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Abstract. In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum of
an orthogonal series. When justifying the convergence of a series, the problem of small denominators from
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1. INTRODUCTION. PROBLEM STATEMENT

Consider the wave equation
Lu = upy — a®(Ugy + 1yy) —bu=0 )

in the cylinder Q = {(z,y,t) : (z,y) € D,0 <t < T}, where D = {(z,y) : 22 + 4> < ?};a > 0,b, T > 0 and
[ > 0 are given real constants, and we set the first boundary value problem.
It is required to find the function u(zx, y, t), satisfying the following conditions:

u(z,y,t) € CHQ) N C*(Q); )

Lu(z,y,t) =0, (z,y,t) € Q; (3)

W@, Y, ) |p2 2=z =0, 0<t<Th 4)

w(z,y,0) = 1(z,y), u(z,y,T)=v(z,y), (r,y) €D, ®)

where 7(x,y) and ¢(z,y) are given sufficiently smooth functions satisfying the matching conditions with the
boundary condition (4).

It is known that the Dirichlet problem for hyperbolic type equations is incorrectly posed. S L. Sobolev showed
[1], that the study of unstable oscillations (resonances of oscillations in the liquid inside thin-walled rocket tanks
with natural oscillations) is closely related to the Dirichlet problem for the wave equation. In a better known form,
this connection isshown inthe book by V. I. Arnold [2, p. 132]. Arather complete review of the works devoted to the
study of the Dirichlet problem for hyperbolic equations is given in the monograph by B. I. Ptashnik [3, pp. 89—95]
and in the works [4; 5, pp. 112—118] by the author.

The works of R. Denchev [6—8] are devoted to the study of the Dirichlet problem for equation (1) at b = 0,
a = 1 with a non-zero right part and homogeneous conditions on the boundary of the region €2, when € is an
ellipsoid, a cylinder with formations parallel to the axis ¢, and a parallelepiped. They also establish the criterion of
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singularity and existence of the solution of the problem in the Sobolev space W (2) under certain conditions on
the right part related to the convergence of numerical series, while the arising small denominators are not studied.

In [9], fora multidimensional equation with a wave operator in the cylindrical domain D x (0, T'), the conditions
VAT # mm, where k,m € N, under which the uniqueness theorem of the solution of the Dirichlet problem takes
place, were found. Here, )\, are the eigenvalues of the corresponding spectral problem in the domain D.

In the monograph by B. 1. Ptashnik [3, pp. 95—101], the Dirichlet problem in (p + 1)-dimensional paral-
lelepiped Q = [0,7] x II, where Il = {z € R? : 0 <z, < m,7 = 1, p}, for a strictly hyperbolic equation of even
order 2n with constant coefficients is also studied. The solution of the problem is determined by p-dimensional
Fourier series. A criterion for the uniqueness of the solution in C?"(Q) is established. For a series of inequalities
expressing the evaluation of small denominators with the corresponding asymptotics, the justification of conver-
gence of the series in the specified class is given. It is not shown for what numbers of the form 7 /7" these estimates
take place, only it is noted that the set of numbers 7/T, for which they are not fulfilled, is the set of zero Lebesgue
measure.

In the paper by V. P. Bursky [10], a necessary and sufficient condition for the trivial solvability of the homoge-
neous Dirichlet problem in a unit ball B centered at the origin of coordinates in space C2(B) for an equation with
complex is obtained:

Uggy + Uyy — a2u22 =0.

Inthe works of S. A. Aldashev [11—14], the Dirichlet problem and the problem with mixed boundary conditions
in the cylindrical domain @) (where [ = 1, T' = «) for multidimensional hyperbolic equations with a wave operator
are studied; the solutions of the problems are constructed as a sum of Fourier series in the spherical coordinate
system. But because of the arising small denominators, one cannot assume that these series converge in the space
C1(Q) N C*(Q). When proving the singularity theorems, questions also arise about the uniform convergence of
the series used, since they contain small denominators.

In this paper, in the class of regular solutions of equation (1), i.e., satisfying conditions (2) and (3), the criterion
of uniqueness of the solution of problem (2)—(5) is established and the solution itself is constructed in explicit form
— sums of Fourier series. When justifying the convergence of the series, the problem of small denominators arose,
as in the well-known works of V. 1. Arnold [15, 16] and V. V. Kozlov [17], but from two natural arguments. In this
connection, we establish estimates of the separability from zero of small denominators, on the basis of which we
prove the convergence of the series in the class of functions C(Q) under some conditions concerning the functions
7(x,y) and ¥ (x, y) and also obtain estimates of the stability of the solution.

