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Abstract. In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum of
an orthogonal series. When justifying the convergence of a series, the problem of small denominators from
two natural arguments arose for the first time. An estimate for separation from zero with the corresponding
asymptotics was established, which made it possible to prove the convergence of the series in the class of regular
solutions and the stability of the solution.
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1. INTRODUCTION. PROBLEM STATEMENT

Consider the wave equation
Lu ≡ utt − a2(uxx + uyy)− bu = 0 (1)

in the cylinder Q = {(x, y, t) : (x, y) ∈ D, 0 < t < T}, whereD = {(x, y) : x2 + y2 < l2}; a > 0, b, T > 0 and
l > 0 are given real constants, and we set the first boundary value problem.

It is required to find the function u(x, y, t), satisfying the following conditions:

u(x, y, t) ∈ C1(Q) ∩ C2(Q); (2)

Lu(x, y, t) ≡ 0, (x, y, t) ∈ Q; (3)

u(x, y, t)|x2+y2=l2 = 0, 0 ≤ t ≤ T ; (4)

u(x, y, 0) = τ(x, y), u(x, y, T ) = ψ(x, y), (x, y) ∈ D, (5)

where τ(x, y) and ψ(x, y) are given sufficiently smooth functions satisfying the matching conditions with the
boundary condition (4).

It is known that the Dirichlet problem for hyperbolic type equations is incorrectly posed. S L. Sobolev showed
[1], that the study of unstable oscillations (resonances of oscillations in the liquid inside thin-walled rocket tanks
with natural oscillations) is closely related to the Dirichlet problem for the wave equation. In a better known form,
this connection is shown in the book byV. I. Arnold [2, p. 132]. A rather complete reviewof theworks devoted to the
study of the Dirichlet problem for hyperbolic equations is given in the monograph by B. I. Ptashnik [3, pp. 89–95]
and in the works [4; 5, pp. 112–118] by the author.

The works of R. Denchev [6–8] are devoted to the study of the Dirichlet problem for equation (1) at b = 0,
a = 1 with a non-zero right part and homogeneous conditions on the boundary of the region Ω, when Ω is an
ellipsoid, a cylinder with formations parallel to the axis t, and a parallelepiped. They also establish the criterion of
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R′′(r) +
1

r
R′(r) +

(
λ2 − p2

r2

)
R(r) = 0, 0 < r < l, (12)

|R(0)| < +∞, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula

Φn(φ) = an cos(nφ) + bn sin(nφ),

where an, bn are arbitrary constants, n = 0, 1, 2, . . . At p = n, the general solution of equation (12) has the form

Rn(r) = cnJn(λr) + dnYn(λr),

here cn and dn are arbitrary constants, Jn(λr) and Yn(λr) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that dn = 0, and the second condition gives the equation

Jn(q) = 0, q = λl,

that, as it is known, has a countable set of positive roots qnm, n = 0, 1, 2, . . ., m = 1, 2, . . ., and eigenvalues
corresponding to them

λnm =
qnm
l

, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

and eigenfunctions
R̃nm(r) = Jn(λnmr) = Jn

(qnm
l

r
)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

Φn(φ) =

{
1√
2π

,
1√
π
cos(nφ),

1√
π
sin(nφ)

}
, (14)

orthonormalized, complete and forming a basis in the space L2(0, 2π), and the spectral problem (12), (13) – a
system of eigenfunctions

Rnm(r) =
Jn(λnmr)

∥Jn(λnmr)∥L2(0,l)
=

√
2

l

Jn(λnmr)

|Jn+1(qnm)|
, (15)

complete and an orthonormalized basis in L2(0, l) with weight r.
Then, the spectral problem (7)–(9) has eigenvalues λ2

nm = b
a2 + µ2

nm =
(
qnm

l

)2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

vnm(r, φ) =

{
1√
2π

R0m(r),
1√
π
Rnm(r) cos(nφ),

1√
π
Rnm(r) sin(nφ)

}
, (16)

that is complete and forms an orthonormalized basis in the space L2(D) with weight r.
Further, we will assume that b ≥ 0, because if b < 0, then, starting from some numbers n > n0 or m > m0,

the right part of λ2
nm = b

a2 + µ2
nm, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, φ, t) be the solution of problem (2)–(5). Based on the system (16) we introduce the functions

A0m(t) =
1√
2π

∫∫

D

u(r, φ, t)R0m(r)r dr dφ, (17)

Anm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ, (18)

Bnm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ. (19)

Differentiating equality (18) by t twice and considering equation (6), we obtain

singularity and existence of the solution of the problem in the Sobolev spaceW 1
2 (Ω) under certain conditions on

the right part related to the convergence of numerical series, while the arising small denominators are not studied.
In [9], for amultidimensional equationwith awave operator in the cylindrical domainD×(0, T ), the conditions√

λkT ̸= mπ, where k,m ∈ N, under which the uniqueness theorem of the solution of the Dirichlet problem takes
place, were found. Here, λk are the eigenvalues of the corresponding spectral problem in the domainD.

In the monograph by B. I. Ptashnik [3, pp. 95–101], the Dirichlet problem in (p + 1)-dimensional paral-
lelepiped Q = [0, T ] × Π, where Π = {x ∈ Rp : 0 ≤ xr ≤ π, r = 1, p}, for a strictly hyperbolic equation of even
order 2n with constant coefficients is also studied. The solution of the problem is determined by p-dimensional
Fourier series. A criterion for the uniqueness of the solution in C2n(Q) is established. For a series of inequalities
expressing the evaluation of small denominators with the corresponding asymptotics, the justification of conver-
gence of the series in the specified class is given. It is not shown for what numbers of the form π/T these estimates
take place, only it is noted that the set of numbers π/T , for which they are not fulfilled, is the set of zero Lebesgue
measure.

In the paper by V. P. Bursky [10], a necessary and sufficient condition for the trivial solvability of the homoge-
neous Dirichlet problem in a unit ballB centered at the origin of coordinates in space C2(B) for an equation with
complex is obtained:

uxx + uyy − a2uzz = 0.

In theworks of S. A. Aldashev [11–14], theDirichlet problem and the problemwithmixed boundary conditions
in the cylindrical domainQ (where l = 1, T = α) for multidimensional hyperbolic equations with a wave operator
are studied; the solutions of the problems are constructed as a sum of Fourier series in the spherical coordinate
system. But because of the arising small denominators, one cannot assume that these series converge in the space
C1(Q) ∩ C2(Q). When proving the singularity theorems, questions also arise about the uniform convergence of
the series used, since they contain small denominators.

In this paper, in the class of regular solutions of equation (1), i.e., satisfying conditions (2) and (3), the criterion
of uniqueness of the solution of problem (2)–(5) is established and the solution itself is constructed in explicit form
– sums of Fourier series. When justifying the convergence of the series, the problem of small denominators arose,
as in the well-known works of V. I. Arnold [15, 16] and V. V. Kozlov [17], but from two natural arguments. In this
connection, we establish estimates of the separability from zero of small denominators, on the basis of which we
prove the convergence of the series in the class of functionsC2(Q) under some conditions concerning the functions
τ(x, y) and ψ(x, y) and also obtain estimates of the stability of the solution.

2. UNIQUENESS CRITERION FOR THE SOLUTION OF THE DIRICHLET
PROBLEM

In the cylindrical coordinate system x = r cosφ, y = r sinφ, t = t, 0 ≤ r < l, 0 ≤ φ ≤ 2π, equation (1) will
take the following form

urr +
1

r
ur +

1

r2
uφφ +

b

a2
u =

1

a2
utt. (6)

Dividing the variables u(r, φ, t) = v(r, φ)T (t) in equation (6), we obtain the following spectral problem with
respect to the function v(r, φ):

vrr +
1

r
vr +

1

r2
vφφ + λ2v = 0, (7)

v(l, φ) = 0, (8)

|v(0, φ)| < +∞, v(r, φ) = v(r, φ+ 2π), (9)

where λ2 = b
a2 + µ2, µ is the variable separation constant.

