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I. INTRODUCTION. PROBLEM STATEMENT

In this paper, we consider the initial boundary value problem for the singularly perturbed parabolic equa-
tion, that differs from the classical singularly perturbed reaction—diffusion—advection equation (see [1, 2]) by
the presence of an additional nonlinear term containing the square of the gradient of the desired function (KPZ-
nonlinearities [3, 4]):

2 2
52% - 5% — &% A(u, x) (gg) — f(u,xz,e) =0, xz€(-1,1),t€ (0,7,

ou ou
%(—1,1?,5):0, %(1,75,5):0, t € 10,7,
u(xz,0,¢) = uinit(z,¢), =€ [-1,1], (1)

where € € (0, g is the small parameter, ¢ > 0 is a given constant.

Traveling wave type solutions for quasilinear parabolic reaction—diffusion—advection equations are the subject
of intensive study (see extensive monographs [5, 6]). Attention to nonlinearities of the form A(u, z) (%)2 is due
to both theoretical interest — the square is the limit of degree at which the Bernstein conditions on the growth of
the nonlinearity are satisfied (see, e.g., [7—9]), and important applications where such nonlinearities are used in
mathematical models, in particular, population dynamics models [10], in modeling free surface growth in polymer
theory [3, 4, 11], and many others. We note the work [12], in which exact solutions of the KPZ equation are con-
structed for several physically justified nonlinearities. However, it is assumed there that (u, 2) = const f = f(x,t).
The principal difference of problem (1) is that we consider an equation, where the nonlinear terms depend ex-
plicitly on the coordinate and the desired function. In this paper, we propose an algorithm for constructing an
asymptotic approximation of the solution of the front view, with the velocity of motion being a function of the
coordinate.

Stationary solutions of problem (1) with boundary and inner layers are studied in [13, 14]. The boundary-layer
solutions of the Tikhonov-type system with KPZ-nonlinearities are studied in [15].

The paper is structured as follows. In (2), we construct an asymptotic approximation of the moving front

solution using the method of A. B. Vasilieva [16]. Note that since problem (1) is singularly perturbed, at e = 0 the
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equation of problem (1) changes its type from parabolic to algebraic with three roots (see condition 2), two of them
describe stable equilibrium positions of the system and represent the regular part of the asymptotic approximation
of zero order of accuracy. However, the regular approximation does not allow us to describe a narrow region
with a large gradient, in which the solution passes from one stable level to another. To describe the solution in
this region and to harmonize the stable equilibrium positions among themselves, the so-called transition layer
functions are constructed. In this way, a formal asymptotic approximation of the solution in the whole region
under consideration is constructed. In (3), an algorithm for finding an asymptotic approximation of the front
position is given. In (4), we give a justification of the formal asymptotics and prove the existence and uniqueness
theorem using the asymptotic method of differential inequalities of N. N. Nefedov, that has shown its efficiency in
many singularly perturbed problems [16]. The obtained results are illustrated in Section 5 by an example, that can
be used to develop and verify new numerical methods for the considered class of problems (see [17]).

The results obtained in this paper develop the studies [1, 2], in which the front motion in the reaction—diffusion—
advection equation with weak advection and smooth or modular (discontinuous at some value of the desired func-
tion nonlinearities) sources was considered, and transfer them to a new class of singularly perturbed problems with
KPZ-nonlinearities. At the same time, as in [1, 2], the existence and uniqueness theorem of the solution having
in both cases the same form of the contrast structure of the step type [16] is proved.

In the problem discussed below, it is assumed that at the initial moment of time the front is already formed. This
means that the function uini¢(x, €) has an internal transition layer in the neighborhood of some point z:op € (—1, 1),
i.e., it is close to some root ¢(~) (x) of the degenerate equation f(u,2,0) = 0 to the left of the point z(, and to
the root ¢(+)(z) to the right of this point. In the neighborhood of xq there is a sharp transition from ¢(~)(z) to
¢ ().

We will assume that the following conditions are satisfied.

Condition 1. The functions A(u, z), f(u, z, €) are sufficiently smooth in their areas of definition.

Condition 2. The derived equation f(u,z,0) = 0 has exactly three solutions u = ¢+ (z), with (=) (z) <
0O (z) < o) (z), x € [~1, 1], while the following inequalities are also valid

ful@®(2),2,0) >0,  fu(eP(x),z,0)<0, zel[-1,1].