2. UNIQUENESS CRITERION FOR THE SOLUTION OF THE DIRICHLET
PROBLEM

In the cylindrical coordinate system = = rcosy, y = rsinp, t =t,0 < r <1,0 < ¢ < 2w, equation (1) will

take the following form

1 b 1 6
Upy + ;ur + ﬁutpcp + ?u = aizutt- ( )

Dividing the variables u(r, ¢, t) = v(r,¢)T'(t) in equation (6), we obtain the following spectral problem with
respect to the function v(r, ¢):

1 1
Uy + ;vr + 7“72%@ + M\ =0, (7)
v(l, @) =0, (8)

[v(0, )| < 400, v(r,¢) =v(r,p + 2m), )

where \? = a% + p?, pu is the variable separation constant.
The solution of the problem (7)—(9) is similar [18, p. 215]: we will look for in the form of v(r, ) = R(r)®(p)
and obtain two one-dimensional spectral problems:
() +p*®(p) =0, 0<p<2m, (10)

D(p) = (p+21), @'(p) = P'(p+ 27); (11)
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2
R'(r) + %R’(r) + (v - fz) R(r)=0, 0<r<l, (12)

IR(0)| < +00, R(l) = 0. (13)

Nonzero periodic solutions of the problem (10) and (11) exist only at the whole p = n and are defined by the
formula
P, () = an cos(ne) + by sin(ne),

where a,,, b, are arbitrary constants, n = 0,1, 2, ... At p = n, the general solution of equation (12) has the form
R, (r) = cpdn(Ar) + dp, Yo, (Ar),

here ¢, and d,, are arbitrary constants, .J,,(Ar) and Y;,(\r) are cylindrical functions of the first and second kind,
respectively. From the first condition in (13) it follows that d,, = 0, and the second condition gives the equation

that, as it is known, has a countable set of positive roots ¢,.,, n = 0,1,2,..., m = 1,2,..., and eigenvalues
corresponding to them

Anm — Q’rwn m = 1 2

, 2,..., n=0,1,2,...,
l n

and eigenfunctions

R () = Jp i) = Jn (q’”” 7‘)

of the spectral problem (12), (13).
Thus, the spectral problem (10), (11) has a system of eigenfunctions

D, (p) = {\/12?, % cos(ny), % sin(mp)} , (14)

orthonormalized, complete and forming a basis in the space L2 (0, 27), and the spectral problem (12), (13) — a

system of eigenfunctions

_ Q) V2 TaQumr)
||Jn()‘an)I|L2(07l) l ‘Jn—&-l(qnm) ’

Ry (1) (15)

complete and an orthonormalized basis in Ly (0, [) with weight r.

Then, the spectral problem (7)—(9) has eigenvalues A2, = a% +p2,, = ("”l'm )2, and the system of eigenfunc-
tions corresponds to them, taking into account (14) and (15)

V(7 0) = {\/lz?Ro,n(r), %an(r) cos(np), %an(r) sin(mp)} , (16)

that is complete and forms an orthonormalized basis in the space Lo(D) with weight 7.
Further, we will assume that b > 0, because if b < 0, then, starting from some numbers n > ng or m > mg,
the right part of A2, = a% + u2,,, takes only positive values, i.e., the sign of the coefficient b, essentially does not

affect the obtained results.
Let u(r, ¢, t) be the solution of problem (2)—(5). Based on the system (16) we introduce the functions

Aom(t) = \/% //D u(r, o, t) Rom (r)r dr dyp, (17)
Aunlt) = = [ a0 R costungr ar . (1)
B (t) = \% //D w(r, @, t) Ry (1) sin(ne)r dr dep. (19)

Differentiating equality (18) by ¢ twice and considering equation (6), we obtain
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1
A1) = = [ [ o) o) costngyrar o =
D
2 1 1
= 737? // (urr + ~ur + 7121@,(/,) Ry (1) cos(ng)rdrde + bAp,(t) = J1 + Jo + bAnm (1), (20)
D

where

a? 1 a? [ !
J = — // (uw + u7-> Ry (1) cos(np)r drdp = —/ cos(n / Ty )t Ry (r) dr dep, (21)
=s . (r) cos(ny) =7 (w)o() (r)drde

a? 1 a? (1 2
Jy = ﬁ //D ;quan(r) cos(ny) drdp = ﬁ/o ;an(r)/o Ugy COS(np) dp dr. (22)