The solution of the problem (7)–(9) is similar [18, p. 215]: we will look for in the form of v(r, φ) = R(r)Φ(φ)
and obtain two one-dimensional spectral problems:

Φ′′(φ) + p2Φ(φ) = 0, 0 ≤ φ ≤ 2π, (10)

Φ(φ) = Φ(φ+ 2π), Φ′(φ) = Φ′(φ+ 2π); (11)
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R′′(r) +
1

r
R′(r) +

(
λ2 − p2

r2

)
R(r) = 0, 0 < r < l, (12)

|R(0)| < +∞, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula

Φn(φ) = an cos(nφ) + bn sin(nφ),

where an, bn are arbitrary constants, n = 0, 1, 2, . . . At p = n, the general solution of equation (12) has the form

Rn(r) = cnJn(λr) + dnYn(λr),

here cn and dn are arbitrary constants, Jn(λr) and Yn(λr) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that dn = 0, and the second condition gives the equation

Jn(q) = 0, q = λl,

that, as it is known, has a countable set of positive roots qnm, n = 0, 1, 2, . . ., m = 1, 2, . . ., and eigenvalues
corresponding to them

λnm =
qnm
l

, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

and eigenfunctions
R̃nm(r) = Jn(λnmr) = Jn

(qnm
l

r
)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

Φn(φ) =

{
1√
2π

,
1√
π
cos(nφ),

1√
π
sin(nφ)

}
, (14)

orthonormalized, complete and forming a basis in the space L2(0, 2π), and the spectral problem (12), (13) – a
system of eigenfunctions

Rnm(r) =
Jn(λnmr)

∥Jn(λnmr)∥L2(0,l)
=

√
2

l

Jn(λnmr)

|Jn+1(qnm)|
, (15)

complete and an orthonormalized basis in L2(0, l) with weight r.
Then, the spectral problem (7)–(9) has eigenvalues λ2

nm = b
a2 + µ2

nm =
(
qnm

l

)2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

vnm(r, φ) =

{
1√
2π

R0m(r),
1√
π
Rnm(r) cos(nφ),

1√
π
Rnm(r) sin(nφ)

}
, (16)

that is complete and forms an orthonormalized basis in the space L2(D) with weight r.
Further, we will assume that b ≥ 0, because if b < 0, then, starting from some numbers n > n0 or m > m0,

the right part of λ2
nm = b

a2 + µ2
nm, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, φ, t) be the solution of problem (2)–(5). Based on the system (16) we introduce the functions

A0m(t) =
1√
2π

∫∫

D

u(r, φ, t)R0m(r)r dr dφ, (17)

Anm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ, (18)

Bnm(t) =
1√
π

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ. (19)

Differentiating equality (18) by t twice and considering equation (6), we obtain
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where
τ̃nm =

1√
π

∫∫

D

τ(r, φ)Rnm(r) sin(nφ)r dr dφ, (30)

ψ̃nm =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) sin(nφ)r dr dφ. (31)

Now let us differentiate equality (17) twice by t and, similarly, on the basis of equation (6) we obtain that the
function A0m(t) is a solution of the differential equation

A′′
0m(t) + a2µ2

0mA0m(t) = 0.

From here (by analogy with the function Anm(t)), we find

A0m(t) = τ0m
sin(aµ0m(T − t))

sin(aµ0mT )
+ ψ0m

sin(aµ0mt)

sin(aµ0mT )
(32)

provided sin(µ0mT ) ̸= 0 for allm ∈ N, where

τ0m =
1√
2π

∫∫

D

τ(r, φ)R0m(r)r dr dφ, (33)

ψnm =
1√
2π

∫∫

D

ψ(r, φ)R0m(r)r dr dφ. (34)

Now let us prove the uniqueness of the solution of problem (2)–(5). Let τ(x, y) = ψ(x, y) ≡ 0 and conditions
(27) be satisfied for all m ∈ N and n ∈ N0 = N ∪ {0}. Then, by virtue of equations (25), (26), (30), (31), (33)
and (34) all τnm = 0, τ̃nm = 0, ψnm = 0, ψ̃nm = 0, at n = 0, 1, 2, . . ., m = 1, 2, . . . Hence and on the basis of
formulas (32), (29), (28) and (17)–(19) we have the following equations

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ = 0,

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ = 0

at all n = 0, 1, 2, . . ., m = 1, 2, . . ., t ∈ [0, T ]. From these equalities, based on the completeness of the system
of functions (16) in the space L2(D) with weight r, it follows that u(r, φ, t) = 0 is almost everywhere in D at any
t ∈ [0, T ]. Since by virtue of (2) the function u(r, φ, t) is continuous inQ, then u(r, φ, t) ≡ 0 inQ.

Suppose for some n = n0 orm = m0 the expression∆n0m(T ) = 0 or∆nm0
(T ) = 0. For definiteness, suppose

that∆n0m(T ) = 0. Then the homogeneous problem (2)–(5) (τ(x, y) = ψ(x, y) ≡ 0) has a nonzero solution

un0m(r, φ, t) = sin(aµn0mt) (a0mR0m(r) + an0mRn0m(r) cos(n0φ) + bn0mRn0m(r) sin(n0φ)) , (35)

where a0m, an0m and bn0m are arbitrary constants.
Consider the zeros of the expression∆nm(T ). Equality

∆nm(T ) = sin(aµnmT ) = 0

only takes place when

T =
πk

aµnm
, k ∈ N. (36)

So,∆nm(T ) goes to zero when T is determined by formula (36).
Thus, the criterion of uniqueness of the solution of problem (2)–(5) is established.
Theorem 1. If there exists a solution of problem (2)–(5), then it is singular if and only if conditions (27) are satisfied

at all n andm.

A′′
nm(t) =

1√
π

∫∫

D

utt(r, φ, t)Rnm(r) cos(nφ)r dr dφ =

=
a2√
π

∫∫

D

(
urr +

1

r
ur +

1

r2
uφφ

)
Rnm(r) cos(nφ)r dr dφ+ bAnm(t) = J1 + J2 + bAnm(t), (20)

where

J1 =
a2√
π

∫∫

D

(
urr +

1

r
ur

)
Rnm(r) cos(nφ)r dr dφ =

a2√
π

∫ 2π

0

cos(nφ)
∫ l

0

(rur)
′
rRnm(r) dr dφ, (21)

J2 =
a2√
π

∫∫

D

1

r
uφφRnm(r) cos(nφ) dr dφ =

a2√
π

∫ l

0

1

r
Rnm(r)

∫ 2π

0

uφφ cos(nφ) dφdr. (22)

Let us calculate the internal integrals in the right-hand sides of the equalities (21) and (22):
∫ l

0

(rur)
′
rRnm(r) dr = rurRnm(r)

∣∣∣
l

0
−
∫ l

0

urrR
′
nm(r) dr = −

∫ l

0

urrR
′
nm(r) dr =

= ruR′
nm(r)

∣∣∣
l

0
+

∫ l

0

u(rR′
nm(r))′ dr = −λ2

nm

∫ l

0

urRnm(r) dr + n2

∫ l

0

u
Rnm(r)

r
dr,

∫ 2π

0

uφφ cos(nφ) dφ = −n2

∫ 2π

0

u cos(nφ) dφ.

