derivative operatorB as the result of perturbing the derivative operatorB0 by the operatorB1,
that in turn gives rise to the cosine operator-function, for g(x) ∈ D(B0) ∩D(B1) = C(2)[R], we obtain [6, § 8.2]
the representation of

C(t;B)g(x) = C(t;B0)g(x) +
t2

2

∫ 1

0

j1(t
√

1− s2, B0)C(ts;B1)g(x)ds,
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where j1(t, B0)g(x) =
4
π

∫ 1

0

√
1− r2C(tr;B0)g(x)dr.

For t ∈ R+ we obtain estimates of the norms: ∥j1(t, B0)∥ ≤ 4
π

∫ 1

0

√
1− r2dr = 1 and

∥C(t;B)∥ ≤ 1 +
t2

2

1∫

0

ch (c1ts) ds = 1 +
t

2c1
sh(c1t) = σ1(t), (15)

∥S(t;B)∥ ≤ t+
1

2c1

t∫

0

τ sh(c1τ) dτ ≤ t

(
1 +

ch (c1t)

2c21

)
= σ2(t). (16)

Using formulas (11) and (8) of inverse substitutions we have

u(t, x) = (δI − ∂2
x)

−1v(t, x) = (δI − ∂2
x)

−1U(−t/2;A1)w(t, x). (17)

Then, using the permutability of the resolvent (δI−∂2
x)

−1 and the semigroupU(−t/2;A1) both among themselves
and with the cosine operator-function generated by the operator B, we find a solution of the Cauchy problem for
equation (6):

u(t, x) = U(−t/2;A1)
[
C(t;B)φ(x) + S(t;B)(A1φ(x)/2 + ψ(x))

]
. (18)

Thus, there is
Theorem 1. Let the initial functions φ(x) and ψ(x) belong to the subsetC(4)[R] of the spaceC[R], then the Cauchy

problem for the linear homogeneous equation (6) is uniformly correct, the classical solution is given by the formula (18)
and the evaluation is valid for it

sup
x∈R

|u(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2×

×

[
σ1(t) sup

x∈R
|φ(x)|+ σ2(t)

(
sup
x∈R

|ψ(x)|+ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|φ(x)|

)]
, t ∈ R+.

Remark 1. The classical solution W (t) of the abstract Cauchy problem (13), (14) belongs to C(2)(R+, C[R])
and for it BW (t) ∈ C(R+, C[R]), hence w(t, x) = U(t/2;A1) × (δI − ∂2

x)u(t, x) ∈ C2,2(R+,R). By virtue of
(17), the solution of the Cauchy problem (6), (3) is u(t, x) ∈ C2,4(R+,R).

3. LOCAL SOLUTION OF THE CAUCHY PROBLEM FOR THE NONLINEAR
EQUATION (4)

Equation (4) is obtained from equation (1) through differentiating both parts by the variable x and then substi-
tuting ux = v (the left parts of these equations coincide).

Let’s act on both parts of equation (4) by the operator (δI − ∂2
x)

−1 and obtain the equivalent equation

vtt +A1vt +A2v = f1(v), (19)

in which the nonlinearity f1(u) = [δ(δI − ∂2
x)

−1 − I]f(u), and the operators A1 and A2 are the same as in
equation (9).

Equation (19) is reduced to an abstract semi-linear equation by substituting v(t, x) = U(−t/2;A1)w(t, x)

Wtt = BW + f2(t, U(−t/2;A1)W ), (20)

where the operator B is the same as in (13) and the nonlinear operator f2 is defined by the formula

f2(t, ·) = U(t/2;A1)[δ(δI − ∂2
x)

−1 − I]f(·),

here f(·) is the superposition operator: f(g) = f(g(x)), g(x) ∈ C[R].
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Thus, there is
Theorem 2. Let the function f satisfy the conditions (2), and the initial functions φ(x), ψ(x) of the Cauchy problem

(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup
x∈R

|v(t, x)| = sup
x∈R

|ux(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2σ6(t) = σ7(t), t ∈ [0, t1].

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space L2(R) of functions with integrable square.