Let us calculate the internal integrals in the right-hand sides of the equalities (21) and (22):

! I 1 !
/ (rug ) Ry (r) dr = ruarm(r)’O — / ur Ry, (r) dr = —/ ur R (r) dr =
0 0 0

. 1 l 1
= a0, + [ w0 dr = =3, [ B4 [t g,
0 0 0

27 27
/ Uy COS(Np) dp = —n? / ucos(ny) dp.
0 0
Substituting these values in (21) and (22), and then (21) and (22) into equality (20), we obtain
AL (8) + 0 p A (£) = 0. (23)
The general solution of equation (23) is determined by the formula

Apm () = apm €OS(aftnmt) + bpm sin(afinmt), (24)

where a.,,, and b,,,,, are arbitrary constants. For their determination we will use the boundary conditions (5):

Apm(0) = % //D w(r, @, 0) Ry (1) cos(np)r dr dp = % //D 7(r, ©) Ry (1) cos(n)r dr do =: Trm, (25)

A (T) = % //D w(r, @, T) Rypm () cos(np)r dr dp = % //D (1, @) Rym (1) cos(no)r dr dp =: .

(26)
Subordinating the general solution (24) to the boundary conditions (25) and (26), we find
1
nm = Tnm; bnm = 7\ Unm — Tnm an
a T, s (¢ Trm COS(ap )
provided that
A (T) = sin(apin,, T) #0 atall n,m € N. (27)
e in(ajt (T~ 1) in(ap1n1)
SIN(Afbnm - SIN(afbnm
)= sin(apinmT) v sin(apinmT) (28)
Having differentiated equality (19) twice by ¢ taking into account equation (6), we obtain
From here (by analogy with the function A,,,,(¢)), we will find under condition (27)
_sin(apnm (T —t)) - sin(apnmt)
Bnm t) = 7 nm .7 0 29
(*) sin(aptnmT) +9 sin(aptnmT) (29)
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where )
Frm = ﬁ //D T(1, ©) Ry () sin(ne)r dr dep, (30)
Yrm = % //D (1, ) Ry (1) sin(np)r dr dep. 31

Now let us differentiate equality (17) twice by ¢ and, similarly, on the basis of equation (6) we obtain that the
function Ay,,(t) is a solution of the differential equation

From here (by analogy with the function 4,,,,,(t)), we find

sin(apom (T —t)) sin(apomt)
A n = Tom . m T 32
om(t) =10 sin(apomT) O sin(apomT) (32)
provided sin(uo,,T") # 0 for all m € N, where
1
Tom = \/—2? //D 7(r, ©) Rom (r)r dr dep, (33)
1
Vnm = \/7277'(' //D d)("”; QD)ROm(’I")T' dr d(p. (34)

Now let us prove the uniqueness of the solution of problem (2)—(5). Let 7(x, y) = ¢(z,y) = 0 and conditions
(27) be satisfied for all m € Nandn € No = NU {0}. Then, by virtue of equations (25), (26), (30), (31), (33)

and (34) all 7., = 0, Tromn = 0, Yy = 0, Yy, = 0,atn = 0,1,2,..., m = 1,2,... Hence and on the basis of
formulas (32), (29), (28) and (17)—(19) we have the following equations

//D u(r, @, t) Rpm (1) cos(ng)r dr dy = 0, //D u(r, @, t) Ry (1) sin(ne)r drdp =0

atalln = 0,1,2,...,m = 1,2,...,t € [0,T]. From these equalities, based on the completeness of the system
of functions (16) in the space Ly (D) with weight r, it follows that u(r, o, ) = 0 is almost everywhere in D at any
t € [0, T)]. Since by virtue of (2) the function u(r, ¢, t) is continuous in @, then u(r, ¢, t) = 0in Q.

Suppose for some n = ng orm = mg the expression A, (T) = 0or A, (T') = 0. For definiteness, suppose
that A,,,,,,(T") = 0. Then the homogeneous problem (2)—(5) (7(x, y) = ¢ (z,y) = 0) has a nonzero solution

Ungm (T, @, t) = Sin(afingmt) (@omRom (1) + @ngm Rngm (1) €08(10@) + bngm Rngm () sin(nep)) , (35)

where agy,, @nym and by, are arbitrary constants.
Consider the zeros of the expression A,,,,,(T"). Equality

Ap(T) = sin(apnm,T) =0
only takes place when
wk

b
a:unm

So, A, (T) goes to zero when 7' is determined by formula (36).