2. CONSTRUCTION OF FORMAL ASYMPTOTICS OF THE SOLUTION

The asymptotics of the solution of problem (1) is constructed by the method of boundary functions separately
in each of the regions [—1, Z| x [0, T] and [Z, 1] x [0, T'] with a moving boundary (see [ 16]) using the effective method
developed in the scientific school of Professors A. B. Vasilieva, V. F. Butuzov, and N. N. Nefedov for constructing
the asymptotics of localization of the inner layer in the form of

U B U (x,te), (x,t,e) € [—1,2] x [0,T] x (0, 0],
(z,e) = U (z,t,e), (a,t,e) € [2,1] x [0,T] x (0, e0].

We will represent each of the functions U+ (x, €) as a sum of three summands:

UE (2,t,¢) = a® (z,6) + QE) (&, t,6) + R (D)),

where a3 (z,¢) =l (z) + eal* () + -+ is the regular part of the decomposition, functions Q) (¢, ¢,) =
gi)(g Jte) + 5Q§i>(g, t,e) + --- describe the behavior of the solution in the vicinity of the transition point

z(t,e), £ = 2=2(£) s the transition layer variable: ¢ < 0 for functions with index (=) and ¢ > 0 for functions

with index (+); functions R®) (n®) &) = R (n®)) 4+ eRF (n#)) + ... describe the behavior of the solution
in the vicinity of the boundary points of the segment [—1, 1]; n& = %1 are stretched variables near the points

x = =+1, respectively. Since the functions Rgi) (n(i)) are defined in a standard way (see, for example, [16]), we
omit the procedure of their construction. Note that these functions do not depend on the variable ¢ and thus do

not participate in the description of the moving transition layer, and the functions Réi) (n(i)) = 0 by virtue of the
Neumann boundary conditions.
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The position of the inner transition layer is determined from the condition C'*-combining the asymptotic rep-
resentations U(~)(z,t,¢) and U+ (z, ¢, €) at the transition point &(t, €):

U (@(te),t,e) = UM (@(te), t,e) = 6O (2(t,2)), )
0 0
L) — L) s
E&EU (Z(t,e),t,e) E&TU (Z(t,e),t, ). 3)
We will look for the transition point = = (¢, ) in the form of expansion by powers of the small parameter e:
E(t,e) = wo(t) +exi(t) + - 4)

The coefficients of this expansion will be determined in the process of asymptotics construction.
The regular part of the asymptotics is determined after substituting the representation for the functions () (z,¢)
into the equation.

253 o (E)
2070 e2A(a®), ) (au

Ox?

3

2
o ) — f(@®),z,e) = 0.

Inthe standard way [16], we obtain the algebraic equations for determining the functions of the regular part ﬂ,(f) (2),
k=0,1,...
Taking into account condition 2, the regular zero-order functions are defined as

(£
a5 (@) = 6 (@),
To shorten the record, we introduce the notations
J(:(Li) (:L‘) = fu(¢(i)(‘r)7 T, O)'
Functions a;i) (x)atk =1,2,...are defined from equations

F (@)al® (z) = i (2),

where the functions Béi) (x) are known at each k-step and are expressed recurrently through the functions a,(f) (x)
with indices 0, 1, ..., k — 1. The solvability of these equations follows from condition 2.

In orderto obtain the equations satisfied by the transition layer functions Qfﬁi) (&,t,¢2), letusrewrite the differen-

tial operator of the problem in the variables (&, t). Then the equations for the functions Q,(f) (& te), k=0,1,...,
are determined in the standard way [16] by equating the coefficients at the same degrees ¢ in both parts of the
equations:

BO®  ane e G0 ) A R o) \?
90 BEA e e () -
00 gud\2 g0
_A(u(i)(65+@(t7g),g)+Q(i)(f,t,€)7€€+5€(t7€))< %g + g& ) - %t =