Recall that the scalar product and norm in L2(R) are defined by the formulas (φ,ψ) =
∫ +∞
−∞ φ(x)ψ(x)dx and

∥φ∥2 =
(∫ +∞

−∞ |φ(x)|2dx
)1/2

, respectively, and that for functions g(x) belonging to the intersection of the space
of continuous bounded functions C(R) with the Sobolev spaceW 1

2 (R), the following estimate is valid

∥g∥C ≤ ∥g∥W 1
2
=

(∫ +∞

−∞
[(g(x))2 + (g′(x))2]dx

)1/2

, (26)

and if g(x) ∈ C(2)(R), then [8] the limits of the functions g(x), g′(x) at x → ±∞ are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t ∈ [0, t1], of equation (4) follows the existence

of a corresponding solution of

u = u(t, x) = lim
x0→−∞

∫ x

x0

v(t, s)ds =

∫ x

−∞
v(t, s)ds (27)

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled

u(t, x) ∈ C(4)[R] ∩W 4
2 (R), ut(t, x), utt(t, x) ∈ C(2)[R] ∩W 2

2 (R), t ∈ [0, t1]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

lim
x→±∞

∂k
xu(t, x) = 0, k = 0, 4;

lim
x→±∞

∂n
t ∂

m
x u(t, x) = 0, n = 1, 2, m = 0, 2; t ∈ [0, t1]. (29)

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, t1]. Then, using relations (29),
we obtain the equations

∫ x

−∞
∂i
t∂

j
sv(t, s)ds =

∫ x

−∞
(∂i

t∂
j
su(t, s))sds = ∂i

t∂
j
xu(t, x)− lim

s→−∞
∂i
t∂

j
su(t, s) = ∂i

t∂
j
xu(t, x).

Further, by virtue of continuity of the function f ′, we have
∫ x

−∞
∂2
sf(v(t, s))ds = (f(ux(t, x)))x − f ′

(
lim

x0→−∞
ux(t, x0)

)
lim

x0→−∞
uxx(t, x0) = uxx(t, x)f

′(ux(t, x)).

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, t1], whence it follows that function (27) is a solution of equation (1). The lemma is
proved.

Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, x), the conditions
that the initial functions must satisfy are required to follow:

φ(x) ∈ C(4)[R] ∩W 4
2 (R), ψ(x) ∈ C(2)[R] ∩W 2

2 (R). (30)

Given t ∈ R+, it is fair to estimate the norm of the operator f2(t, ·) in the space C[R]:

∥F (t, g)∥C ≤ 2e(α2+α1/
√
δ+|α2−α1/

√
δ|)t/2f(∥g∥C). (21)

For equation (20) we consider an abstract Cauchy problem with initial conditions

W |t=0 = W ′
0, W ′|t=0 = W ′

1, (22)

whereW ′
0 = (w0(x))

′ andW ′
1 = (w1(x))

′ are elements of the space C[R].
From the continuous differentiability of the superposition operator in the space of continuous functions and

boundedness of the operators U(t/2;A1) and (δI−∂2
x)

−1, the continuous Fréchet differentiability of the operator
f2(t, ·) in the spaceC[R] follows and, consequently, there exists an interval [0, t0), withinwhich the abstractCauchy
problem (20), (22) has [7, § 3] the only classical solutionW = W (t) (provided that the initial dataW ′

0,W ′
1 belong

to the domain of definition of the operator B) that satisfies the integral equation

W (t) = C(t;B)W ′
0 + S(t;B)W ′

1 +

∫ t

0

S(t− τ ;B)f2(τ, U(−τ/2;A1)W )dτ. (23)

From equation (23), using estimates (15), (16), (21), and (2), we derive the integral inequality

∥W (t)∥C ≤ σ1(t)∥W ′
0∥C + σ2(t)∥W ′

1∥C +

+ 2

t∫

0

σ2(t− τ)e(α2+α1/
√
δ+|α2−α1/

√
δ|)τ/2χ

(
e−(α2−α1/

√
δ−|α2−α1/

√
δ|)τ/2)f(∥W (τ)∥C) dτ, (24)

where
∥W ′

0∥C = ∥(w0(x))
′∥C = ∥(v0(x))′∥C = sup

x∈R
|δφ′(x)− φ′′′(x)|,

∥W ′
1∥C = ∥(w1(x))

′∥C = ∥(v1(x))′∥C = ∥(A1v0(x)/2 + v1(x))
′∥C ≤

≤ α2

√
δ + α1 + |α2

√
δ − α1|

2
√
δ

sup
x∈R

|δφ′(x)− φ′′′(x)|+ sup
x∈R

|δψ′(x)− ψ′′′(x)|.