Thus, the criterion of uniqueness of the solution of problem (2)—(5) is established.

Theorem 1. [fthere exists a solution of problem (2)—(5), then it is singular if and only if conditions (27) are satisfied
at all n and m.

T =

k e N. (36)
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3. EXISTENCE OF A SOLUTION TO THE PROBLEM

If the conditions (27) are satisfied, the solution of the problem (2)—(5) is defined by the sum of the series
u(r, @, t) \/7 Z Ao (t) Rom (7 Z Z nm (t) €08(nw) + Bpm () sin(ng)) Rym (), (37)

where the coefficients Ag,,, (t), Anm (L), and By, (t) are found by formulas (32), (28) and (29), respectively. Since
A, (T) is the denominator of the coefficients of the series (37) and, as shown above, equation sin(agi,,,7") = 0 has
a countable set of zeros (36), the problem of small denominators arises. In this regard, estimates about separability
from zero should be established. For simplicity, in what follows we assume that b = 0. The expression A,,,,,(T) at
b = 0 is represented in the following form:

Apm (V) = sin(vgnm ), v = ?. (38)

Lemma 1. [f one of the following conditions is met:
1) the number v /2 = p is natural and odd;

2) the number v/2 = p/q is fractional-rational and the relation (2r — p)/(2q) is not an integer where r € Ny and
0<r<yg,

then there exist positive constants Coy and mq (mqg € N) such that for all m > my the evaluation is valid.
[Apm (V)| > Co > 0. (39)

Proof. For zeros g, of the Bessel function J,,(¢) at large values m > mg, where my is a sufficiently large
natural number, the asymptotic formula [19, p. 241] is valid.

qnm:g(2m+n—1/2)+O((4m+2n—1)_1). (40)
Substitution (40) into (38) gives
Apm(v) = sin (I%T(%n tn— 1/2)) +O ((4m+2m—1)71), (41)
since
sinO (4m+2n—1)"") = O (Am+2n—1)""), cosO(dm+2n—1)"") =1+ 0 ((4m+2n—-1)"")

at large m > my.
Let the number v/2 = p € N odd. Then, from equality (41) for all m > mg and n € Ny we obtain

|Apm (V)| > ‘Sin (ﬂ'p(Zm—Fn) — %)‘ — |0 (4m +2n—1)71)| =
‘Sm*"p (4m+2n—1)"")|=1-|0(4m+2n—1)" )|>} )
by virtue of
0 ((4m +2n —1)7" }<Cl<%
at large m.

Letv/2 = p/q, p,q € N, (p,q) = 1, p/q ¢ N. In this case, let us divide p(2m + n) by ¢ with remainder:
p(2m+n) =gs+r, s,r € Ny, 0 <r < ¢. Then the relation (41) will take the form

Ay (V) = sin (sw + % - ) +0 ((4m+2n—1)"1) = (~1)"sin <W2r —p

% >+O((4m—|—2n—1)_).
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If r = 0, then we have case 1) of the lemma. Then 1 < r < ¢ — 1. Hence (since the relation (2 — p)/(2¢) is not
an integer) it follows that

A ()] > sin(wQTqu>‘ 0 ((4m +2n— 1) 1)| >

2 —
sm< qu>‘clzc2cl>o, (43)
where

Cy= min |sin(m(2r —p)/2q)|.
1<r<q—1
Then, from (42) and (43) under the condition C; < Cs, follows the validity of the estimate (39).
Lemma 2. Let one of the conditions of Lemma 1 be satisfied, then for all m > mg, n € Ny and any t € [0,T] the

following estimates are valid
| A ()] < My ([Tl + [Ynml), (44)
|Bum (1)) < M ([T + [thra]) (45)
A (O] < Maptnn (1T + [Wnml)s B (0] € Mattn ([Fam| + [thnm])

\Aiim(t)\ < MSNim(|Tnm| + anl)v ‘Bgm(t)l < M3M$Lm<|;nm| + |¢nm|)>

hereafter M, are positive constants depending on T, a and .
The fairness of these estimates follows directly from formulas (28) and (29) on the basis of inequalities (39).
Now formally from the series (37) at b = 0 by postal differentiation, we obtain the series

