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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

В работе рассматривается начально-краевая задача для сингулярно возмущённого па-
раболического уравнения, которое отличается от классического сингулярно возмущённо-
го уравнения реакция–диффузия–адвекция (см. [1, 2]) наличием дополнительного нели-
нейного слагаемого, содержащего квадрат градиента искомой функции (KPZ-нелинейности
[3, 4]):

𝜀2
𝜕2𝑢

𝜕𝑥2
−𝜀𝜕𝑢

𝜕𝑡
−𝜀2𝐴(𝑢, 𝑥)

(︂
𝜕𝑢

𝜕𝑥

)︂2
−𝑓(𝑢, 𝑥, 𝜀)= 0, 𝑥∈ (−1, 1), 𝑡∈ (0, 𝑇 ],

𝜕𝑢

𝜕𝑥
(−1, 𝑡, 𝜀)= 0,

𝜕𝑢

𝜕𝑥
(1, 𝑡, 𝜀)= 0, 𝑡∈ [0, 𝑇 ],

𝑢(𝑥, 0, 𝜀)=𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀), 𝑥∈ [−1, 1], (1)

где 𝜀∈ (0, 𝜀0] — малый параметр, 𝜀> 0 — заданная постоянная.
Решения типа бегущих волн для квазилинейных параболических уравнений реакция–

диффузия–адвекция являются предметом интенсивного изучения (см. обширные моногра-
фии [5, 6]). Внимание к нелинейностям вида 𝐴(𝑢, 𝑥)(𝜕𝑢/𝜕𝑥)2 обусловлено как теоретическим
интересом — квадрат является предельным показателем степени, при котором выполнены
условия Бернштейна на рост нелинейности (см., например, [7–9]), так и важными прило-
жениями, где такие нелинейности используются в математических моделях, в частности,
моделях популяционной динамики [10], при моделировании роста свободной поверхности в
теории полимеров [3, 4, 11], и многими другими. Отметим работу [12], в которой построены
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точные решения уравнения KPZ для нескольких физически оправданных нелинейностей.
Однако там предполагается, что 𝐴(𝑢, 𝑥) = const, 𝑓 = 𝑓(𝑥, 𝑡). Кардинальное отличие зада-
чи (1) состоит в том, что рассматривается уравнение, в котором нелинейные слагаемые
явно зависят от координаты и искомой функции. В настоящей работе предлагается алго-
ритм построения асимптотического приближения решения вида фронта, при этом скорость
движения является функцией координаты.

Стационарные решения задачи (1) c пограничными и внутренними слоями изучены в
статьях [13, 14]. Погранслойные решения у системы тихоновского типа с KPZ-нелинейностями
изучены в работе [15].

Статья структурирована следующим образом. В п. 2 строится асимптотическое прибли-
жение решения вида движущегося фронта, используя метод А.Б. Васильевой [16]. Отметим,
что поскольку задача (1) является сингулярно возмущённой, то при 𝜀=0 уравнение зада-
чи (1) меняет свой тип, превращаясь из параболического в алгебраическое с тремя корнями
(см. условие 2), два из которых описывают устойчивые положения равновесия системы
и представляют собой регулярную часть асимптотического приближения нулевого порядка
точности. Однако регулярное приближение не позволяет описать узкую область c большим
градиентом, в которой решение переходит с одного устойчивого уровня на другой. Для описа-
ния решения в этой области и согласования устойчивых положений равновесия между собой
строятся так называемые функции переходного слоя. Таким образом строится формальное
асимптотическое приближение решения во всей рассматриваемой области. В п. 3 указан
алгоритм нахождения асимптотического приближения положения фронта. В п. 4 приведено
обоснование формальной асимптотики и доказана теорема существования и единственности,
используя асимптотический метод дифференциальных неравенств Н.Н. Нефедова, который
показал свою эффективность во многих сингулярно возмущённых задачах [16]. Полученные
результаты проиллюстрированы в п. 5 на примере, который может быть использован для
разработки и верификации новых численных методов для рассматриваемого класса задач
(см. [17]).

Результаты, полученные в данной статье, развивают исследования [1, 2], в которых рас-
смотрено движение фронта в уравнении реакция–диффузия–адвекция со слабой адвекцией
и гладкими или модульными (разрывными при некотором значении искомой функции нели-
нейностями) источниками, и переносят их на новый класс сингулярно возмущённых задач
с KPZ-нелинейностями. При этом, как и в работах [1, 2], доказана теорема существова-
ния и единственности решения, имеющего в обоих случаях одинаковую форму контрастной
структуры типа ступеньки [16].