Denoting

σ3(t) = σ1(t)∥W ′
0∥C + σ2(t)∥W ′

1∥C ,

σ4(τ) = e(α2+α1/
√
δ+|α2−α1/

√
δ|)τ/2χ(e−(α2−α1/

√
δ−|α2−α1/

√
δ|)τ/2)

and using the inequality

σ5(t) = t(1 + ch(c1t)/(2c21) ⩾ (t− τ)(1 + ch(c1(t− τ))/(2c21) = σ2(t− τ), t ⩾ τ ⩾ 0,

let us write the integral inequality (24) in the form

∥W (t)∥C ≤ σ3(t) + 2σ5(t)

∫ t

0

σ4(τ)f(∥W (τ)∥C)dτ. (25)

From inequality (25), we derive [3] an estimate of the norm in the space C[R] of the solution of equation (20)
on the segment [0, t1]:

∥W (t)∥C ≤ σ3(t)Φ
−1(Ψ(t)) = σ6(t),

where

Ψ(t) = Φ(1) + 2σ5(t)

∫ t

0

σ4(τ)
χ(σ3(τ))

σ3(τ)
dτ,

Φ(ξ) =
∫ ξ

ξ0
|f(s)|−1ds for ξ0, ξ > 0; Φ−1 is the inverse function to Φ, the segment [0, t1] ⊂ [0, t0) is defined by

those values t for which the values of the functionΨ(t) belong to the region of existence Dom(Φ−1) of the inverse
function Φ−1.
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Thus, there is
Theorem 2. Let the function f satisfy the conditions (2), and the initial functions φ(x), ψ(x) of the Cauchy problem

(4), (5) belong to the space C[R] together with their derivatives up to the fifth order inclusive, then on the segment [0, t1]
there exists a single classical solution u = u(t, x) of this problem in the space C[R], for which the estimation is valid

sup
x∈R

|v(t, x)| = sup
x∈R

|ux(t, x)| ≤ e−(α2−α1/
√
δ−|α2−α1/

√
δ|)t/2σ6(t) = σ7(t), t ∈ [0, t1].

4. RELATIONSHIP BETWEEN SOLUTIONS OF EQUATIONS (1) AND (4)

Further, we will assume that the solution of equation (1) belongs to the intersection of the space C[R] with the
space L2(R) of functions with integrable square.

Recall that the scalar product and norm in L2(R) are defined by the formulas (φ,ψ) =
∫ +∞
−∞ φ(x)ψ(x)dx and

∥φ∥2 =
(∫ +∞

−∞ |φ(x)|2dx
)1/2

, respectively, and that for functions g(x) belonging to the intersection of the space
of continuous bounded functions C(R) with the Sobolev spaceW 1

2 (R), the following estimate is valid

∥g∥C ≤ ∥g∥W 1
2
=

(∫ +∞

−∞
[(g(x))2 + (g′(x))2]dx

)1/2

, (26)

and if g(x) ∈ C(2)(R), then [8] the limits of the functions g(x), g′(x) at x → ±∞ are zero.
Lemma. From the existence of a local classical solution v = v(t, x), t ∈ [0, t1], of equation (4) follows the existence

of a corresponding solution of

u = u(t, x) = lim
x0→−∞

∫ x

x0

v(t, s)ds =

∫ x

−∞
v(t, s)ds (27)

of equation (1) on the same time interval [0, t1] if the conditions are fulfilled

u(t, x) ∈ C(4)[R] ∩W 4
2 (R), ut(t, x), utt(t, x) ∈ C(2)[R] ∩W 2

2 (R), t ∈ [0, t1]. (28)

Proof. First of all, we note that from conditions (28), the limit equalities follow

lim
x→±∞

∂k
xu(t, x) = 0, k = 0, 4;

lim
x→±∞

∂n
t ∂

m
x u(t, x) = 0, n = 1, 2, m = 0, 2; t ∈ [0, t1]. (29)

Let v = v(t, x) be the classical solution of equation (4) on the time segment [0, t1]. Then, using relations (29),
we obtain the equations

∫ x

−∞
∂i
t∂

j
sv(t, s)ds =

∫ x

−∞
(∂i

t∂
j
su(t, s))sds = ∂i

t∂
j
xu(t, x)− lim

s→−∞
∂i
t∂

j
su(t, s) = ∂i

t∂
j
xu(t, x).

Further, by virtue of continuity of the function f ′, we have
∫ x

−∞
∂2
sf(v(t, s))ds = (f(ux(t, x)))x − f ′

(
lim

x0→−∞
ux(t, x0)

)
lim

x0→−∞
uxx(t, x0) = uxx(t, x)f

′(ux(t, x)).

Now, using the obtained representations and substituting function (27) into equation (1), we obtain the identity
equality on the segment [0, t1], whence it follows that function (27) is a solution of equation (1). The lemma is
proved.