Substituting these values in (21) and (22), and then (21) and (22) into equality (20), we obtain

A′′
nm(t) + a2µ2

nmAnm(t) = 0. (23)

The general solution of equation (23) is determined by the formula

Anm(t) = anm cos(aµnmt) + bnm sin(aµnmt), (24)

where anm and bnm are arbitrary constants. For their determination we will use the boundary conditions (5):

Anm(0) =
1√
π

∫∫

D

u(r, φ, 0)Rnm(r) cos(nφ)r dr dφ =
1√
π

∫∫

D

τ(r, φ)Rnm(r) cos(nφ)r dr dφ =: τnm, (25)

Anm(T ) =
1√
π

∫∫

D

u(r, φ, T )Rnm(r) cos(nφ)r dr dφ =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) cos(nφ)r dr dφ =: ψnm.

(26)
Subordinating the general solution (24) to the boundary conditions (25) and (26), we find

anm = τnm, bnm =
1

sin(aµnmT )
(ψnm − τnm cos(aµnmT ))

provided that
∆nm(T ) = sin(aµnmT ) ̸= 0 at all n,m ∈ N. (27)

Then
Anm(t) = τnm

sin(aµnm(T − t))

sin(aµnmT )
+ ψnm

sin(aµnmt)

sin(aµnmT )
. (28)

Having differentiated equality (19) twice by t taking into account equation (6), we obtain

B′′
nm(t) + a2µ2

nmBnm(t) = 0.

From here (by analogy with the function Anm(t)), we will find under condition (27)

Bnm(t) = τ̃nm
sin(aµnm(T − t))

sin(aµnmT )
+ ψ̃nm

sin(aµnmt)

sin(aµnmT )
, (29)
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where
τ̃nm =

1√
π

∫∫

D

τ(r, φ)Rnm(r) sin(nφ)r dr dφ, (30)

ψ̃nm =
1√
π

∫∫

D

ψ(r, φ)Rnm(r) sin(nφ)r dr dφ. (31)

Now let us differentiate equality (17) twice by t and, similarly, on the basis of equation (6) we obtain that the
function A0m(t) is a solution of the differential equation

A′′
0m(t) + a2µ2

0mA0m(t) = 0.

From here (by analogy with the function Anm(t)), we find

A0m(t) = τ0m
sin(aµ0m(T − t))

sin(aµ0mT )
+ ψ0m

sin(aµ0mt)

sin(aµ0mT )
(32)

provided sin(µ0mT ) ̸= 0 for allm ∈ N, where

τ0m =
1√
2π

∫∫

D

τ(r, φ)R0m(r)r dr dφ, (33)

ψnm =
1√
2π

∫∫

D

ψ(r, φ)R0m(r)r dr dφ. (34)

Now let us prove the uniqueness of the solution of problem (2)–(5). Let τ(x, y) = ψ(x, y) ≡ 0 and conditions
(27) be satisfied for all m ∈ N and n ∈ N0 = N ∪ {0}. Then, by virtue of equations (25), (26), (30), (31), (33)
and (34) all τnm = 0, τ̃nm = 0, ψnm = 0, ψ̃nm = 0, at n = 0, 1, 2, . . ., m = 1, 2, . . . Hence and on the basis of
formulas (32), (29), (28) and (17)–(19) we have the following equations

∫∫

D

u(r, φ, t)Rnm(r) cos(nφ)r dr dφ = 0,

∫∫

D

u(r, φ, t)Rnm(r) sin(nφ)r dr dφ = 0

at all n = 0, 1, 2, . . ., m = 1, 2, . . ., t ∈ [0, T ]. From these equalities, based on the completeness of the system
of functions (16) in the space L2(D) with weight r, it follows that u(r, φ, t) = 0 is almost everywhere in D at any
t ∈ [0, T ]. Since by virtue of (2) the function u(r, φ, t) is continuous inQ, then u(r, φ, t) ≡ 0 inQ.

Suppose for some n = n0 orm = m0 the expression∆n0m(T ) = 0 or∆nm0
(T ) = 0. For definiteness, suppose

that∆n0m(T ) = 0. Then the homogeneous problem (2)–(5) (τ(x, y) = ψ(x, y) ≡ 0) has a nonzero solution

un0m(r, φ, t) = sin(aµn0mt) (a0mR0m(r) + an0mRn0m(r) cos(n0φ) + bn0mRn0m(r) sin(n0φ)) , (35)

where a0m, an0m and bn0m are arbitrary constants.
Consider the zeros of the expression∆nm(T ). Equality

∆nm(T ) = sin(aµnmT ) = 0

only takes place when

T =
πk

aµnm
, k ∈ N. (36)

So,∆nm(T ) goes to zero when T is determined by formula (36).
Thus, the criterion of uniqueness of the solution of problem (2)–(5) is established.
Theorem 1. If there exists a solution of problem (2)–(5), then it is singular if and only if conditions (27) are satisfied

at all n andm.



46

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

SABITOV

If r = 0, then we have case 1) of the lemma. Then 1 ≤ r ≤ q − 1. Hence (since the relation (2r − p)/(2q) is not
an integer) it follows that

|∆nm(ν)| ≥
∣∣∣∣sin

(
π
2r − p

2q

)∣∣∣∣−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ ≥

∣∣∣∣sin
(
π
2r − p

2q

)∣∣∣∣− C1 ≥ C2 − C1 > 0, (43)

where

C2 = min
1≤r≤q−1

| sin(π(2r − p)/2q)|.

Then, from (42) and (43) under the condition C1 < C2, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for allm > m0, n ∈ N0 and any t ∈ [0, T ] the

following estimates are valid

|Anm(t)| ≤ M1

(
|τnm|+ |ψnm|

)
, (44)

|Bnm(t)| ≤ M1

(
|τ̃nm|+ |ψ̃nm|

)
, (45)

|A′
nm(t)| ≤ M2µnm

(
|τnm|+ |ψnm|

)
, |B′

nm(t)| ≤ M2µnm

(
|τ̃nm|+ |ψ̃nm|

)
,

|A′′
nm(t)| ≤ M3µ

2
nm

(
|τnm|+ |ψnm|

)
, |B′′

nm(t)| ≤ M3µ
2
nm

(
|τ̃nm|+ |ψ̃nm|

)
,

hereafterMi are positive constants depending on T , a and l.
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

utt =
1√
2π

∞∑
m=1

A′′
0m(t)R0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
A′′

nm(t) cos(nφ) +B′′
nm(t) sin(nφ)

)
Rnm(r),

uφφ = − 1√
π

∞∑
n=1

∞∑
m=1

n2
(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
Rnm(r),

urr =
1√
2π

∞∑
m=1

A0m(t)R′′
0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
R′′

nm(r),

which at any (r, φ, t) ∈ Q are majorized respectively by numerical series

4M3√
2π

∞∑
m>m0

µ2
0m

(
|τ0m|+ |ψ0m|

)
|R0m(r)|+

+
M3√
π

∞∑
n=1

∞∑
m>m0

µ2
nm

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (46)

M1√
π

∞∑
n=1

∞∑
m>m0

n2
(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (47)

M1√
2π

∞∑
m>m0

(
|τ0m|+ |ψ0m|

)
|R′′

0m(r)|+

+
M1√
π

∞∑
n=1

∞∑
m>m0

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|R′′

nm(r)|. (48)

Lemma 3. Let 0 < r0 ≤ r ≤ l, where r0 is a small positive fixed constant. Then atm > m0 and any fixed n ∈ N0

there are the following estimates

|Rnm(r)| ≤ M4, (49)
|R′

nm(r)| ≤ M5µnm, (50)
|R′′

nm(r)| ≤ M6µ
2
nm. (51)