В обсуждаемой ниже задаче предполагается, что в начальный момент времени фронт
уже сформирован. Это означает, что функция 𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀) имеет внутренний переходный слой
в окрестности некоторой точки 𝑥00 ∈ (−1, 1), т.е. она близка к некоторому корню 𝜙(−)(𝑥)
вырожденного уравнения 𝑓(𝑢, 𝑥, 0)=0 левее точки 𝑥00 и к корню 𝜙(+)(𝑥) правее этой точки.
В окрестности 𝑥00 происходит резкий переход от 𝜙(−)(𝑥) к 𝜙(+)(𝑥).

Будем предполагать выполненными следующие условия.
Условие 1. Функции 𝐴(𝑢, 𝑥), 𝑓(𝑢, 𝑥, 𝜀) являются достаточно гладкими в своих областях

определения.
Условие 2. Вырожденное уравнение 𝑓(𝑢, 𝑥, 0)=0 имеет ровно три решения 𝑢=𝜙(±,0)(𝑥),

причём 𝜙(−)(𝑥)<𝜙(0)(𝑥)<𝜙(+)(𝑥), 𝑥∈ [−1, 1], а также справедливы неравенства

𝑓𝑢(𝜙
(±)(𝑥), 𝑥, 0)> 0, 𝑓𝑢(𝜙

(0)(𝑥), 𝑥, 0)< 0, 𝑥∈ [−1, 1].
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2. ПОСТРОЕНИЕ ФОРМАЛЬНОЙ АСИМПТОТИКИ РЕШЕНИЯ

Асимптотика решения задачи (1) строится методом пограничных функций отдельно в
каждой из областей [−1, 𝑥̂]× [0, 𝑇 ] и [𝑥̂, 1]× [0, 𝑇 ] с подвижной границей (см. [16]) с ис-
пользованием развиваемого в научной школе профессоров А.Б. Васильевой, В.Ф. Бутузова,
Н.Н. Нефедова эффективного метода построения асимптотики локализации внутреннего слоя
в виде

𝑈(𝑥, 𝜀)=

{︃
𝑈 (−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡, 𝜀)∈ [−1, 𝑥̂]× [0, 𝑇 ]×(0, 𝜀0],

𝑈 (+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡, 𝜀)∈ [𝑥̂, 1]× [0, 𝑇 ]×(0, 𝜀0].

Каждую из функций 𝑈 (±)(𝑥, 𝜀) будем представлять в виде суммы трёх слагаемых:

𝑈 (±)(𝑥, 𝑡, 𝜀)= 𝑢̄(±)(𝑥, 𝜀)+𝑄(±)(𝜉, 𝑡, 𝜀)+𝑅(±)
(︀
𝜂(±), 𝜀

)︀
,

где 𝑢̄(±)(𝑥, 𝜀)= 𝑢̄
(±)
0 (𝑥)+𝜀𝑢̄

(±)
1 (𝑥)+. . . — регулярная часть разложения, функции 𝑄(±)(𝜉, 𝑡, 𝜀)=

=𝑄
(±)
0 (𝜉, 𝑡, 𝜀)+𝜀𝑄

(±)
1 (𝜉, 𝑡, 𝜀)+. . . описывают поведение решения в окрестности точки перехода

𝑥̂(𝑡, 𝜀), 𝜉=(𝑥−𝑥̂(𝑡, 𝜀))/𝜀 — переменная переходного слоя: 𝜉⩽0 для функций с индексом (−) и
𝜉⩾ 0 для функций с индексом (+); функции 𝑅(±)(𝜂(±), 𝜀)=𝑅

(±)
0 (𝜂(±))+𝜀𝑅

(±)
1 (𝜂(±))+ . . . опи-

сывают поведение решения в окрестностях граничных точек отрезка [−1, 1], 𝜂(±)=(𝑥∓1)/𝜀 —
растянутые переменные вблизи точек 𝑥=±1 соответственно. Поскольку функции 𝑅

(±)
𝑖 (𝜂(±))

определяются стандартным образом (см., например, [16]), то процедуру их построения опус-
каем. Отметим, что данные функции не зависят от переменной 𝑡 и тем самым не участвуют
в описании движущегося переходного слоя, а функции 𝑅(±)

0 (𝜂(±))=0 в силу краевых условий
Неймана.