Remark 2. From the conditions (28) for the solution of the Cauchy problem (1), (3) u = u(t, x), the conditions
that the initial functions must satisfy are required to follow:

φ(x) ∈ C(4)[R] ∩W 4
2 (R), ψ(x) ∈ C(2)[R] ∩W 2

2 (R). (30)
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From relation (35) it follows that the energy functional E(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) ≡ E0, (36)

where

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 − β1∥φ′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx

is the initial energy.
Let us require that the initial energy is non-negative: E0 ≥ 0, i.e., the inequality

δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx ≥ β1∥φ′∥22,

where the function F (φ′(x)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 + γ∥u∥22+

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22ds = E0 + β1∥ux∥22. (37)

Suppose that
F (η) ≥ 0, η ∈ R, (38)

then from equality (37), reducing the left part, we obtain

z(t) ≤ E0 + β1(δ∥u∥22 + ∥ux∥22) = E0 + β1y(t), t ∈ [0, t1]. (39)

From inequalities (32) and (39), the integral inequality follows

y(t) ≤ E0t+ y(0) + (1 + β1)

∫ t

0

y(s)ds, t ∈ [0, t1]. (40)

Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral

y(t) ≤
(

E0

1 + β1
+ y(0)

)
e(1+β1)t = σ8(t), (41)

true on the entire positive semi-axis of t ∈ R+, and hence the classical solution of u = u(t, x) at t ∈ R+ belongs
to the Sobolev spaceW 1

2 (R):

∥u∥2W 1
2
= ∥u∥22 + ∥ux∥22 ≤

{(
1 + 1−δ

δ

)
y(t) ≤ 1

δσ8(t), 0 < δ < 1,

δ∥u∥22 + ∥ux∥22 = y(t) ≤ σ8(t), δ ≥ 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t, x), t ∈ R+ of the Cauchy
problem (1), (3) in the space C[R]:

∥u∥C = sup
x∈R

|u(t, x)| ≤ ∥u∥W 1
2
≤

{√
σ8(t)
δ , 0 < δ < 1,√

σ8(t), δ ≥ 1,

ensuring the existence of a global solution. The theorem is proved.

5. EXISTENCE OF A GLOBAL SOLUTION OF THE CAUCHY PROBLEM FOR EQ. (1)

Consider the so-called energy integral for equation (1):

y(t) = δ(u, u) + (ux, ux) =

∫ +∞

−∞
(δu2 + u2

x)dx, t ∈ [0, t1]. (31)

Applying the Cauchy-Bunyakovsky inequality |(φ,ψ)| ≤ ∥φ∥2∥ψ∥2 to the derivative of the energy integral
y′(t) = 2(δ(ut, u) + (utx, ux)), we derive an auxiliary estimate on the segment t ∈ [0, t1]:

y′(t) ≤ y(t) + z(t), (32)

where

z(t) = δ(ut, ut) + (utx, utx) =

∫ +∞

−∞
(δu2

t + u2
tx)dx, t ∈ [0, t1], (33)

is the second integral of energy for equation (1).
Theorem 3. Let the conditions of lemma and theorem 2 be satisfied and let the parameters αi, βi, i = 1, 2, γ, δ of

equation (1), the nonlinearity f and the initial functions φ(x), ψ(x) satisfy conditions (30) and

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx− β1∥φ′∥22 ≥ 0;

F (η) =

∫ η

0

f(s)ds ≥ 0, η ∈ R; F (φ′(x)) ∈ L(R).

Then, there exists a single global solution of the Cauchy problem (1), (3) and for it the estimation is valid

sup
x∈R

|u(t, x)| ≤

{√
c2/δe

(1+β1)t/2, 0 < δ < 1,
√
c2e

(1+β1)t/2, δ ≥ 1,
t ≥ 0,

where
c2 =

(
E0 + (1 + β1)(δ∥φ∥22 + ∥φ′∥22)

)
/(1 + β1).