3. EXISTENCE OF A SOLUTION TO THE PROBLEM

If the conditions (27) are satisfied, the solution of the problem (2)–(5) is defined by the sum of the series

u(r, φ, t) =
1√
2π

∞∑
m=1

A0m(t)R0m(r) +
1√
π

∞∑
n=1

∞∑
m=1

(Anm(t) cos(nφ) +Bnm(t) sin(nφ))Rnm(r), (37)

where the coefficientsA0m(t), Anm(t), andBnm(t) are found by formulas (32), (28) and (29), respectively. Since
∆nm(T ) is the denominator of the coefficients of the series (37) and, as shown above, equation sin(aµnmT ) = 0 has
a countable set of zeros (36), the problem of small denominators arises. In this regard, estimates about separability
from zero should be established. For simplicity, in what follows we assume that b = 0. The expression∆nm(T ) at
b = 0 is represented in the following form:

∆nm(ν) = sin(νqnm), ν =
aT

l
. (38)

Lemma 1. If one of the following conditions is met:
1) the number ν/2 = p is natural and odd;

2) the number ν/2 = p/q is fractional-rational and the relation (2r − p)/(2q) is not an integer where r ∈ N0 and
0 ≤ r < q,

then there exist positive constants C0 andm0 (m0 ∈ N) such that for allm > m0 the evaluation is valid.

|∆nm(ν)| ≥ C0 > 0. (39)

Proof. For zeros qnm of the Bessel function Jn(q) at large values m > m0, where m0 is a sufficiently large
natural number, the asymptotic formula [19, p. 241] is valid.

qnm =
π

2
(2m+ n− 1/2) +O

(
(4m+ 2n− 1)−1

)
. (40)

Substitution (40) into (38) gives

∆nm(ν) = sin
(νπ

2
(2m+ n− 1/2)

)
+O

(
(4m+ 2n− 1)−1

)
, (41)

since

sinO
(
(4m+ 2n− 1)−1

)
≈ O

(
(4m+ 2n− 1)−1

)
, cosO

(
(4m+ 2n− 1)−1

)
≈ 1 +O

(
(4m+ 2n− 1)−1

)

at largem > m0.
Let the number ν/2 = p ∈ N odd. Then, from equality (41) for allm > m0 and n ∈ N0 we obtain

|∆nm(ν)| ≥
∣∣∣sin

(
πp(2m+ n)− pπ

2

)∣∣∣− ∣∣O (
(4m+ 2n− 1)−1

)∣∣ =

=
∣∣∣sin pπ

2

∣∣∣− ∣∣O (
(4m+ 2n− 1)−1

)∣∣ = 1−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ > 1

2
(42)

by virtue of ∣∣O (
(4m+ 2n− 1)−1

)∣∣ < C1 <
1

2

at largem.
Let ν/2 = p/q, p, q ∈ N, (p, q) = 1, p/q /∈ N. In this case, let us divide p(2m + n) by q with remainder:

p(2m+ n) = qs+ r, s, r ∈ N0, 0 ≤ r < q. Then the relation (41) will take the form

∆nm(ν) = sin
(
sπ +

rπ

q
− pπ

2q

)
+O

(
(4m+ 2n− 1)−1

)
= (−1)s sin

(
π
2r − p

2q

)
+O

(
(4m+ 2n− 1)−1

)
.
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If r = 0, then we have case 1) of the lemma. Then 1 ≤ r ≤ q − 1. Hence (since the relation (2r − p)/(2q) is not
an integer) it follows that

|∆nm(ν)| ≥
∣∣∣∣sin

(
π
2r − p

2q

)∣∣∣∣−
∣∣O (

(4m+ 2n− 1)−1
)∣∣ ≥

∣∣∣∣sin
(
π
2r − p

2q

)∣∣∣∣− C1 ≥ C2 − C1 > 0, (43)

where

C2 = min
1≤r≤q−1

| sin(π(2r − p)/2q)|.

Then, from (42) and (43) under the condition C1 < C2, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for allm > m0, n ∈ N0 and any t ∈ [0, T ] the

following estimates are valid

|Anm(t)| ≤ M1

(
|τnm|+ |ψnm|

)
, (44)

|Bnm(t)| ≤ M1

(
|τ̃nm|+ |ψ̃nm|

)
, (45)

|A′
nm(t)| ≤ M2µnm

(
|τnm|+ |ψnm|

)
, |B′

nm(t)| ≤ M2µnm

(
|τ̃nm|+ |ψ̃nm|

)
,

|A′′
nm(t)| ≤ M3µ

2
nm

(
|τnm|+ |ψnm|

)
, |B′′

nm(t)| ≤ M3µ
2
nm

(
|τ̃nm|+ |ψ̃nm|

)
,

hereafterMi are positive constants depending on T , a and l.
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

utt =
1√
2π

∞∑
m=1

A′′
0m(t)R0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
A′′

nm(t) cos(nφ) +B′′
nm(t) sin(nφ)

)
Rnm(r),

uφφ = − 1√
π

∞∑
n=1

∞∑
m=1

n2
(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
Rnm(r),

urr =
1√
2π

∞∑
m=1

A0m(t)R′′
0m(r) +

1√
π

∞∑
n=1

∞∑
m=1

(
Anm(t) cos(nφ) +Bnm(t) sin(nφ)

)
R′′

nm(r),

which at any (r, φ, t) ∈ Q are majorized respectively by numerical series

4M3√
2π

∞∑
m>m0

µ2
0m

(
|τ0m|+ |ψ0m|

)
|R0m(r)|+

+
M3√
π

∞∑
n=1

∞∑
m>m0

µ2
nm

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (46)

M1√
π

∞∑
n=1

∞∑
m>m0

n2
(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|Rnm(r)|, (47)

M1√
2π

∞∑
m>m0

(
|τ0m|+ |ψ0m|

)
|R′′

0m(r)|+

+
M1√
π

∞∑
n=1

∞∑
m>m0

(
|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|

)
|R′′

nm(r)|. (48)

Lemma 3. Let 0 < r0 ≤ r ≤ l, where r0 is a small positive fixed constant. Then atm > m0 and any fixed n ∈ N0

there are the following estimates

|Rnm(r)| ≤ M4, (49)
|R′

nm(r)| ≤ M5µnm, (50)
|R′′

nm(r)| ≤ M6µ
2
nm. (51)
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where

ω =

√
1−

(
t

p

)2

, t < p, z = p(Arthω − ω),

K1/3(z) –McDonald’s function.
Using a power series expansion of the function

arctg ω = ω − ω3

3
+

ω5

5
− ω7

7
+ . . . ,

evaluate the expression
ω2

3

(
1− 3

5
ω2

)
< 1− arctg ω

ω
<

ω2

3
.

Hence at 0 < ω < 1 we have √
2

15
ω <

(
1− arctg ω

ω

)1/2

<
ω√
3
. (63)

Then from the formula (62), taking into account the estimation (63), we obtain

|Jp(t)| ≤
ω

π
√
3
K1/3(z), (64)

|Jp(t)| >
√

2

15

ω

π
K1/3(z). (65)

Now on the basis of estimates (64) and (65) we have

|Jn(µnmr)| ≤ ω1

π
√
3
K1/3(z1), (66)

|Jn(qnm)| ≥
√

2

15

ω2

π
K1/3(z2), (67)

where

ω1 =

√
1−

(qnmr

nl

)2

, z1 = n(Arthω1 − ω1),

ω2 =

√
1−

(
qnm
n+ 1

)2

, z2 = (n+ 1)(Arthω2 − ω2).