= f(a(i) (e€ + &(t,e),e) + QI (&, t,e), 6 + i(t,e),e) — F(@®) (e + i(t,e),e),e€ + &(t,e),e).  (5)
In contrast to the approach in [2], we will not decompose by powers of ¢ the transition point z(¢, ). This
will simplify the algorithm for constructing the asymptotics. Note that the equations from which the functions
;Ci) (&,t, ) are found contain functions depending on (¢, €), %, and that explains the presence of the argu-
ment ¢ at Q,(f)(f, t,e).
We require that the transition layer functions Q,(f)(f ,t,e), k = 0,1,..., satisfy the conditions of equality to
zero at infinity: Q,(;)(g,t,e) —0até — —oo, Q,(j)(f,t,e) —0at{ — 400, k=0,1,...,t €[0,7T].
Equating the coefficients at ¥ in the right and left parts of equations (5), we obtain equations for the function
((f)(f, t,e) at & < 0 and the function QéH (&, t,e)atg > 0:
Q) dilt.e) 995"

()12
o PP Aot + QT et e ae,e)) (P )

= f(¢'P(@(te) + Q57 (€. 1.2), 8(1,9),0). ©
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We obtain the additional conditions at £ = 0 from the continuous cross-linking condition (2) written in zero
order at «:

§700,t,8) + 6 (@(te) = QEV(0,t,6) + 6D (i(t,€)) = 9O (2(t, 2)).

We also add conditions at infinity: Qé_)(f,t,e) — 0at& — —oo, Qé+)(§,t,5) —0até — 4oo,t €[0,T].
Let’s introduce the operator D, acting by the rule

(7

and functions

A (€, te) = 9P (2(t,)) + QT (€, 1, 2), ®)

) e (Ete) + Q5 (€ te), ifE <0,
e {¢(+)(5£(t,5)) + Q47 (6 the), ifE >0,

(€ te) = %?(&t,e), ¢ <0,
o) (¢ te) = %Z(s,t,a, ¢€>0.

Remark. It follows from the form of equations (6), that in the functions Qéi)(f, t,e), u(&,t,e), P (&, t,€),
oF) (€, t, ), we can switch to another set of arguments — (£, #). In the future, we will use both sets, choosing the
most convenient for each particular case.

Let us rewrite equations (6), as well as the additional conditions, using (8):

25 (+ ~ (% (%
o2 ol )—A(ﬁ(i),g}) (au( )

2
- — f(7d 3
652 + Dz 8§ 65 ) - f(u axao)v

@ (0,2) = ¢0(z), P (Foo,i) = ¢F) (). )
Along with the problems (9), let us consider the problem

il +W@ — A(@, &) o\’ _ f(a,&,0), a(0,&) = ¢ (2), a(£oo,z) = ¢ (1) (10)
852 85 b aé- - ) b ) b - b ) - .

Let us formulate and prove the existence result of the solution of problem (10) in the form of a lemma.

Lemma. For each & € (—1,1), there exists a single value W such that the problem (10) has a single smooth
monotone solution (&, &), satisfying the estimation

(€, &) — ¢ (2)| < Cexp{—rl¢|},

where C' and r are some positive constants. In this case, the dependence W (&) is defined as

¢ (@) u
W(z) = /¢ F(u, 3,0) exp {—2/4) A(y,fc)dy} du %

(&) ) (&)
00 90 \2 a(,2) ) -1
x l | (Geea) exp{—2 / ()@)A(w)dy}dﬁ] .

The smoothness of the function W (&) coincides with the smoothness of the functions f(u, Z,0) and A(u, &).
Proof. In order to use the known result from [18], we make a monotonic transformation proposed by A. V. Bitsadze
in [19]:

w(€,%) Y
2(&,8) = 2(al€, 2), &) = /¢ exp{— / A(r,fc)dr}dy, (@,2) € [p7)(&), 6D (2)] x [-1,1].

(@) () (2)
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Let’s introduce the notations

¢(+0 () Y
ZE0(3) = / exp {—/ A(r, i‘)dr} dy.
60 (@) 6 (@)

Due to the monotonicity of the transformation z (4, ) by @ we can define the inverse function

a(E, &) = h(2(€,2),%), (z,2) € 0,27 (&) x [-1,1].