U = \ﬁ S A () Ron(r Z (AL, () cos(np) + Bl () sin(ng)) R (1),
m=1 n: m=1
1 o= :
Upy = T Z Z n? (Anm (t) €os(np) + Brum () sin(ng) ) Rum (1),
n=1m=1
1 oo
Upp = —— Y Aom(t)Rf Z Z ) co8(n) + By (t) sin(ng)) Ro,,, (1),
2 m=1 n 1m=1
which at any (r, ¢, t) € Q are majorized respectively by numerical series
4AMs i )
e /’LOm(lTOm‘ + |w0m‘)|ROm(r)| +
V2T sl
\F Z Z Unm |Tnm| + |wnm| + ‘Tnm| + W}nm|)|an( )| (46)
n=1m>mg
Z Z ‘Tnm| + W’nm| + ‘TnM| + W)nmman( )| (47)
n 1 m>mo
M o0
e O (ol [om|) B (r)] +
m>mg
IZ Z (17| + [ + Famal + S|} [ Ry (r)]- (48)

n=1m>mo

Lemma 3. Let 0 < ro < r <[, where rq is a small positive fixed constant. Then at m > mg and any fixed n € Ny
there are the following estimates

‘an(r” S M4a (49)
| Ry ()] < M i, (50)
Ry, (1) < Mg, (1)
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Proof. Based on the asymptotic formula for the Bessel function of the first kind J,,(z) at large values of the

argument z [20, p. 98]
\/7 COS (Z — Vi — I) — iSln (Z — ﬂ — E) + 0(275/2) (52)
mZ 2 4 2z 2 4

2 1 2
)] </ (1+ 50— ) =2 (53)
’/TTO/an 2T0Nnm 7T7'0[an

as 1(2rofinm) < 1 at large m.
Similarly, we obtain the estimates

2
st = )] < 20/ 2 (54)

from which follows the estimation (49).
Now find the derivative

we have

V2
R, (1) = ———piamd}(2), 2= pnmr (55)
( ) Z‘Jn—s—l(Qnm)‘ ( )
Using the equality
1
Ju(2) = 5lv-1(2) = S (2)] (56)

and formula (52), we obtain the asymptotic formula for J/, (z) at large z

I (2) = ;\/z [COS (Z— (n;l)w_ Z) — cos (z— (n—Qi—l)W_ Z)] +0(z73/?) =
= \/Zcos (z — % + %) + 0(2—3/2)’

on the basis of which, similarly to estimates (53) and (54), we find

2

|3, (b )| < 2 - (57)
TTroMnm
Then from equality (55) by virtue of estimates (57) and (54), follows estimate (50).
From (12) we calculate the second derivative
" 1 ! n2 2
Hence, taking into account estimates (53) and (57), we have
n>_ [ 2 2
|5 ()| < *2 22 Jr/u?zzmQ .
TTo lnm o TTo Mnm TToMnm
From this inequality, by virtue of (54), we verify the validity of the estimate (51).
Lemma 4. Let 0 < ro < r <. Then for large n and any fixed m € N, the following estimates are valid
| Ry (1) < M7, (59)
|R (r)] < Msn, (60)
| Ry ()| < Mgn?. (61)

Proof. To obtain these estimates, let us use Langer’s asymptotic formula at large values of order p of the Bessel
function [20, p. 103]

t
e g”K1/3< ) +0(p~/3), (62)

1
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where

2
t
w=14/1- <) , t<p, z=pArthw —w),
p
K 3(z) — McDonald’s function.
Using a power series expansion of the function

wdowWh W'

tgw=w— — 4 — — 4.
arctgw = w 3—|—5 7+ )

evaluate the expression

w? 3 arctgw  w?
—(1-Zw?) <1 <
3( 5“) w 3

Hence at 0 < w < 1 we have

2 < (1 arctg w 1/2<i
15% w /3

Then from the formula (62), taking into account the estimation (63), we obtain

1,(1)] < %Kl/?,(zx

2w
|Jp(t)| > B;Ku:s(z)-
Now on the basis of estimates (64) and (65) we have

w
T (finmr)] < ==K 3(21),

7r\/§
2 w
| T (Grm )| > B?QKl/?)(ZQ)a
where
dnmT 2
wy =+4/1— ( ] ) , 21 =n(Arthw; — wq),
n

2
qn?n
=4/1— = (n+1)(Arthws — .
wo (n 1), 29 = (n )( wWo — ws)

From inequalities (66) and (67), estimate (59) follows, since w; & w» at large n.
Based on formulas (55) and (56), we estimate the derivative R}, (r):

Gnm
[ Ry ()] < V§phh+1@nm”OJﬁfﬂunmrﬂ+¢Jh+dunmfﬂ)

Hence, taking into account estimates (66) and (67), we obtain (60).