From inequalities (66) and (67), estimate (59) follows, since ω1 ≈ ω2 at large n.
Based on formulas (55) and (56), we estimate the derivative R′

nm(r):

|R′
nm(r)| ≤ qnm√

2l2|Jn+1(qnm)|
(|Jn−1(µnmr)|+ |Jn+1(µnmr)|).

Hence, taking into account estimates (66) and (67), we obtain (60).
By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function Rnm(r) and its derivatives R′

nm(r), R′′
nm(r), starting from some number n,

tend to zero at r → 0. Therefore, in Lemmas 3 and 4 the estimates (49)–(51) and (59)–(61) are obtained at
r ≥ r0 > 0.

By virtue of lemmas 3 and 4, rows (46)–(48) are majorized by the combination of rows

M10

∞∑
m>m0

m2(|τ0m|+ |ψ0m|), M11

∞∑
n=1

∞∑
m>m0

n2(|τ0m|+ |ψ0m|),

M12

∞∑
n=1

∞∑
m>m0

µ2
nm(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|). (68)

Proof. Based on the asymptotic formula for the Bessel function of the first kind Jν(z) at large values of the
argument z [20, p. 98]

Jν(z) =

√
2

πz

[
cos

(
z − νπ

2
− π

4

)
− 1

2z
sin

(
z − νπ

2
− π

4

)]
+O(z−5/2) (52)

we have

|Jn(µnmr)| ≤
√

2

πr0µnm

(
1 +

1

2r0µnm

)
≤ 2

√
2

πr0µnm
, (53)

as 1(2r0µnm) < 1 at largem.
Similarly, we obtain the estimates

|Jn+1(qnm)| = |Jn+1(lµnm)| ≤ 2

√
2

πlµnm
, (54)

from which follows the estimation (49).
Now find the derivative

R′
nm(r) =

√
2

l|Jn+1(qnm)|
µnmJ ′

n(z), z = µnmr. (55)

Using the equality
J ′
ν(z) =

1

2
[Jν−1(z)− Jν+1(z)] (56)

and formula (52), we obtain the asymptotic formula for J ′
n(z) at large z

J ′
n(z) =

1

2

√
2

πz

[
cos

(
z − (n− 1)

2
π − π

4

)
− cos

(
z − (n+ 1)

2
π − π

4

)]
+O(z−3/2) =

=

√
2

πz
cos

(
z − nπ

2
+

π

4

)
+O(z−3/2),

on the basis of which, similarly to estimates (53) and (54), we find

|J ′
n(µnmr)| ≤ 2

√
2

πr0µnm
. (57)

Then from equality (55) by virtue of estimates (57) and (54), follows estimate (50).
From (12) we calculate the second derivative

J ′′
n(µnmr) = −1

r
J ′
n(µnmr) +

(
n2

r2
− µ2

nm

)
Jn(µnmr). (58)

Hence, taking into account estimates (53) and (57), we have

|J ′′
n(µnmr)| ≤ 1

r0
2

√
2

πr0µnm
+

n2

r20
2

√
2

πr0µnm
+ µ2

nm2

√
2

πr0µnm
.

From this inequality, by virtue of (54), we verify the validity of the estimate (51).
Lemma 4. Let 0 < r0 ≤ r ≤ l. Then for large n and any fixedm ∈ N, the following estimates are valid

|Rnm(r)| ≤ M7, (59)
|R′

nm(r)| ≤ M8n, (60)
|R′′

nm(r)| ≤ M9n
2. (61)

Proof. To obtain these estimates, let us use Langer’s asymptotic formula at large values of order p of the Bessel
function [20, p. 103]

Jp(t) =
1

π

√
1− arctg ω

ω
K1/3(z) +O(p−4/3), (62)
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where

ω =

√
1−

(
t

p

)2

, t < p, z = p(Arthω − ω),

K1/3(z) –McDonald’s function.
Using a power series expansion of the function

arctg ω = ω − ω3

3
+

ω5

5
− ω7

7
+ . . . ,

evaluate the expression
ω2

3

(
1− 3

5
ω2

)
< 1− arctg ω

ω
<

ω2

3
.

Hence at 0 < ω < 1 we have √
2

15
ω <

(
1− arctg ω

ω

)1/2

<
ω√
3
. (63)

Then from the formula (62), taking into account the estimation (63), we obtain

|Jp(t)| ≤
ω

π
√
3
K1/3(z), (64)

|Jp(t)| >
√

2

15

ω

π
K1/3(z). (65)

Now on the basis of estimates (64) and (65) we have

|Jn(µnmr)| ≤ ω1

π
√
3
K1/3(z1), (66)

|Jn(qnm)| ≥
√

2

15

ω2

π
K1/3(z2), (67)

where

ω1 =

√
1−

(qnmr

nl

)2

, z1 = n(Arthω1 − ω1),

ω2 =

√
1−

(
qnm
n+ 1

)2

, z2 = (n+ 1)(Arthω2 − ω2).

From inequalities (66) and (67), estimate (59) follows, since ω1 ≈ ω2 at large n.
Based on formulas (55) and (56), we estimate the derivative R′

nm(r):

|R′
nm(r)| ≤ qnm√

2l2|Jn+1(qnm)|
(|Jn−1(µnmr)|+ |Jn+1(µnmr)|).

Hence, taking into account estimates (66) and (67), we obtain (60).
By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function Rnm(r) and its derivatives R′

nm(r), R′′
nm(r), starting from some number n,

tend to zero at r → 0. Therefore, in Lemmas 3 and 4 the estimates (49)–(51) and (59)–(61) are obtained at
r ≥ r0 > 0.

By virtue of lemmas 3 and 4, rows (46)–(48) are majorized by the combination of rows

M10

∞∑
m>m0

m2(|τ0m|+ |ψ0m|), M11

∞∑
n=1

∞∑
m>m0

n2(|τ0m|+ |ψ0m|),

M12

∞∑
n=1

∞∑
m>m0

µ2
nm(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|). (68)
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where

J1 =

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr,

J2 =

∫ l

0

τ1(r, φ)r
n+1Xn(r) dr,

J3 =

∫ l

0

τ2(r, φ)r
n+1Xn(r) dr,

τ1(r, φ) =
τ
(1,4)
r,φ (r, φ)

r
, τ2(r, φ) =

τ
(0,4)
r,φ (r, φ)

r2
.

Similarly to the integral J(φ) by formula (74), we transform the integrals Ji, i = 1, 2:

Ji = − 1

µ2
nm

Ji1 −
1

µ2
nm

Ji2 +
n2

µ2
nm

Ji3, (75)

where

J11 =

∫ l

0

τ (4,4)r,φ (r, φ)rn+1Xn(r) dr =

∫ l

0

τ (4,4)r,φ (r, φ)Jn(µnmr)r dr,

J12 =

∫ l

0

τ (3,4)r,φ (r, φ)rnXn(r) dr =

∫ l

0

τ
(3,4)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J13 =

∫ l

0

τ (2,4)r,φ (r, φ)rn−1Xn(r) dr =

∫ l

0

τ
(2,4)
r,φ (r, φ)

r2
Jn(µnmr)r dr,

J21 =

∫ l

0

τ ′′1r(r, φ)r
n+1Xn(r) dr =

∫ l

0

τ ′′1r(r, φ)Jn(µnmr)r dr,

J22 =

∫ l

0

τ ′1r(r, φ)r
nXn(r) dr =

∫ l

0

τ ′1r(r, φ)

r
Jn(µnmr)r dr,

J23 =

∫ l

0

τ1(r, φ)r
n−1Xn(r) dr =

∫ l

0

τ1(r, φ)

r2
Jn(µnmr)r dr.