Thus, the problem (10) transforms into the problem

9%z Wa , h(m)A .
+ z,2),x,0)exp —/ r,z)dr » =0,
%6 9 — f(W(z, 2),2,0) o) (r, )

2(—00,2) =0, 2(0,2) =20(2), z(400,2) =2z (), (11)

for which, by virtue of conditions 1 and 2, the following statements are true [18].
1. Foreach & € (—1, 1), there exists a single value W, such that the problem (11) has a single smooth monotone
solution (¢, z), satisfying the estimation

2(&,3) — 2 (2)] < Cexp{—rl¢|},

where C and x are some positive constants.
2. The dependence W () is defined as

A 2 (2) o h(z,&) A ey 2 -1
W(z) :/0 f(h(z,2),2,0) exp{—/qﬁ(_)(i)A(r7 x)dr}dz [/_Oo (65 (&, )> df} . (12)

The smoothness of the function W (&) coincides with the smoothness of the functions f(u, Z,0) and A(u, Z).
Finally, returning to the function @ (&, ) using the transformation @ (¢, &) = h(z(&, &), &) and recalculating the
integrals in expression (13), we have the statement of the lemma. The lemma is proved.
Let’s condition.

Condition 3. Task
dz

dt
has a solution x = x((t), such that zo(t) € (—1,1) at¢ € [0,T]; W(x) > 0forall z € [-1,1].
The inequality W (z) > 0 in condition 3 guarantees the absence of stationary solutions for problem (13). Let
us denote by (9a) the problems (9) in which we replace z by x(t), or, otherwise, in which we put ¢ = 0.

It follows from the lemma and condition 3, that problems (9a) are singularly solvable, since the condition
Do = W (xy) is satisfied. Thus

=W(z), x(0)=xq (13)

ou) o)

Tg(o’xo t) — T§(07$0(t)) =0.

By virtue of the assumed smoothness of the functions f(u,#,0), A(u, ) (see condition 1), problems (9) are
regular perturbations of problems (9a), so they are also uniquely solvable. Note that by virtue of the representa-
tion (4)

7 () ()
8155 0,#(t,¢)) — 8?)5 (0,2(t,¢)) = O(e).

Thus, the construction of the zero-order transition layer functions is completed.
The first-order transition layer functions are found from the following problems:

920\ 90'F) - 90'F -
D7 0% e i) 2 (A6 06D + ule0) &6 =),
F0,t,e) +alP (@) =0, Q) (+oo,t,e) =0, (14)

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025

33



34

ORLOV

where the notations are defined

fu(fvt) = fu(ﬂ(fai)v £7O)7 A(f,t) = Au(ﬂ(f,.f), i)? Au(&t) = Au(a(é.ri')vj) (15)
and
(£)
9ente) = 287 (¢ 1,0) 4 2A(E 000 (6,0 (5) +

(+) _ B ) _ i oo -
- (ugi> (#) + fdzx(i))(fu(é» B+ Au(& ) ([@0(62)7) + (&) + A& D (0(6,8)) + (&, 1).

Here, the derivatives of fa(&,1), fo(&,t) are computed at the same point as the derivative of fu(&,t) in (15).
Similarly, A, (,t) is computed at the same point as A, (&,t). In all the notations introduced here, the argument £

is implied, but we omit it for brevity. The problem for the function Q(l_) (&,t,¢) will be solved on the semi-straight

£ <0, and for the function Qgﬂ (&,t,e) — on the semi-straight £ > 0. The solutions of problems (14) are written
in explicit form:

(e, )
7(F)(0, )

€
+a<i>(g,g:~)/
0

Qe te) = —a (@) =t

e (D2 T ey () (Do), (+) 6
G0 D0 8) Juw | OO DI Yo, (1)

where

¢
jE)(E,if)exp{2/0 A (y, &), )™ )(y,fc)dy}-

It follows from the expression for the functions rl (5 t,e), that they have exponential valuations [16], and
from (16) we deduce in the standard way that similar valuations are true for functions Q(li) (& t,e).

Similarly to the first approximation, one can find for any k£ = 2, 3, ... transition layer functions QSE) (& t,e):
they are determined from boundary value problems with the same differential operator as in problems (14).