Положение внутреннего переходного слоя определяется из условия 𝐶1-сшивания асимп-
тотических представлений 𝑈 (−)(𝑥, 𝑡, 𝜀) и 𝑈 (+)(𝑥, 𝑡, 𝜀) в точке перехода 𝑥̂(𝑡, 𝜀):

𝑈 (−)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)=𝑈 (+)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥̂(𝑡, 𝜀)), (2)

𝜀
𝜕

𝜕𝑥
𝑈 (−)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀)= 𝜀

𝜕

𝜕𝑥
𝑈 (+)(𝑥̂(𝑡, 𝜀), 𝑡, 𝜀). (3)

Точку перехода 𝑥= 𝑥̂(𝑡, 𝜀) будем искать в виде разложения по степеням малого параметра 𝜀:

𝑥̂(𝑡, 𝜀)=𝑥0(𝑡)+𝜀𝑥1(𝑡)+ . . . (4)

Коэффициенты данного разложения будут определены в процессе построения асимптотики.
Регулярная часть асимптотики определяется после подстановки представления для функ-

ций 𝑢̄(±)(𝑥, 𝜀) в уравнение

𝜀2
𝜕2𝑢̄(±)

𝜕𝑥2
−𝜀2𝐴(𝑢̄(±), 𝑥)

(︂
𝜕𝑢̄(±)

𝜕𝑥

)︂2
−𝑓(𝑢̄(±), 𝑥, 𝜀)= 0.

Стандартным образом [16] получим алгебраические уравнения для определения функций
регулярной части 𝑢̄

(±)
𝑘 (𝑥), 𝑘=0, 1, . . .

C учётом условия 2 регулярные функции нулевого порядка определяются как

𝑢̄
(±)
0 (𝑥)=𝜙(±)(𝑥).

Для сокращения записи введём обозначения

𝑓 (±)
𝑢 (𝑥) := 𝑓𝑢(𝜙

(±)(𝑥), 𝑥, 0).
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Функции 𝑢̄
(±)
𝑘 (𝑥) при 𝑘=1, 2, . . . определяются из уравнений

𝑓 (±)
𝑢 (𝑥)𝑢̄

(±)
𝑘 (𝑥)= ℎ̄

(±)
𝑘 (𝑥),

где функции ℎ̄
(±)
𝑘 (𝑥) известны на каждом 𝑘-м шаге и выражаются рекуррентно через функ-

ции 𝑢̄
(±)
𝑘 (𝑥) с индексами 0, 1, . . . , 𝑘−1. Разрешимость этих уравнений следует из условия 2.

Для того чтобы получить уравнения, которым удовлетворяют функции переходного слоя
𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀), перепишем дифференциальный оператор задачи в переменных (𝜉, 𝑡). Тогда урав-

нения для функций 𝑄
(±)
𝑘 (𝜉, 𝑡, 𝜀), 𝑘=0, 1, . . . , определяются стандартным способом [16] путём

приравнивания коэффициентов при одинаковых степенях 𝜀 в обеих частях равенств:

𝜕2𝑄(±)

𝜕𝜉2
+
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡

𝜕𝑄(±)

𝜕𝜉
+𝐴

(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
, 𝜀𝜉+ 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑢̄(±)

𝜕𝜉

)︂2
−

−𝐴
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
+𝑄(±)(𝜉, 𝑡, 𝜀), 𝜀𝜉+ 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑄(±)

𝜕𝜉
+
𝜕𝑢̄(±)

𝜕𝜉

)︂2
−𝜀𝜕𝑄

(±)

𝜕𝑡
=

= 𝑓
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
+𝑄(±)(𝜉, 𝑡, 𝜀), 𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
−𝑓
(︀
𝑢̄(±)

(︀
𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
, 𝜀𝜉+ 𝑥̂(𝑡, 𝜀), 𝜀

)︀
. (5)

В отличие от подхода, изложенного в работе [2], мы не будем раскладывать по степеням 𝜀
точку перехода 𝑥̂(𝑡, 𝜀). Это упростит алгоритм построения асимптотики. Отметим, что урав-
нения, из которых находятся функции 𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀), содержат функции, зависящие от 𝑥̂(𝑡, 𝜀),

𝜕𝑥̂(𝑡, 𝜀)/𝜕𝑡, что и объясняет наличие у 𝑄
(±)
𝑘 (𝜉, 𝑡, 𝜀) аргумента 𝜀.