Proof. Multiply both parts of equation (1) by the partial time derivative ut = ut(t, x) and integrate from−∞ to
+∞. Then, integrating by parts and taking into account, by virtue of (29), the equality to zero outside the integral
summands, we obtain

δ

2

d

dt
∥ut∥22 + (uttx, utx) + α2(utx, utx)−

α1

2

∫ +∞

−∞
(u2

t )xdx +

+ β2(uxx, utxx)− β1(ux, utx) +
γ

2

d

dt
∥u∥22 + (f(ux), utx) = 0. (34)

Let us introduce the potential F (η) =
∫ η

0
f(s)ds, generated by the nonlinearity f of equation (1), and, taking

into account that
∫ +∞
−∞ (u2

t )xdx = u2
t |+∞

−∞ = 0, we rewrite the equality (34) as

1

2

d

dt
E(t) = 0, (35)

where

E(t) = δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 − β1∥ux∥22 + γ∥u∥22 +

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22dτ

is the energy functional of equation (1).
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From relation (35) it follows that the energy functional E(t) does not depend on time, then, integrating both
parts of (35), we obtain the conservation law

E(t) = E(0) ≡ E0, (36)

where

E0 = δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 − β1∥φ′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx

is the initial energy.
Let us require that the initial energy is non-negative: E0 ≥ 0, i.e., the inequality

δ∥ψ∥22 + ∥ψ′∥22 + β2∥φ′′∥22 + γ∥φ∥22 + 2

∫ +∞

−∞
F (φ′(x))dx ≥ β1∥φ′∥22,

where the function F (φ′(x)) belongs to the space L(R) of functions absolutely integrable on R.
From the conservation law (36) we deduce

δ∥ut∥22 + ∥utx∥22 + β2∥uxx∥22 + γ∥u∥22+

+ 2

∫ +∞

−∞
F (ux)dx+ 2α2

∫ t

0

∥usx∥22ds = E0 + β1∥ux∥22. (37)

Suppose that
F (η) ≥ 0, η ∈ R, (38)

then from equality (37), reducing the left part, we obtain

z(t) ≤ E0 + β1(δ∥u∥22 + ∥ux∥22) = E0 + β1y(t), t ∈ [0, t1]. (39)

From inequalities (32) and (39), the integral inequality follows

y(t) ≤ E0t+ y(0) + (1 + β1)

∫ t

0

y(s)ds, t ∈ [0, t1]. (40)

Applying to (40) Gronwall’s lemma [9, § 1, formula (1.10)], we obtain an estimate of the first energy integral

y(t) ≤
(

E0

1 + β1
+ y(0)

)
e(1+β1)t = σ8(t), (41)

true on the entire positive semi-axis of t ∈ R+, and hence the classical solution of u = u(t, x) at t ∈ R+ belongs
to the Sobolev spaceW 1

2 (R):

∥u∥2W 1
2
= ∥u∥22 + ∥ux∥22 ≤

{(
1 + 1−δ

δ

)
y(t) ≤ 1

δσ8(t), 0 < δ < 1,

δ∥u∥22 + ∥ux∥22 = y(t) ≤ σ8(t), δ ≥ 1.

Now, using inequalities (26) and (41), we obtain an estimate of the solution u = u(t, x), t ∈ R+ of the Cauchy
problem (1), (3) in the space C[R]:

∥u∥C = sup
x∈R

|u(t, x)| ≤ ∥u∥W 1
2
≤

{√
σ8(t)
δ , 0 < δ < 1,√

σ8(t), δ ≥ 1,

ensuring the existence of a global solution. The theorem is proved.
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where w(x) is an arbitrary function from C[R], for which the functions F (w(x)) and w(x)f(w(x)) belong to the
space L1(R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

2

∣∣∣∣∣
+∞∫

−∞

F (ux) dx

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
+∞∫

−∞

f(ux) du(x)

∣∣∣∣∣ =
∣∣∣∣∣u(x)f(ux)|+∞

−∞ −
+∞∫

−∞

uf ′(ux)uxx dx

∣∣∣∣∣ ≤

≤ 2|(uf ′(ux), uxx)| ≤ 2∥uf ′(ux)∥2∥uxx∥2 ≤ ∥uf ′(ux)∥22 + ∥uxx∥22 ≤

≤ sup
x∈R

(f ′(ux))
2

+∞∫

−∞

u2
2 dx+ ∥uxx∥22 ≤ (f ′(σ7(t)))

2∥u∥22 + ∥uxx∥22 = σ9(t)∥u∥22 + ∥uxx∥22,

whence follows the inequality

2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ ≤ c6∥u∥22 + ∥uxx∥22, t ∈ [0, t2]. (45)

Applying the estimation (45) to the relation (43) under the condition

β2 > 1, (46)

we obtain the inequality

∥uxx∥22 ≤ E0

β2 − 1
+

β1 + c6
β2 − 1

y(t)− 1

β2 − 1
z(t), t ∈ [0, t2],

using which we increase the right part of the estimate (42):

∥utt∥22 ≤ c5
β2 − 1

E0 +

(
3c4 + c5

(β1 + c6)

β2 − 1

)
y(t) +

(
3c3 −

c5
β2 − 1

)
z(t), t ∈ [0, t2].