We transform the integral J3 as follows:

J3 =

∫ l

0

τ (0,4)r,φ (r, φ)r−1Jn(µnmr) dr =

=

∫ l

0

τ (0,4)r,φ (r, φ)r−n−2rn+1Jn(µnmr) dr =

=
τ
(0,4)
r,φ (r, φ)

r
Jn+1(µnmr)

∣∣∣∣∣
l

0

− 1

µnm

∫ l

0

d
[
r−n−2τ (0,4)r,φ (r, φ)

]
rn+1Jn+1(µnmr) dr =

= − 1

µnm

∫ l

0

τ (1,4)r,φ (r, φ)r−1Jn+1(µnmr) dr +
n+ 2

µnm

∫ l

0

τ (0,4)r,φ (r, φ)r−2Jn+1(µnmr) dr =

= − 1

µnm
J31 +

n+ 2

µnm
J32. (76)

After substituting (75) and (76) into equality (74), we obtain

J(φ) =
1

µ4
nm

(J11 + J12 + J21 + J22)−
n2

µ4
nm

(J13 + J23)−
n2

µ3
nm

J31 +
n2(n+ 2)

µ3
nm

J32. (77)

Let us denote by C4,4(D) the set of functions f(r, φ), that have continuous mixed derivatives on r and φ up to
and including fourth order in the closed regionD.

Lemma 5. Let τ(r, φ), ψ(r, φ) ∈ C4,4(D), and τ (0,i)(r, 0) = τ (0,i)(r, 2π), i = 0, 3, τ (k,4)(0, φ) = 0, k = 0, 3,
ψ(0,i)(r, 0) = ψ(0,i)(r, 2π), i = 0, 3, ψ(k,4)(0, φ) = 0, k = 0, 3. Then the coefficients of τnm, τ̃nm, ψnm, ψ̃nm at
µnm → +∞ have estimates of

τnm = O

(
1

nµ4
nm

)
, τ̃nm = O

(
1

nµ4
nm

)
, ψnm = O

(
1

nµ4
nm

)
, ψ̃nm = O

(
1

nµ4
nm

)
.

Proof. Consider the coefficients τnm, ψnm, τ̃nm, and ψ̃nm defined by formulas (25), (26), (30), and (31), re-
spectively. Let us represent τnm in the following form:

τnm =
1√
π

∫ l

0

Rnm(µnmr)I(r)r dr, (69)

where

I(r) =

∫ 2π

0

τ(r, φ) cos(nφ) dφ.

By the condition τ ′φ(r, 0) = τ ′φ(r, 2π) and τ ′′′φ (r, 0) = τ ′′′φ (r, 2π), then the integral I(r) can be transformed by
fourfold integration by parts into the form

I(r) =
1

n4

∫ 2π

0

τ (4)φ (r, φ) cos(nφ) dφ. (70)

Now let us write the integral (69), taking into account the representation (70), as

τnm =

√
2

l
√
π|Jn+1(qnm)|n4

∫ 2π

0

J(φ) cos(nφ) dφ, (71)

where

J(φ) =

∫ l

0

τ (4)φ (r, φ)Jn(µnmr)r dr. (72)

Note that the functionXn(r) = r−nJn(ξ), ξ = µnmr is a solution of the differential equation

X ′′
n(r) +

2n+ 1

r
X ′

n(r) + µ2
nmXn(r) = 0. (73)

Then the integral (72), taking into account equation (73), is transformed as follows:

J(φ) =

∫ l

0

τ (4)φ (r, φ)Xn(r)r
n+1 dr =

= − 1

µ2
nm

∫ l

0

τ (4)φ (r, φ)

[
X ′′

n(r) +
2n+ 1

r
X ′

n(r)

]
rn+1 dr =

= − 1

µ2
nm

∫ l

0

τ (4)φ (r, φ)
[
(rn+1X ′

n(r))
′ + nrnX ′

n(r)
]
dr =

= − 1

µ2
nm

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr−

− 1

µ2
nm

∫ l

0

τ (1,4)r,φ (r, φ)rnXn(r) dr+

+
n2

µ2
nm

∫ l

0

τ (0,4)r,φ (r, φ)rn−1Xn(r) dr =

= − 1

µ2
nm

J1 −
1

µ2
nm

J2 +
n2

µ2
nm

J3, (74)
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where

J1 =

∫ l

0

τ (2,4)r,φ (r, φ)rn+1Xn(r) dr,

J2 =

∫ l

0

τ1(r, φ)r
n+1Xn(r) dr,

J3 =

∫ l

0

τ2(r, φ)r
n+1Xn(r) dr,

τ1(r, φ) =
τ
(1,4)
r,φ (r, φ)

r
, τ2(r, φ) =

τ
(0,4)
r,φ (r, φ)

r2
.

Similarly to the integral J(φ) by formula (74), we transform the integrals Ji, i = 1, 2:

Ji = − 1

µ2
nm

Ji1 −
1

µ2
nm

Ji2 +
n2

µ2
nm

Ji3, (75)

where

J11 =

∫ l

0

τ (4,4)r,φ (r, φ)rn+1Xn(r) dr =

∫ l

0

τ (4,4)r,φ (r, φ)Jn(µnmr)r dr,

J12 =

∫ l

0

τ (3,4)r,φ (r, φ)rnXn(r) dr =

∫ l

0

τ
(3,4)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J13 =

∫ l

0

τ (2,4)r,φ (r, φ)rn−1Xn(r) dr =

∫ l

0

τ
(2,4)
r,φ (r, φ)

r2
Jn(µnmr)r dr,

J21 =

∫ l

0

τ ′′1r(r, φ)r
n+1Xn(r) dr =

∫ l

0

τ ′′1r(r, φ)Jn(µnmr)r dr,

J22 =

∫ l

0

τ ′1r(r, φ)r
nXn(r) dr =

∫ l

0

τ ′1r(r, φ)

r
Jn(µnmr)r dr,

J23 =

∫ l

0

τ1(r, φ)r
n−1Xn(r) dr =

∫ l

0

τ1(r, φ)

r2
Jn(µnmr)r dr.

We transform the integral J3 as follows:

J3 =

∫ l

0

τ (0,4)r,φ (r, φ)r−1Jn(µnmr) dr =

=

∫ l

0

τ (0,4)r,φ (r, φ)r−n−2rn+1Jn(µnmr) dr =

=
τ
(0,4)
r,φ (r, φ)

r
Jn+1(µnmr)

∣∣∣∣∣
l

0

− 1

µnm

∫ l

0

d
[
r−n−2τ (0,4)r,φ (r, φ)

]
rn+1Jn+1(µnmr) dr =

= − 1

µnm

∫ l

0

τ (1,4)r,φ (r, φ)r−1Jn+1(µnmr) dr +
n+ 2

µnm

∫ l

0

τ (0,4)r,φ (r, φ)r−2Jn+1(µnmr) dr =

= − 1

µnm
J31 +

n+ 2

µnm
J32. (76)

After substituting (75) and (76) into equality (74), we obtain

J(φ) =
1

µ4
nm

(J11 + J12 + J21 + J22)−
n2

µ4
nm

(J13 + J23)−
n2

µ3
nm

J31 +
n2(n+ 2)

µ3
nm

J32. (77)
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here unmi(r, φ, t) are determined by formula (35), where m0 should be replaced by mi, Cnmi are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved
Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if∆nm(ν) ̸= 0 at allm = 1,m0, then problem

(2)–(5) is uniquely solvable, and this solution is defined by row (37); if∆nm(ν) = 0 at somem = m1,m2, . . . ,ms ≤
m0, then problem (2)–(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).