Потребуем, чтобы функции переходного слоя 𝑄(±)
𝑘 (𝜉, 𝑡, 𝜀), 𝑘=0, 1, . . . , удовлетворяли усло-

виям равенства нулю на бесконечности: 𝑄(−)
𝑘 (𝜉, 𝑡, 𝜀)→ 0 при 𝜉→−∞, 𝑄(+)

𝑘 (𝜉, 𝑡, 𝜀)→ 0 при
𝜉→+∞, 𝑘=0, 1, . . . , 𝑡∈ [0, 𝑇 ].

Приравнивая коэффициенты при 𝜀0 в правой и левой частях равенств (5), получаем
уравнения для функции 𝑄

(−)
0 (𝜉, 𝑡, 𝜀) при 𝜉⩽ 0 и функции 𝑄

(+)
0 (𝜉, 𝑡, 𝜀) при 𝜉⩾ 0:

𝜕2𝑄
(±)
0

𝜕𝜉2
+
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡

𝜕𝑄
(±)
0

𝜕𝜉
−𝐴

(︀
𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄

(±)
0 (𝜉, 𝑡, 𝜀), 𝑥̂(𝑡, 𝜀)

)︀(︂𝜕𝑄(±)
0

𝜕𝜉

)︂2
=

= 𝑓
(︀
𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄

(±)
0 (𝜉, 𝑡, 𝜀), 𝑥̂(𝑡, 𝜀), 0

)︀
. (6)

Дополнительные условия при 𝜉=0 получим из условия непрерывного сшивания (2), запи-
санного в нулевом порядке по 𝜀:

𝑄
(−)
0 (0, 𝑡, 𝜀)+𝜙(−)(𝑥̂(𝑡, 𝜀))=𝑄

(+)
0 (0, 𝑡, 𝜀)+𝜙(+)(𝑥̂(𝑡, 𝜀))=𝜙(0)(𝑥̂(𝑡, 𝜀)).

Добавим также условия на бесконечности: 𝑄(−)
0 (𝜉, 𝑡, 𝜀)→ 0 при 𝜉→−∞, 𝑄(+)

0 (𝜉, 𝑡, 𝜀)→ 0 при
𝜉→+∞, 𝑡∈ [0, 𝑇 ].

Введём оператор 𝐷, действующий по правилу

𝐷𝑥̂ :=
𝜕𝑥̂(𝑡, 𝜀)

𝜕𝑡
, (7)
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и функции

𝑢̃(±)(𝜉, 𝑡, 𝜀)=𝜙(±)(𝑥̂(𝑡, 𝜀))+𝑄
(±)
0 (𝜉, 𝑡, 𝜀), (8)

𝑢̃(𝜉, 𝑡, 𝜀)=

{︃
𝜙(−)(𝑥̂(𝑡, 𝜀))+𝑄

(−)
0 (𝜉, 𝑡, 𝜀), если 𝜉⩽ 0,

𝜙(+)(𝑥̂(𝑡, 𝜀))+𝑄
(+)
0 (𝜉, 𝑡, 𝜀), если 𝜉⩾ 0,

𝑣(−)(𝜉, 𝑡, 𝜀)=
𝜕𝑢̃

𝜕𝜉
(𝜉, 𝑡, 𝜀), 𝜉⩽ 0, 𝑣(+)(𝜉, 𝑡, 𝜀)=

𝜕𝑢̃

𝜕𝜉
(𝜉, 𝑡, 𝜀), 𝜉⩾ 0.

Замечание. Из вида уравнений (6) следует, что в функциях 𝑄
(±)
0 (𝜉, 𝑡, 𝜀), 𝑢̃(𝜉, 𝑡, 𝜀),

𝑢̃(±)(𝜉, 𝑡, 𝜀), 𝑣(±)(𝜉, 𝑡, 𝜀) можно перейти к другому набору аргументов — (𝜉, 𝑥̂). В дальнейшем
будем пользоваться обоими наборами, выбирая для каждого конкретного случая наиболее
удобный.