(63)

(64)

(65)

(66)

(67)

By virtue of equality (58) on the basis of (59) and (60), we are convinced of the fairness of the estimate (61).
Remark. Note that the function R,,,,(r) and its derivatives R/, (), R (r), starting from some number n,
tend to zero at r — 0. Therefore, in Lemmas 3 and 4 the estimates (49)—(51) and (59)—(61) are obtained at

r>rg > 0.
By virtue of lemmas 3 and 4, rows (46)—(48) are majorized by the combination of rows

o0 (o] o0
Mo > m*(froml + [om)): Mix Y D 02 (|7om| + [Yoml),
m>mgo n=1m>mg

o0 o0
My Z Z Him(‘Tnm| + W}nm| + ‘%nm| + W}an

n=1m>mqg

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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Let us denote by C*4(D) the set of functions f(r, ), that have continuous mixed derivatives on r and ¢ up to
and including fourth order in the closed region D.

Lemma 5. Let 7(r, @), ¥(r, ) € C**(D), and 7 (r,0) = 709 (r, 27), i = 0,3, 7#(0,9) = 0, k = 0, 3,
YO (r,0) = O (. 27), i = 0,3, p*ED(0,0) = 0, k = 0,3. Then the coefficients of Tom, Trnm, Ynms Ynm at
[, — +00 have estimates of

1 - 1 1 - 1
T"m_o(nu%m)’ Tm_O(wiﬁm)’ w"m_0<nu%m)’ w"m_0<n/¢%m)'

Proof. Consider the coefficients 7., , ¥nm, Tnm, and zﬁnm defined by formulas (25), (26), (30), and (31), re-
spectively. Let us represent 7,,,,, in the following form:

1 l
Trm = ﬁ/o Ry (torm ) L ()7 dr, (69)

where )
I(r) = / 7(r, @) cos(ny) de.
0

By the condition 7/,(r,0) = 7/,(r,27) and 7(r,0) = 7.’(r,27), then the integral /(r) can be transformed by

%]
fourfold integration by parts into the form

1

27
I(r) = ﬁ/o 7';4) (r, ) cos(np) dp. (70)

Now let us write the integral (69), taking into account the representation (70), as

\/§ /27‘1’
Tnm = J () cos(ny) dy, (71)
Wl i@l Jy 79V e0sne) b2
where l
J(‘P) = / TLEJ4) (Tv @)Jn (:U'nmr)r dr. (72)
0
Note that the function X,,(r) = r="J,,(§), £ = unmr is a solution of the differential equation
2 1
XU(r) + XL () 4 2 X (1) = 0. (73)

Then the integral (72), taking into account equation (73), is transformed as follows:

l
J(p) = / 7—4574) (r, ‘P)Xn(T)Tn+1 dr =
0

1 /[ 2n+1
G [;ﬂﬁwwm[X£v>+ PEEXG ()| dr =
1 l
= o / Té4) (r, ) [P T X (1) + nr™ X ()] dr =
. Jo
71”” : 2.4 1
o [ 8 e ) dr-
1 l
— 72 / T7§71¢4) (r, p)r" X, (r) dr+
nm J0
n2 [l
e R T
1 1 n?
= T2 Ji— 112 J2 + 112 I3, (74)
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where

T(2 4)(T ©)r n+1Xn( ) dr,

=~
I

71(r, go)r"+1Xn(r) dr,

e
I
c\::\Lc\

Jz = To(r, go)r"“Xn(r) dr,
(1,4) (0,4)
Tr, r,e Tr r,e
nrg) = A gy - T (),

Similarly to the integral J(p) by formula (74), we transform the integrals J;, i = 1, 2:

1 1 n?
Ji = ———Jin — —5—Jin + ——Jis,
Ham, nm nm
where
; !
Tu= [ o Xy dr = [ 700 i,
o 0
D= [ AN dr = / 708 (00 5 )i,
0 0 "
Tr, T,
:/0 (24 T X (r )dr:/o %‘L@(l‘nmr)rdr7

! !
Ja1 —/ 7 (r, )" T X, (r) dr :/ 710 (7 @) T (o )7 i,
0 0

l L
JQQZ/ T1,.(r )" X (1) dr:/ MJn(unmr)rdr,
0 0

r

l l
Jog = / 71 (r, )" X, (r) dr = / I (T; 2 In ()T dr.
0 0 r
We transform the integral .J3 as follows:
I
G / (O 4)(T @)r 1Jn(ﬂ'nmr) dr =
0

I
:/ (0 4)(7“ O)r "2 LT () dir =
0

l

1 ! —_n— n
- L / d {T ? (0 4 (T 90):| +1Jn+1(/‘nmr) dr =
0 nm

1 l
- - / T7(>,1¢4) (T7 @)TﬁlJn—Q—l (}anr) dr +
0

== Tﬁa) Jn+1 (,unmr)

n+2

/ O (1 )2 1 ()

Hnm Hnm
1 n—+ 2
= - Ja1 + m J32.