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

y′′(t) + 2(utt, uxx)− 2δ(utt, u) = 2z(t).

Using the estimates

2(utt, uxx) ≤ 2|(utt, uxx)| ≤ ∥utt∥22 + ∥uxx∥22 ≤ 3c3z(t) + 3c4y(t) + (c5 + 1)∥uxx∥22 ≤

≤ c5 + 1

β2 − 1
E0 +

(
3c4 + (c5 + 1)

β1 + c6
β2 − 1

)
y(t) +

(
3c3 −

c5 + 1

β2 − 1

)
z(t),

−2δ(utt, u) ≤ 2δ|(utt, u)| ≤ δ∥utt∥22 + δ∥u∥22 ≤ 3δc3z(t) + δ(3c4 + 1)y(t) + δc5∥uxx∥22 ≤

≤ δc5
β2 − 1

E0 + δ

(
3c4 + 1 + c5

β1 + c6
β2 − 1

)
y(t) + δ

(
3c3 −

c5
β2 − 1

)
z(t),

increase the left side of it:
y′′(t) + c7 + c8y(t) ≥ c9z(t), t ∈ [0, t2], (47)

where

c7 =
(δ + 1)c5 + 1

β2 − 1
E0, c8 = 3(δ+1)c4 + δ+((δ+1)c5 +1)

(β1 + c6)

β2 − 1
, c9 = 2+

(δ + 1)c5 + 1

β2 − 1
− 3(δ+1)c3.

Let us now reduce the right-hand side of inequality (47):

y(t)y′′(t)− c9
4
(y′(t))2 + c7y(t) + c8y

2(t) ≥ 0, t ∈ [0, t2]. (48)

6. DECOMPOSITIONOF THE SOLUTIONOF THE CAUCHY PROBLEMFOR EQ. (1)

Let us find sufficient conditions for the occurrence of a gap of the second kind for the energy integral (31) on
the segment [0, t2] ⊆ [0, t1], that we choose so that the inequality y(t) > 0, following from the initial condition
y(0) = δ∥φ∥22 + ∥φ′∥22 > 0, holds.

Applying the Cauchy-Bunyakovsky inequality to the square of the derivative of the energy integral y(t) on the
segment t ∈ [0, t2], we have

[y′(t)]2 ≤ 4y(t)z(t).

Let us derive an estimate of the square of the norm of the partial derivative utt, using the representation of
equation (1) in an equivalent form

utt = −A1ut −A2u+ (δI − ∂2
x)

−1uxxf
′(ux),

obtained by acting on both parts of equation (1) by a linear bounded operator (δI − ∂2
x)

−1. For this purpose, we
obtain auxiliary estimates

∥uxxf
′(ux)∥22 ≤ sup

x∈
(f ′(ux))

2

+∞∫

−∞

u2
xx dx ≤

(
f ′
(
sup
x∈

|ux|
))2

∥uxx∥22 ≤ σ9(t)∥uxx∥22,

where σ9(t) = (f ′(σ7(t)))
2 — is a continuous function on the segment [0, t1];

∥A1ut∥22 ≤
∥∥α2ut − (α2

√
δ − α1)

√
δ(δI − ∂2

x)
−1ut − α1(

√
δI − ∂x)

−1ut

∥∥2
2
≤

≤
(
α2∥ut∥2 +

∣∣∣∣α2 −
α1√
δ

∣∣∣∣∥ut∥2 +
α1√
δ
∥ut∥2

)2

≤ c3∥ut∥22 ≤ c3z(t),

where c3 = (α2 + α1/
√
δ + |α2 − cα1/

√
δ|)2;

∥A2u∥22 ≤
∥∥−β2∂

2
xu− (β2δ + β1)u+ (β2δ

2 + β1δ + γ)(δI − ∂2
x)

−1u
∥∥2
2
≤

≤
(
β2∥uxx∥2 + (β2δ + β1)∥u∥2 +

(
β2δ + β1 + γ/δ

)
∥u∥2

)2 ≤

≤ 2
(
β2
2∥uxx∥22 +

(
2(β2δ + β1) + γ/δ

)2∥u∥22
)
≤ 2β2

2∥uxx∥22 + c4y(t),

where c4 = 2(2(β2δ + β1) + γ/δ)2.
Taking them into account, we have

∥utt∥22 ≤
(
∥A1ut∥2 + ∥A2u∥2 + ∥(δI − ∂2

x)
−1uxxf

′(ux)∥2
)2 ≤

≤ 3

(
∥A1ut∥22 + ∥A2u∥22 +

1

δ2
∥uxxf

′(ux)∥22
)