Перепишем уравнения (6), а также дополнительные условия, с использованием (8):

𝜕2𝑢̃(±)

𝜕𝜉2
+𝐷𝑥̂

𝜕𝑢̃(±)

𝜕𝜉
−𝐴(𝑢̃(±), 𝑥̂)

(︂
𝜕𝑢̃(±)

𝜕𝜉

)︂2
= 𝑓(𝑢̃(±), 𝑥̂, 0),

𝑢̃(±)(0, 𝑥̂)=𝜙(0)(𝑥̂), 𝑢̃(±)(±∞, 𝑥̂)=𝜙(±)(𝑥̂). (9)

Наряду с задачами (9), рассмотрим задачу

𝜕2𝑢̂

𝜕𝜉2
+𝑊

𝜕𝑢̂

𝜕𝜉
−𝐴(𝑢̂, 𝑥̂)

(︂
𝜕𝑢̂

𝜕𝜉

)︂2
= 𝑓(𝑢̂, 𝑥̂, 0), 𝑢̂(0, 𝑥̂)=𝜙(0)(𝑥̂), 𝑢̂(±∞, 𝑥̂)=𝜙(±)(𝑥̂). (10)

Сформулируем и докажем результат существования решения задачи (10) в виде леммы.
Лемма. Для каждого 𝑥̂ ∈ (−1, 1) существует единственная величина 𝑊 такая, что

задача (10) имеет единственное гладкое монотонное решение 𝑢̂(𝜉, 𝑥̂), удовлетворяющее
оценке

|𝑢̂(𝜉, 𝑥̂)−𝜙(±)(𝑥̂)|<𝐶 exp{−𝜅|𝜉|},

где 𝐶 и 𝜅 — некоторые положительные постоянные. При этом зависимость 𝑊 (𝑥̂) опре-
деляется как

𝑊 (𝑥̂)=

𝜙(+)(𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝑓(𝑢, 𝑥̂,0)exp

{︃
−2

𝑢ˆ

𝜙(−)(𝑥̂)

𝐴(𝑦, 𝑥̂) 𝑑𝑦

}︃
𝑑𝑢

[︃ +∞ˆ

−∞

(︂
𝜕𝑢̂

𝜕𝜉
(𝜉, 𝑥̂)

)︂2
exp

{︃
−2

𝑢̃(𝜉,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑦, 𝑥̂)𝑑𝑦

}︃
𝑑𝜉

]︃−1

.

Гладкость функции 𝑊 (𝑥̂) совпадает с гладкостью функций 𝑓(𝑢, 𝑥̂, 0) и 𝐴(𝑢, 𝑥̂).
Доказательство. Для того чтобы использовать известный результат из [18], сделаем

монотонное преобразование, предложенное А.В. Бицадзе в работе [19]:

𝑧(𝜉, 𝑥̂) := 𝑧(𝑢̂(𝜉, 𝑥̂), 𝑥̂)=

𝑢̂(𝜉,𝑥̂)ˆ

𝜙(−)(𝑥̂)

exp

{︃
−

𝑦ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑦, (𝑢̂, 𝑥̂)∈ [𝜙(−)(𝑥̂), 𝜙(+)(𝑥̂)]× [−1, 1].

Введём обозначения

𝑧(±,0)(𝑥̂)=

𝜙(±,0)(𝑥̂)ˆ

𝜙(−)(𝑥̂)

exp

{︃
−

𝑦ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑦.
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В силу монотонности преобразования 𝑧(𝑢̂, 𝑥̂) по 𝑢̂ можно определить обратную функцию

𝑢̂(𝜉, 𝑥̂)=ℎ(𝑧(𝜉, 𝑥̂), 𝑥̂), (𝑧, 𝑥̂)∈ [0, 𝑧(+)(𝑥̂)]× [−1, 1].