Note that the fulfillment of the condition∆nm(ν) ̸= 0 atm = 1,m0 can be achieved if ν ̸= πk/qnm (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

∥u(r, φ, t)∥L2(D) =

∫∫

D

u2(r, φ, t)r dr dφ,

∥u(r, φ, t)∥C(Q) = max
r,φ,t∈Q

|u(r, φ, t)|,

∥f (2,2)
r,φ (r, φ)∥L2(D) =

∫∫

D

(f (2,2)
r,φ (r, φ))2r dr dφ,

∥g(2,2)r,φ (r, φ)∥2
C(D)

= max
r,φ∈D

|g(2,2)r,φ (r, φ)|.

Theorem 3. Let the conditions of Theorem 2 and∆nm(ν) ̸= 0 be satisfied atm = 1,m0. Then for the solution (37)
of the problem (2)–(5), the following estimates are valid

∥u(r, φ, t)∥L2(D) ≤ M16(∥τ(r, φ)∥L2(D) + ∥ψ(r, φ)∥L2(D)), (83)

∥u(r, φ, t)∥C(Q) ≤ M17(∥τ (2,2)r,φ (r, φ)∥C(D) + ∥ψ(2,2)
r,φ (r, φ)∥C(D)). (84)

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space L2(D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

∥u(r, φ, t)∥2L2(D) =

∞∑
m=1

A2
0m(t) +

∞∑
n,m=1

A2
nm(t) +B2

nm(t) ≤

≤ 2M2
1M

2
4

[ ∞∑
m=1

(
|τ0m|2 + |ψ0m|2

)
+

∞∑
n,m=1

(
|τnm|2 + |τ̃nm|2 + |ψnm|2 + |ψ̃nm|2

)]
=

= 2M2
1M

2
4

(
∥τ(r, φ)∥2L2(D) + ∥ψ(r, φ)∥2L2(D)

)
.

Hence we obtain the estimate (83).
Let (r, φ, t) be an arbitrary pointQ. Then from formula (37), taking into account estimates (44), (45) and (49),

we have

|u(r, φ, t)| ≤ M1M4

[ ∞∑
m=1

(|τ0m|+ |ψ0m|) +
∞∑

n,m=1

(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|)

]
. (85)

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient τnm as

τnm = −
√
2

l
√
π|Jn+1(qnm)|n2

∫ 2π

0

J(φ) cos(nφ) dφ,

If τ (0,4)r,φ (r, φ) ∈ C4[0, l] and τ
(k,4)
r,φ (0, φ) = 0, k = 0, 3, then the representations are fair

τ (0,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r4

4!
, 0 < θ < r,

τ (1,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r3

3!
,

τ (2,4)r,φ (r, φ) =
τ
(4,4)
r,φ (θ, φ)r2

2!
,

τ (3,4)r,φ (r, φ) = τ (4,4)r,φ (θ, φ)r.

By virtue of this in the integrals J31 and J32, the functions τ
(0,4)
r,φ (r, φ)r−5/2, τ (1,4)r,φ (r, φ)r−3/2 are continuously

differentiable on [0, l], so on this interval they have complete bounded variation, i.e., finite variation. Taking into
account the theorem from [21, p. 653], the integrals J31 and J32 at µnm → ∞ have the following evaluation

J31 = O(µ−3/2
nm ), J32 = O(µ−3/2

nm ). (78)

In the integrals J1i, i = 1, 2, 3, the integrand functions τ (4,4)r,φ (r, φ), τ (3,4)r,φ (r, φ)r−1, and τ
(2,4)
r,φ (r, φ)r−2 are

continuous on the segment [0, l]. Then by virtue of Young’s theorem [21, p. 654], these integrals at µnm → ∞
have the following evaluation

J1i = O(µ−1/2
nm ). (79)

Now consider the integrals J2i, i = 1, 2, 3. In them, the functions τ ′′1r(r, φ), τ ′1r(r, φ)r−1 and τ1r(r, φ)r
−2 are

also continuous on the segment [0, l], so the estimates are valid

J2i = O(µ−1/2
nm ), µnm → ∞. (80)

Then from the representation (71), taking into account equality (77) and estimates (78)–(80), we obtain

τnm = O

(
1

nµ4
nm

)
.

Similarly, from formulas (26), (30), and (31), the rest of the estimates follow. The lemma is proved.
Numerical series (68), by virtue of formula (40), are majorized by convergent series, respectively

M13

∞∑
m>m0

1

m2
, M14

∞∑
n=1

∞∑
m>m0

n

(4m+ 2n− 1)4
, M15

∞∑
n=1

∞∑
m>m0

1

n(4m+ 2n− 1)2
.

If for the numbers ν from lemma 1, for somem = m1,m2, . . . ,ms ≤ m0, where 1 ≤ m1 < m2 < · · · < ms,
∆nmi(ν) = 0, then it is necessary and sufficient for the solvability of problem (2)–(5) that the conditions are
satisfied

τnmi
= ψnmi

= 0, τ̃nmi
= ψ̃nmi

= 0, i = 1, s. (81)

In this case, the solution of the problem (2)–(5) is defined as a sum of series:

u(r, φ, t) =
1√
2π




m1−1∑
m=1

+

m2−1∑
m=m1+1

+ · · ·+
ms−1∑

m=ms−1+1

+

∞∑
m=ms+1


A0m(t)R0m(r) +

+
1√
π

∞∑
n=1




m1−1∑
m=1

+

m2−1∑
m=m1+1

+ · · ·+
ms−1∑

m=ms−1+1

+

∞∑
m=ms+1


×

× (Anm(t) cos(nφ) +Bnm(t) sin(nφ))Rnm(r) +

+
s∑

i=1

Cnmiunmi(r, φ, t), (82)
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here unmi(r, φ, t) are determined by formula (35), where m0 should be replaced by mi, Cnmi are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved
Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if∆nm(ν) ̸= 0 at allm = 1,m0, then problem

(2)–(5) is uniquely solvable, and this solution is defined by row (37); if∆nm(ν) = 0 at somem = m1,m2, . . . ,ms ≤
m0, then problem (2)–(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).

Note that the fulfillment of the condition∆nm(ν) ̸= 0 atm = 1,m0 can be achieved if ν ̸= πk/qnm (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

∥u(r, φ, t)∥L2(D) =

∫∫

D

u2(r, φ, t)r dr dφ,

∥u(r, φ, t)∥C(Q) = max
r,φ,t∈Q

|u(r, φ, t)|,

∥f (2,2)
r,φ (r, φ)∥L2(D) =

∫∫

D

(f (2,2)
r,φ (r, φ))2r dr dφ,

∥g(2,2)r,φ (r, φ)∥2
C(D)

= max
r,φ∈D

|g(2,2)r,φ (r, φ)|.

Theorem 3. Let the conditions of Theorem 2 and∆nm(ν) ̸= 0 be satisfied atm = 1,m0. Then for the solution (37)
of the problem (2)–(5), the following estimates are valid

∥u(r, φ, t)∥L2(D) ≤ M16(∥τ(r, φ)∥L2(D) + ∥ψ(r, φ)∥L2(D)), (83)

∥u(r, φ, t)∥C(Q) ≤ M17(∥τ (2,2)r,φ (r, φ)∥C(D) + ∥ψ(2,2)
r,φ (r, φ)∥C(D)). (84)

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space L2(D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

∥u(r, φ, t)∥2L2(D) =

∞∑
m=1

A2
0m(t) +

∞∑
n,m=1

A2
nm(t) +B2

nm(t) ≤

≤ 2M2
1M

2
4

[ ∞∑
m=1

(
|τ0m|2 + |ψ0m|2

)
+

∞∑
n,m=1

(
|τnm|2 + |τ̃nm|2 + |ψnm|2 + |ψ̃nm|2

)]
=

= 2M2
1M

2
4

(
∥τ(r, φ)∥2L2(D) + ∥ψ(r, φ)∥2L2(D)

)
.