3. ASYMPTOTIC APPROXIMATION OF FRONT POSITION

Let us describe the algorithm for finding an asymptotic approximation of the front position. The unknown
coefficients z;(t), i € N, of the expansion are determined from the crossing conditions (3) of the derivatives of the
asymptotic approximations. Let us introduce the function

(+) (=)
Hie,t) = e (di; Bite) — %(i,t,e)) — Ho(et) + eHi(e,t) + 2 Hale, ) +---,  (17)
where aQ(+) aQ(
Hy(e,t) = 32 (0,2) — e 0,2),
do+) dop=) 9 (+) bl (=)
Hy(g,t) = flm (z) — iblx (x)+< gg (0,t,e) — %2 (0,t,¢)
etc.

The C*-linking condition (3) is expressed by the equality H (¢, t) = 0. By virtue of the lemma and condition 3,
taking into account the decomposition of the transition point (4), this equality is satisfied in the order ¢°.
The analysis of problems (9), (10) shows that the function Hy(e, t) can be represented as

+

1 +o0 R
Hy(e,t) = (D& — W(&)) L(i)(Ox) /0 (0 (¢, 2))2ePREPE) (¢, f)ds] +O(e?). (18)
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ON FRONT MOTION IN THE REACTION—DIFFUSION—ADVECTION PROBLEM 35

+

Hereinafter, [ ]~ means the difference between the expressions labeled + and —.
As follows from the decomposition (17) and the representation (18), the higher order terms z;(¢), i > 1, in (4)
can be found from the following Cauchy problems:

dl’i
dt

= W'(zo(t))xi(t) = Gi(t), 2i(0) =0,

where G;(t) are known functions.

4. JUSTIFICATION OF FORMAL ASYMPTOTICS

Let’S Say
sy Xr — X (1 6)
n )

Xn(t,e) = Zeixi(t), &=
i=0

€
The curve X, (, ) divides the area D : (z,t) € [—1,1] x [0, T] into two sub-areas:

D) s (x,t) € -1, X, (t,e)] x [0,7] and DSP) : (x,t) € [Xn(t,e),1] x [0,T].

n

Let’s define the functions

U @ te) =Y e (67 @) + Q76 ) + R T)) L (@1 e DY,
=0

U (@, t,e) = > (a8 @) + QP (6 o) + RV GD)), (w,0) € DY,

=0

where Z(t, €), included in the expressions for the transition layer functions, are replaced by X, (¢, <), and denoted
by

N, t,e), (x,t) € DY
Un(@,t,2) = § (0 AH)
Un''(z,t,€), (x,t)€ Dy"’.

To prove the existence and uniqueness of the moving front solution, we use the asymptotic method of differ-
ential inequalities [16]. Let us construct continuous functions «(x, ¢, €), 5(z,t,<) in such a way that they satisfy
the following conditions.

1. Ordering condition:

(19)

a(x,t,e) < f(x,te), = el-1,1],t€[0,T],e € (0, ). (20)

2. Action of the differential operator on upper and lower solutions:

2 2
L) =290 % (g ) (gf) — f(Bme) <0<
2
< Lla] := 62% - 5%—? —2A(a, ) <gi> — fla,x,¢€) (21)

forallz € (—1,1)and ¢ € [0, T, except those x(¢), in which the functions «(z, t, ) and 3(x, ¢, ¢) are nonsmooth.
3. Boundary conditions:

da

S

ap da
— >0> —(— —_— <0< .
837( 1,t,e) > 0> (’)x( 1,t,¢), aJc(+1,t,5) <0< 8$(+1,t,5), t €10,T],e € (0,e0] (22)
4. Conditions on the initial function:
a(ac,(),a) < uinit(xvs) < ﬁ(xaovs)v S [_17 1}75 € (0750]' (23)
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5. Conditions on the jump of derivatives:

D@0~ 0,6,9) 2 2 @() +0,t,2), (4

where Z(t) is the point at which the upper solution is nonsmooth;

O
Ox
where z(t) is the point at which the lower solution is nonsmooth.

It is known (see [20]) that if the conditions (20)—(25) are satisfied, there exists a single solution of problem (1)
for which the inequalities are satisfied

(2(t) ~ 0,,€) < 9 (alt) +0,1,2), 25)

a(z,te) <wu(z,te) < Bz, te), (x,t)€[-1,1] x[0,T).