Таким образом, задача (10) переходит в задачу

𝜕2𝑧

𝜕𝜉2
+𝑊

𝜕𝑧

𝜕𝜉
−𝑓(ℎ(𝑧, 𝑥̂), 𝑥̂, 0) exp

{︃
−

ℎ(𝑧,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
=0,

𝑧(−∞, 𝑥̂)= 0, 𝑧(0, 𝑥̂)= 𝑧(0)(𝑥̂), 𝑧(+∞, 𝑥̂)= 𝑧(+)(𝑥̂), (11)

для которой в силу условий 1 и 2 верны [18] следующие утверждения.
1. Для каждого 𝑥̂∈ (−1, 1) существует единственная величина 𝑊 такая, что задача (11)

имеет единственное гладкое монотонное решение 𝑧(𝜉, 𝑥̂), удовлетворяющее оценке

|𝑧(𝜉, 𝑥̂)−𝑧(±)(𝑥̂)|<𝐶 exp{−𝜅|𝜉|},

где 𝐶 и 𝜅 — некоторые положительные постоянные.
2. Зависимость 𝑊 (𝑥̂) определяется как

𝑊 (𝑥̂)=

𝑧(+)(𝑥̂)ˆ

0

𝑓(ℎ(𝑧, 𝑥̂), 𝑥̂, 0) exp

{︃
−

ℎ(𝑧,𝑥̂)ˆ

𝜙(−)(𝑥̂)

𝐴(𝑟, 𝑥̂) 𝑑𝑟

}︃
𝑑𝑧

[︃ +∞ˆ

−∞

(︂
𝜕𝑧

𝜕𝜉
(𝜉, 𝑥̂)

)︂2
𝑑𝜉

]︃−1

. (12)

Гладкость функции 𝑊 (𝑥̂) совпадает с гладкостью функций 𝑓(𝑢, 𝑥̂, 0) и 𝐴(𝑢, 𝑥̂).
Наконец, возвращаясь к функции 𝑢̂(𝜉, 𝑥̂) c помощью преобразования 𝑢̂(𝜉, 𝑥̂)=ℎ(𝑧(𝜉, 𝑥̂), 𝑥̂)

и пересчитывая интегралы в выражении (12), имеем утверждение леммы. Лемма доказана.
Потребуем выполнения ещё одного условия.
Условие 3. Задача

𝑑𝑥

𝑑𝑡
=𝑊 (𝑥), 𝑥(0)=𝑥00 (13)

имеет решение 𝑥=𝑥0(𝑡) такое, что 𝑥0(𝑡)∈ (−1, 1) при 𝑡∈ [0, 𝑇 ]; 𝑊 (𝑥)> 0 для всех 𝑥∈ [−1, 1].
Неравенство 𝑊 (𝑥) > 0 в условии 3 гарантирует отсутствие стационарных решений у

задачи (13). Обозначим через (9а) задачи (9), в которых заменим 𝑥̂ на 𝑥0(𝑡), или, иначе, в
которых положим 𝜀=0.

Из леммы и условия 3 следует единственная разрешимость задач (9а), так как выполнено
условие 𝐷𝑥̂0=𝑊 (𝑥0). При этом

𝜕𝑢̃(+)

𝜕𝜉
(0, 𝑥0(𝑡))−

𝜕𝑢̃(−)

𝜕𝜉
(0, 𝑥0(𝑡))= 0.

В силу предполагаемой гладкости функций 𝑓(𝑢, 𝑥̂, 0), 𝐴(𝑢, 𝑥̂) (см. условие 1) задачи (9)
являются регулярными возмущениями задач (9а), потому они также единственно разрешимы.
Отметим, что в силу представления (4)

𝜕𝑢̃(+)

𝜕𝜉
(0, 𝑥̂(𝑡, 𝜀))− 𝜕𝑢̃(−)

𝜕𝜉
(0, 𝑥̂(𝑡, 𝜀))=𝑂(𝜀).

Таким образом, построение функций переходного слоя в нулевом порядке завершено.
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Функции переходного слоя первого порядка находятся из следующих задач:

𝜕2𝑄
(±)
1

𝜕𝜉2
+𝐷𝑥̂

𝜕𝑄
(±)
1

𝜕𝜉
−2𝐴(𝜉, 𝑡)𝑣(±)(𝜉, 𝑥̂)

𝜕𝑄
(±)
1

𝜕𝜉
−
(︀
𝐴𝑢(𝜉, 𝑡)

(︀
𝑣(±)(𝜉, 𝑥̂)

)︀2
+𝑓𝑢(𝜉, 𝑡)

)︀
𝑄

(±)
1 = 𝑟

(±)
1 (𝜉, 𝑡, 𝜀),

𝑄
(±)
1 (0, 𝑡, 𝜀)+ 𝑢̄

(±)
1 (𝑥̂)= 0, 𝑄

(±)
1 (±∞, 𝑡, 𝜀)= 0, (14)