After substituting (75) and (76) into equality (74), we obtain

1 2 2 2 2
(Jin + Jiz + Jo1 + Jao) — " o nn+2)

nm nm nm nm

J(p) =
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(Jis + J23) = —5—Js1 + — 35— Js2.

(75)

(76)

(77)
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If’ﬂg% )( ¢) € C*0,1] and T(k % (0,¢) =0, k = 0, 3, then the representations are fair

(4,4) 4

(O 4)(7“ p) = Tr,p (40'7410)7’ . 0<f<r
(4,4) 3

71D (1, ) = Tre (39|7<P)T ’
(4,4) 2

(2 4)(r p) = Tre (29'#/))7’ ’

T8 () = 750 (0, 9)r
By virtue of this in the integrals J3; and .J3o, the functions 7-75 ) )( roQ)r are continuously
differentiable on [0, {], so on this interval they have complete bounded variation, i.e., finite variation. Taking into
account the theorem from [21, p. 653], the integrals J3; and J3s at fi,,, — oo have the following evaluation

o) =5/2, 7.7§,1¢4)< —3/2

Ts1 = O(pol®)s Jza = Ol (78)

In the integrals Jy;, ¢ = 1,2, 3, the integrand functions T'r(‘if) (r, ), & v )(r w)r— ', and 77(.,%;4) (r,p)r—= are

continuous on the segment [0, []. Then by virtue of Young’s theorem [21, p. 654], these integrals at fpm — 00
have the following evaluation

2

Jii = Ot %) (79)
Now consider the integrals Jo;, i = 1,2, 3. In them, the functions 71,.(r, ¢), 1,.(r, ¢)r ! and 71,-(r, p)r =2 are
also continuous on the segment [0, {], so the estimates are valid
J2i = Ol ®)s pinm — o0. (80)
Then from the representation (71), taking into account equality (77) and estimates (78)—(80), we obtain
1
Tom = O < 7 > .
Tyym
Similarly, from formulas (26), (30), and (31), the rest of the estimates follow. The lemma is proved.
Numerical series (68), by virtue of formula (40), are majorized by convergent series, respectively
=1
M —, M M .
13 ) o DI Frop 5 4m+2n g
m>mgo n= 1m>m0 n=1m>mg
If for the numbers v from lemma 1, for some m = mq, ma, ..., ms < mg, Wwhere 1 < mq < mog < -+ < my,

Apm,; (v) = 0, then it is necessary and sufficient for the solvability of problem (2)—(5) that the conditions are
satisfied

Tnm; = @[]nml = 07 7~—nm1 = &nml = 07 1= 17 S. (81)
In this case, the solution of the problem (2)—(5) is defined as a sum of series:
1 mi—1 mo—1 mes—1 o
ul(r pt) = 7= S+ Y o+ Y+ D> | Aw(Rom(r) +
™ m=1 m=mi+1 m=mgs_1+1 m=ms+1
1 e’ mi—1 mo—1 ms—1 fe'e)
23 DICID MIEIEED DD Dl B
n=1 m=1 m=m1+1 m=ms_1+1 m=ms+1
X (Apm (t) cos(ng) + B (t) sin(ne)) Rym (1) +
+ Z Cnmlunml (Tv ©, t)a (82)

i=1
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here w,,m,, (r, ¢, t) are determined by formula (35), where mq should be replaced by m;, C,,,,, are arbitrary con-
stants; if in the finite sums in the right-hand side of (82), the upper limit is less than the lower limit, they should
be considered as zeros.

Thus, the following has been proved

Theorem 2. Let the conditions of lemmas 1 and 5 be satisfied. Then if A,.,,(v) # 0 at all m = 1, myg, then problem
(2)—(5) is uniquely solvable, and this solution is defined by row (37); if Ay, (v) = 0 at some m = my,ma,...,mg <

my, then problem (2)—(5) is solvable only when conditions (81) are satisfied, and the solution is defined by row (82).
Note that the fulfillment of the condition A,,,,,(v) # 0 at m = 1, m can be achieved if v # 7k /gy, (by virtue
of formula (36) at b = 0).