Let us prove the following existence and uniqueness theorem.
Theorem. When conditions 1—3 are satisfied for any sufficiently smooth initial function w;,(x), lying between upper
and lower solutions

(X(Z‘,O,E) S uinit(x;5) S ﬁ(x,O,E),

there exists a single solution u(x,t, €) of problem (1), that at any t € [0, T) is enclosed between these upper and lower
solutions, and for which the function U,,(x,t, €) is a uniform in the domain [—1, 1] x [0, T] asymptotic approximation
with accuracy O(e"+1).

Proof. The upper and lower solutions of the problem will be constructed as a modification of the asymptotic
series (19). Set the function

x5t e) = Xpy1(t) — e To(t),

and the positive function §(¢) > 0 will be defined below. Let us construct the upper solution of the problem in
each of the regions ﬁ(ﬁ_) : (x,t) € [-1,25(t,e)] x [0,T] and ﬁ(;) i (z,t) € [p(t,e),1] x [0,T):
B (z,t), (a,t) €Dy,
Bz, 1), (2,t) € Dy .

Blx,t,e) = {

We will connect the functions 3(~) (z, ¢, ¢) and () (x, ¢, €) at the point 2.5(t, €) in such a way, that the following
equality is satisfied

5(_)<xﬁ(t55)at75) = B(+)(xﬂ(t7€)7ta5) = ¢(0)($5(t,5)).

Note that the function 3(z, ¢, ) is not smooth. Let us introduce a stretched variable

€y = x —1‘5(1&,8).

g

Let us construct the functions (+) (z,t,e) as modifications of the formal asymptotics (19):

BN (@, t,e) = U ey + €™ (n+¢57) (€5, t8)) + ™RGS (),
(z.t) € Dy 85 <09 > 05

B (@, t,e) = U ey + €™+ a5 (€5, t6)) + €™ HIRSD (n),
(J),t) S DE-ZJr)agB > 0,7](+) < 0.

Here under the notation U,(i)l |¢, we understand the functions from (19), where the argument & of the transition
layer functions is replaced by &3, and X, — by 3.
The positive value p is chosen, so that conditions (20) and (21) are satisfied. The functions R(Bi) (n(i)) are

chosen, so that condition (22) is satisfied (their construction is not considered in this paper). The functions
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ON FRONT MOTION IN THE REACTION—DIFFUSION—ADVECTION PROBLEM 37

qgi) (&3, t,€) are needed to eliminate the inconsistencies that arise, when the operator acts on the upper solution.
Let us define them from the following problems:
82 q(i) o (£)

JE] B o9} ~(£) h
o2 +D$ﬁ76£ﬂ 2A(&p, )0 (&, 1)

- (Au(fﬁa t) ('E(i)(537 1‘5))2 + fu(gﬁvt))qgi) - qf(i)(§57t7€) =0,

g5 (0, t,e) + =0, ¢5” (£o0,t,¢) =0, (26)

~ - 2 ~ —
where ¢ f ) (&, 1,€) = p(Au(&s, 1) (1) (&5, 25))” + Ful8s,t) — i) (25)).
Explicit expressions for these functions can be obtained

o) (5’ $5)

(£) - _ AN-had 72

&8 n

—(Dzg)n
~(&) ¢ (%) (Dzg)o, (&) ()
to (fﬁjmﬁ)/(@(i)(ﬁ,xﬁ))Qp(i)(n,lﬂg) /’U (o,2p5)e p T (o,z5)qf " (0,t,€) dodn. (27)
0 +o0

The functions ¢(*) (&3, t, £) have exponential estimates [16].
We can simplify expressions (27) as follows:

+
q,((g )(fﬁatag) =
$p U]

—(Dzg)n
ES) ~(+£) € ~(+) (Dzg)o, (£)
=—p—pufy ()0 (€, @ / - /v o,25)e\ "8 p\E) (g, 25) do dn.
( 6) ( ’ B) 0 (’U(i)(nwxﬁ))QF(i) (77»35/3) ( ﬁ) ( B)

Using a similar algorithm, we construct the lower solution. Set the function
To(t,e) = X1 (t) +"T16(2),

where §(t) is the same function as in the construction of the upper solution.
Let’s construct the lower solution of the problem in each of the regions ﬁ&_) s (x,t) € [—1,24(t )] x [0,T]
and D\ (2,t) € [xa(t,e), 1] x [0, T]:

)

Oa.te), (a,1)eD
@ x,1,€), x, o
O[(ZC, t7 E) = (+) *(*f’

a'H(z,te), (x,t)e D, .