≤ 3

(
c3z(t) + 2β2

2∥uxx∥22 + c4y(t) +
σ9(t)

δ2
∥uxx∥22

)
,

whence follows the inequality

∥utt∥22 ≤ 3c3z(t) + 3c4y(t) + c5∥uxx∥22, t ∈ [0, t2], (42)

where c5 = 6β2
2 + 3c6δ

2, c6 = maxt∈[0,t1] σ9(t).
Let’s return to the conservation law (37) and obtain the relation from it

z(t) + β2∥uxx∥22 + γ∥u∥22 + 2α2

∫ t

0

∥usx∥22ds ≤ E0 + β1∥ux∥22 + 2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ . (43)

Earlier, when proving the existence of a global solution, we assumed the fulfillment of condition (38) – non-
negativity of the potential F (η) on the whole numerical axis η ∈ R. Now, when considering the destruction of the
solution, we require to fulfill the inequality for the nonlinearity f

∣∣∣∣∣
∫ +∞

−∞
dx

∫ w(x)

0

f(s)ds

∣∣∣∣∣ ≤
∣∣∣∣
∫ +∞

−∞
w(x)f(w(x))dx

∣∣∣∣ , (44)
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where w(x) is an arbitrary function from C[R], for which the functions F (w(x)) and w(x)f(w(x)) belong to the
space L1(R).

Using inequality (44), we evaluate the integral in the right-hand side of (43). Integrating by parts, applying the
limit equality (29) and the Cauchy-Bunyakovsky inequality, we have

2

∣∣∣∣∣
+∞∫

−∞

F (ux) dx

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
+∞∫

−∞

f(ux) du(x)

∣∣∣∣∣ =
∣∣∣∣∣u(x)f(ux)|+∞

−∞ −
+∞∫

−∞

uf ′(ux)uxx dx

∣∣∣∣∣ ≤

≤ 2|(uf ′(ux), uxx)| ≤ 2∥uf ′(ux)∥2∥uxx∥2 ≤ ∥uf ′(ux)∥22 + ∥uxx∥22 ≤

≤ sup
x∈R

(f ′(ux))
2

+∞∫

−∞

u2
2 dx+ ∥uxx∥22 ≤ (f ′(σ7(t)))

2∥u∥22 + ∥uxx∥22 = σ9(t)∥u∥22 + ∥uxx∥22,

whence follows the inequality

2

∣∣∣∣
∫ +∞

−∞
F (ux)dx

∣∣∣∣ ≤ c6∥u∥22 + ∥uxx∥22, t ∈ [0, t2]. (45)

Applying the estimation (45) to the relation (43) under the condition

β2 > 1, (46)

we obtain the inequality

∥uxx∥22 ≤ E0

β2 − 1
+

β1 + c6
β2 − 1

y(t)− 1

β2 − 1
z(t), t ∈ [0, t2],

using which we increase the right part of the estimate (42):

∥utt∥22 ≤ c5
β2 − 1

E0 +

(
3c4 + c5

(β1 + c6)

β2 − 1

)
y(t) +

(
3c3 −

c5
β2 − 1

)
z(t), t ∈ [0, t2].

Let us calculate the second order derivative of the functional (31) and express its value through the second
integral of energy (33):

y′′(t) + 2(utt, uxx)− 2δ(utt, u) = 2z(t).

Using the estimates

2(utt, uxx) ≤ 2|(utt, uxx)| ≤ ∥utt∥22 + ∥uxx∥22 ≤ 3c3z(t) + 3c4y(t) + (c5 + 1)∥uxx∥22 ≤

≤ c5 + 1

β2 − 1
E0 +

(
3c4 + (c5 + 1)

β1 + c6
β2 − 1

)
y(t) +

(
3c3 −

c5 + 1

β2 − 1

)
z(t),

−2δ(utt, u) ≤ 2δ|(utt, u)| ≤ δ∥utt∥22 + δ∥u∥22 ≤ 3δc3z(t) + δ(3c4 + 1)y(t) + δc5∥uxx∥22 ≤

≤ δc5
β2 − 1

E0 + δ

(
3c4 + 1 + c5

β1 + c6
β2 − 1

)
y(t) + δ

(
3c3 −

c5
β2 − 1

)
z(t),

increase the left side of it:
y′′(t) + c7 + c8y(t) ≥ c9z(t), t ∈ [0, t2], (47)

where

c7 =
(δ + 1)c5 + 1

β2 − 1
E0, c8 = 3(δ+1)c4 + δ+((δ+1)c5 +1)

(β1 + c6)

β2 − 1
, c9 = 2+

(δ + 1)c5 + 1

β2 − 1
− 3(δ+1)c3.