Hence we obtain the estimate (83).
Let (r, φ, t) be an arbitrary pointQ. Then from formula (37), taking into account estimates (44), (45) and (49),

we have

|u(r, φ, t)| ≤ M1M4

[ ∞∑
m=1

(|τ0m|+ |ψ0m|) +
∞∑

n,m=1

(|τnm|+ |ψnm|+ |τ̃nm|+ |ψ̃nm|)

]
. (85)

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient τnm as

τnm = −
√
2

l
√
π|Jn+1(qnm)|n2

∫ 2π

0

J(φ) cos(nφ) dφ,
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+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2
+

( ∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

)
)1/2]

≤

≤ M21

√
2

[( ∞∑
m=1

|τ (2,2)0m |2 +
∞∑

n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

)
)1/2

+

+

( ∞∑
m=1

|ψ(2,2)
0m |2 +

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]
=

=
√
2M21

(
∥τ (2,2)(r, φ)∥L2(D) + ∥ψ(2,2)(r, φ)∥L2(D)

)
≤ M22

(
∥τ (2,2)(r, φ)∥C(D) + ∥ψ(2,2)(r, φ)∥C(D)

)
.

From the last inequality, the estimate (84) follows directly.
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where

J(φ) =

∫ l

0

τ (0,2)r,φ (r, φ)Jn(µnmr)r dr = − 1

µ2
nm

(J ′
1 + J ′

2 − n2J ′
3),

J ′
1 =

∫ l

0

τ (2,2)r,φ (r, φ)Jn(µnmr)r dr,

J ′
2 =

∫ l

0

τ
(1,2)
r,φ (r, φ)

r
Jn(µnmr)r dr,

J ′
3 =

∫ l

0

τ
(0,2)
r,φ (r, φ)

r2
Jn(µnmr)r dr.

If τ (0,2)r,φ (r, φ) ∈ C2[0, l] and τ
(0,2)
r,φ (0, φ) = τ (1,2)(0, φ) = 0, then the functions τ (1,2)r,φ (r, φ)r−1 = τ

(2,2)
r,φ (θ, φ),

τ
(0,2)
r,φ (r, φ) = τ

(2,2)
r,φ (θ, φ)/2, 0 < θ < r are continuous on the segment [0, l], then

|τnm| ≤ M18

µ2
nm

|τ (2,2)nm |,

where
τ (2,2)nm =

1√
π

∫∫

D

τ (2,2)r,φ (r, φ) cos(nφ)Rnm(r)r dr dφ. (86)

Similarly, we obtain the estimates

|τ̃nm| ≤ M18

µ2
nm

|τ̃ (2,2)nm |,

τ̃ (2,2)nm =
1√
π

∫∫

D

τ (2,2)r,φ (r, φ) sin(nφ)Rnm(r)r dr dφ, (87)

|ψnm| ≤ M18

µ2
nm

|ψ(2,2)
nm |,

|ψ̃nm| ≤ M18

µ2
nm

|ψ̃(2,2)
nm |,

where ψ(2,2)
nm and ψ̃

(2,2)
nm are defined according to formulas (86) and (87), but with the replacement of τ(r, φ) with

ψ(r, φ).
Now, continuing the estimation (85), we have

|u(r, φ, t)| ≤ M19

[ ∞∑
m=1

1

µ2
0m

(|τ (2,2)0m |+ |ψ(2,2)
0m |) +

∞∑
n,m=1

1

µ2
nm

(|τ (2,2)nm |+ |τ̃ (2,2)nm |+ |ψ(2,2)
nm |+ |ψ̃(2,2)

nm |)

]
.

Hence, using Bunyakovsky’s inequality, we obtain

|u(r, φ, t)| ≤ M20

{( ∞∑
m=1

1

µ4
0m

)1/2[( ∞∑
m=1

|τ (2,2)0m |2
)1/2

+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2]
+

+

( ∞∑
n,m=1

1

µ4
nm

)1/2[(
2

∞∑
n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

))1/2
+

(
2

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]}
≤

≤ M21

[( ∞∑
m=1

|τ (2,2)0m |2
)1/2

+

( ∞∑
n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

))1/2
+
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+

( ∞∑
m=1

|ψ(2,2)
0m |2

)1/2
+

( ∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

)
)1/2]

≤

≤ M21

√
2

[( ∞∑
m=1

|τ (2,2)0m |2 +
∞∑

n,m=1

(
|τ (2,2)nm |2 + |τ̃ (2,2)nm |2

)
)1/2

+

+

( ∞∑
m=1

|ψ(2,2)
0m |2 +

∞∑
n,m=1

(
|ψ(2,2)

nm |2 + |ψ̃(2,2)
nm |2

))1/2]
=

=
√
2M21

(
∥τ (2,2)(r, φ)∥L2(D) + ∥ψ(2,2)(r, φ)∥L2(D)

)
≤ M22

(
∥τ (2,2)(r, φ)∥C(D) + ∥ψ(2,2)(r, φ)∥C(D)

)
.

From the last inequality, the estimate (84) follows directly.
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Abstract. For a nonlinear partial differential equation of Sobolev type, generalizing the equation of oscillations
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1. INTRODUCTION. PROBLEM STATEMENT

The vibrations of a hollow flexible rod [1, Ch. 8, formula (8.230)] are modeled by a nonlinear differential
equation of Sobolev type [2]

δutt − uttxx − α2utxx − α1utx + β2uxxxx + β1uxx + γu = uxxf
′(ux), (1)

where (t, x) ∈ R+ × R, R+ = (0,+∞), R = (−∞,+∞); the dash in the equation denotes differentiation by
ux = ∂xu = ∂u/∂x; the coefficients αi, βi, i = 1, 2, γ, δ are non-negative constants; the nonlinearity f is a twice
continuously differentiable function f(r), r ∈ R, for which the modulus |f(r)| at r ≥ 0 is a non-decreasing
function and the estimates are valid

sup
x∈R

|f (i)(g(x))| ≤
∣∣∣f (i)

(
sup
x∈R

|g(x)|
)∣∣∣, i = 0, 1, g(x) ∈ C[R],

|f(ξr)| ≤ χ(ξ)|f(r)|, ξ > 0, r ≥ 0, (2)

χ– a continuous non-decreasing function (its simplest example is the power function, for other non-trivial exam-
ples see [3]).

We assume that the rod is infinite. This idealization is acceptable [4], if there are optimal damping devices at
the rod boundaries, i.e., the parameters of the boundary clamping are such, that the perturbations falling on it are
not reflected.

The Cauchy problem for equation (1) is investigated in the space C[R] [5, Ch. 8, § 1] of continuous functions
g = g(x), for which both limits exist at x → ±∞ and the norm is ∥g∥C = supx∈R |g(x)|, with initial conditions

u|t=0 = φ(x), ut|t=0 = ψ(x), x ∈ R. (3)

The sought classical solution u = u(t, x), (t, x) ∈ R+ × R, R+ = [0,+∞), and its partial derivatives included in
equation (1), for all values of the temporary variable t on the variable x belong to the space C[R]. (By a classical
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