We will merge the functions a(~)(z,t,¢) and o(*)(, t, ) at the point x,(t, €) in such a way that the equality
is satisfied

o (xa(t,e), t,e) = o P (za(t o), t,e) = ¢O (za(t,€)).

Note that the function «(z, t, ) is not smooth. Let us introduce a stretched variable

€. = x—xa(t,s)'

g
Let us construct the functions a(+) (z,t,e) as modifications of the formal asymptotics (19):
o (,t,) = UL len — "+ 457 (Earty ) + "R (7)),
(z,t) € DS, 60 < 0,77 > 0;
o (z,t,6) = U le, — " (1 + 457 (ar t,2)) + 2" RED (),
(z,t) € DY, &0 > 0,7 <0,
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Here ;o > 0 is the same value as in the expression for the upper solution, and q((xi) (€a, t,€) are determined from
problems (26), in which the stretched variable &g is replaced by &, and g is replaced by z,.

Let us make sure that the constructed functions «(x, t, £) and B(x, t, ) satisfy the differential inequalities (20)—
(25). The ordering condition (20) can be checked similarly as it was done in [2].

Letusshow that inequality (21) holds. From the way of constructing the upper and lower solutions the following
equations follow

L[a®)] = e ) (wg)u+ OE™2), L[] = e [9) (wg)u + O

The inequalities near the boundary (22) are fulfilled due to a standard modification of the boundary-layer
functions [16] (their verification is not intended for this paper).
Let’s check the jump condition of the derivative (24)

9B
c ox

where

9B
oz

’5(0, ZL’())

. ) _ et 1 (L(xo)‘éf — L(wo)W' (20 (t))8(t) + F(xo)) +O(e"?),

=g

0 +
F(zo) = p [fl(bi)@co)/i p(o, x0)0(o, mo)e(DxU)"do] ,

“+oo
L) = / 32 (€, 20)e PP (€, wo)dE > 0.

— 0o

Here, the index at the functions 9(&, o), p(&, zo) is omitted due to their smoothness at £ = 0.
Let’s define the function §(¢) as a solution to the problem

La0) % — Lao) W (zo(1)(1) + Flw) = 5, 5(0) = by,

where o is a sufficiently large positive value and dp > 0. In this case, the solution to the problem §(¢) is a positive

function. Thus,
ap) IR
€ ="t 4 0>"?).
< =3 U(Ov J)o) ( )

ox
The expression in the right-hand side is negative due to o > 0. With the same choice of function 6 (¢), the derivative
jump inequality will be satisfied for the lower solution «(z, ¢, £). The theorem is proved.

9B
oz

T=Tg

5. EXAMPLE

Consider the initial boundary value problem

922 "ot \ox

5282u E@u 5 ((Ou
Ox? ot

>2 TR <; B e“) (1—6O(z)—e™), we(-1,1),te (0,T],

ou ou
—(—1,¢t = —(1,¢ = t T
81'( ) 75) 07 8$( ) 75) 07 S [07 ]7

u(z,0,¢) = upit(x, ), x€[-1,1].

We will assume that for all z € [—1,1], the inequality 1/4 < ¢(®)(x) < 1/2 is satisfied. The members of the
regular part of zero order are easily determined:

a7 () =0, a{”(z)=1In2.

The problem for the function @(, o) has the following form:

0% o (0u\® o (1 ;
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@(0,z0) = —In(1 — ¢V (x0)), @(—00,z0) =0, a(c0,x0)=In2. (28)
By replacing (£, z¢) := z(a(€, x0)) = 1 — e~ ™&20) the problem (28) is transformed to the form
0%z 0z 1 0 1
ng + VVa—g =z (z - 2> (z —@”(z0)), z(—00,20)=0, z(c0,z9)= 5 (29)

The solution of problem (29) is determined by the formula

" (“ <¢><io> ‘2> e"p{‘zf/i})_l'

Making the inverse substitution, we obtain the expression for the solution of the original problem (28):

u(€,zp) = —In <1 — <2+ (fb(io) —2) exp{—%%})j )

The initial problem for determining the front position in the zero approximation has the form

dzo _ V2 <¢(0)(960) - i) » 20(0) = Zoo- (30)

dt
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