Let us now reduce the right-hand side of inequality (47):

y(t)y′′(t)− c9
4
(y′(t))2 + c7y(t) + c8y

2(t) ≥ 0, t ∈ [0, t2]. (48)
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We require that the coefficient at the square of the derivative in inequality (48) be greater than one, i.e., we
require the inequality c9/4 > 1 or (in the detailed notation)

6(δ + 1)β2
2 − (2 + 3(δ + 1)c3)β2 + 3(δ + 1)(c6/δ

2 + c3) + 3 > 0. (49)

Two cases arise here: if the discriminant of the quadratic trinomial

D1 = D1(δ, c3, c6) = (2 + 3(δ + 1)c3)
2 − 72(δ + 1)((δ + 1)(c6/δ

2 + c3) + 1) < 0, (50)

then inequality (49) is valid for all values of β2 > 1; IfD1 ≥ 0, then inequality (49) holds at

1 < β2 <
2 + 3(δ + 1)c3 −

√
D1(δ, c3, c6)

12(δ + 1)
or β2 >

2 + 3(δ + 1)c3 +
√
D1(δ, c3, c6)

12(δ + 1)
. (51)

From condition (50), follows the inequality

9c23 − 12

(
6− 1

(δ + 1)2

)
c3 − 72

c6
δ2

− 72(δ + 1)− 4

(δ + 1)2
< 0, (52)

and the discriminant of the quadratic trinomial

D2 = D2(δ, c6) = 36
(
6− (δ + 1)−2

)2
+ 648(δ−2c6 + (δ + 17/18)(δ + 1)−2) ≥ 0,

therefore inequality (52), and hence (50), is satisfied at

0 < c3 =

(
α2 +

α1√
δ
+

∣∣∣∣α2 −
α1√
δ

∣∣∣∣
)2

<
6(6− (δ + 1)−2) +

√
D2(δ, c6)

9
, (53)

i.e., if condition (53) is satisfied, the inequality c9/4 > 1 is valid for any value of the parameter β2 > 1.
In the case of D1 ≥ 0, inequality (49) is satisfied for parameter values satisfying conditions (51), in which the

values δ, c3 and c6 are related by the relation

(α2 + α1/
√
δ + |α2 − α1/

√
δ|)2 ≥

6(6− (δ + 1)−2) +
√

D2(δ, c6)

9
.

Comparing inequality (48) with one of the basic ordinary differential inequalities for the energy integral [10,
Appendix A, § 5], we conclude that if the initial conditions are fulfilled

(δ(φ,ψ) + (φ′, ψ′))2 >

(
c8

c9 − 4
(δ∥φ∥22 + ∥φ′∥22) +

c7
c9 − 2

)
(δ∥φ∥22 + ∥φ′∥22), (54)

then the time t2 of existence of the solution of the Cauchy problem (1), (3) cannot be arbitrarily large, namely,
there is an estimate from above

t2 ≤ T∞ ≤ 1

c10(δ∥φ∥22 + ∥φ′∥22)(c9−4)/4
, (55)

where

c210 =
(c9 − 4)2

4(δ∥φ∥22 + ∥φ′∥22)c9/2

(
(δ(φ,ψ) + (φ′, ψ′))2 −

(
c8(δ∥φ∥22 + ∥φ′∥22)

c9 − 4
+

c7
c9 − 2

)
(δ∥φ∥22 + ∥φ′∥22)

)
> 0,

and for the functionality of y(t), it is fair to estimate from below

y(t) =

∫ +∞

−∞
(δu2 + u2

x)dx ≥ 1

((δ∥φ∥22 + ∥φ′∥22)(c9−4)/4 − c10t)4/(c9−4)
, (56)

and, hence, there is no time-global solution of the Cauchy problem (1), (3).
Thus, the following theorem is proven
Theorem 4. Let the conditions of lemma and theorem 2 be satisfied and let the parameters αi, βi, i = 1, 2, γ, δ

of equation (1), the nonlinearity f and the initial functions φ(x), ψ(x) satisfy conditions (30), (44), (46), (49), (54),
respectively, then the time t2 of existence of the solution u(t, x) of the Cauchy problem (1), (3) cannot be arbitrarily large,
namely it is bounded from above and the estimation (55) takes place, and for the energy integral y(t) the estimation from
below (56) is valid.
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