4. STABILITY OF THE PROBLEM SOLUTION

Consider the following norms:

[w(r, 0, )L, (D) = // t)rdrde,

Ju(r,0 Do) = max futro,0),

1722 (o // 132 )P dr d,

192 (r, )12 5 = max. 1932 (r, )]

Theorem 3. Let the conditions of Theorem 2 and A,,,,,(v) # 0 be satisfied at m = 1, mq. Then for the solution (37)
of the problem (2)—(5), the following estimates are valid

lu(r, o, ) o(py < Mis(I7(r, ©) Loy + 1901, ©) | Lo(D))s (83)
lu(r, o, Dl e < Mir(ImC2 (r o)l ey + 1922 (r o)l e m)- (84)

P

Proof. The constructed system of eigenfunctions (16) is orthonormalized in the space Lo (D) with weight r.
Then from formula (37) on the basis of estimates (44), (45), and (49), we will have

HU(T @t ||L2(D) Z A Z Anm +B72Lm( ) =

n,m=1

< oM2M? lz (17oml® + 1oml?) + 3= (ol + Fural? + [ml® + |Jnm2)] =

m=1 n,m=1

= 2M7 ME (|7 (r, )L 0y + [0 (r ) L))

Hence we obtain the estimate (83).
Let (7, ¢, t) be an arbitrary point Q. Then from formula (37), taking into account estimates (44), (45) and (49),
we have

u(r, ¢, )] < My My lZ(ImmeOmH > (Irnm+|wnm+lfnm+|zﬁnml>]- (85)
m=1 n,m=1

Further, based on the reasoning given in the proof of Lemma 5, we will represent the coefficient 7,,,,, as

\/i /27r
Tnm — — J cos(n d )
VT g1 (@nm)|n? Jo (¢) cos(nyp) dp
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where
l
1
‘](90) - /O T7(-2$2) (’I“, @)th(ﬂnmr)r dr = _T(J{ + Jé - 77‘2'];));
l
K= [ 78200 I e
0
1 (1,2)
Jﬁ :/ Mjn(/ian)T dr,
0 T
1,(0,2)
Ji = / Tre \LY) rgr’ ?) In ()7 dr.
0

Ifﬂggf) (r, ) e C?[0,1] and T(O 2) (0,9) = 7(1:2)(0, ) = 0, then the functions T7(-71¢2)(7“, o)l = 77(72902)(9, ®),
© 2)( Lp) = 722 @ (9 ©)/2,0 < 6 < r are continuous on the segment [0, /], then

Tryp
Mg
‘Tnm| < | ’r(L%;LQ)L
where
= =/ / (2:2) (1, 0) cO8(1p) R (1) dr i, (86)
Similarly, we obtain the estimates
[Fom| < M“‘l |
ﬁgi’f) = \f// (r, ) sin(ne) Ry (r)r dr dep, (87)
Mg 2,2
Wnm| < S0 &2,
/’l"llm
~ M-
[aml < 25 19552,

where 111(2 2) and ¢(2 %) are defined according to formulas (86) and (87), but with the replacement of 7(r, ) with
Y(r, ).

Now, continuing the estimation (85), we have

=1 2,2 2,2 = ~
u(r, o, 1) < Mg | Y —— (5221 + w2+ Y <\ @2 4722 4 [p@2 | + |92 -
m=1 /’[’Om n,m=1

Hence, using Bunyakovsky’s inequality, we obtain

I 1/2 oS 1/2 1/2
|u<w,t>|<Mzo{(Zi> KZ%&”P) +<Zw<“> +
m=1 Hom m=1 m=1
o 1/2 IS 1/2 oS 1/2
(2 ) |3 e rsem) o« (2 3 qespraan) |} <

1/2 . 1/2
ngKZ é“>|> +( > <r£%;2>|2+|%£%2>|2)> +

n,m=1
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(Zw(“) >/+<fj (052 P + 052 P ))UT <

m=1 ,m=1

oo 1/2
§M21\/§l(z (,2”2 + Z | (22)|2+7~'7(3,;2)|2)> +

m=1 n,m=1

i 1/2
(ZW“N > (|¢§?>2>|2+|w<22|)> ]

m=1 n,m=1

= V2Ma1 (|72 (1, 0) ooy + 92 (1, 9| () < Moz (IIr®2 (r,0)ll oy + 1932 (r,9) | o))

From the last inequality, the estimate (84) follows directly.
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