где введены обозначения

𝑓𝑢(𝜉, 𝑡)= 𝑓𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂, 0), 𝐴(𝜉, 𝑡)=𝐴𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂), 𝐴𝑢(𝜉, 𝑡)=𝐴𝑢(𝑢̃(𝜉, 𝑥̂), 𝑥̂) (15)
и

𝑟
(±)
1 (𝜉, 𝑡, 𝜀)=

𝜕𝑄
(±)
0

𝜕𝑡
(𝜉, 𝑡, 𝜀)+2𝐴(𝜉, 𝑡)𝑣(±)(𝜉, 𝑥̂)

𝑑𝜙(±)

𝑑𝑥
(𝑥̂)+

+

(︂
𝑢
(±)
1 (𝑥̂)+𝜉

𝑑𝜙(±)

𝑑𝑥
(𝑥̂)

)︂(︀
𝑓𝑢(𝜉,𝑡)+𝐴𝑢(𝜉,𝑡)

(︀
𝑣(±)(𝜉,𝑥̂)

)︀2)︀
+𝜉
(︀
𝑓𝑥(𝜉,𝑡)+𝐴𝑥(𝜉,𝑡)

(︀
𝑣(±)(𝜉,𝑥̂)

)︀2)︀
+𝑓𝜀(𝜉,𝑡).

Здесь производные 𝑓𝑥(𝜉, 𝑡), 𝑓𝜀(𝜉, 𝑡) вычисляются в той же точке, что и производная 𝑓𝑢(𝜉, 𝑡)
в (15). Аналогично 𝐴𝑥(𝜉, 𝑡) вычисляется в той же точке, что и 𝐴𝑢(𝜉, 𝑡). Во всех введённых
здесь обозначениях аргумент 𝜀 подразумеваем, но для краткости опускаем. Задачу для
функции 𝑄

(−)
1 (𝜉, 𝑡, 𝜀) будем решать на полупрямой 𝜉 ⩽ 0, а для функции 𝑄

(+)
1 (𝜉, 𝑡, 𝜀) — на

полупрямой 𝜉⩾ 0. Решения задач (14) записываются в явном виде:

𝑄
(±)
1 (𝜉, 𝑡, 𝜀)=−𝑢̄(±)

1 (𝑥̂)
𝑣(±)(𝜉, 𝑥̂)

𝑣(±)(0, 𝑥̂)
+

+𝑣(±)(𝜉, 𝑥̂)

𝜉ˆ

0

𝑒−(𝐷𝑥̂)𝜂

(𝑣(±)(𝜂, 𝑥̂))2𝑝(±)(𝜂, 𝑥̂)

𝜂ˆ

±∞

𝑣(±)(𝜎, 𝑥̂)𝑝(±)(𝜎, 𝑥̂)𝑒(𝐷𝑥̂)𝜎𝑟
(±)
1 (𝜎, 𝑡, 𝜀) 𝑑𝜎 𝑑𝜂, (16)

где

𝑝(±)(𝜉, 𝑥̂)= exp

{︃
−2

𝜉ˆ

0

𝐴(𝑢̃(±)(𝑦, 𝑥̂), 𝑥̂)𝑣(±)(𝑦, 𝑥̂) 𝑑𝑦

}︃
.

Из выражения для функций 𝑟(±)
1 (𝜉, 𝑡, 𝜀) следует, что они имеют экспоненциальные оценки

[16], а из (16) стандартным образом выводим, что аналогичные оценки справедливы и для
функций 𝑄

(±)
1 (𝜉, 𝑡, 𝜀).

Аналогично первому приближению можно найти для любого 𝑘=2, 3, . . . функции переход-
ного слоя 𝑄

(±)
𝑘 (𝜉, 𝑡, 𝜀): они определяются из краевых задач с таким же дифференциальным

оператором, что и в задачах (14).

3. АСИМПТОТИЧЕСКОЕ ПРИБЛИЖЕНИЕ ПОЛОЖЕНИЯ ФРОНТА

Опишем алгоритм нахождения асимптотического приближения положения фронта. Неиз-
вестные коэффициенты 𝑥𝑖(𝑡), 𝑖 ∈ N, разложения определяются из условий сшивания (3)
производных асимптотических приближений. Введём функцию

𝐻(𝜀, 𝑡) := 𝜀

(︂
𝑑𝑈 (+)

𝑑𝑥
(𝑥̂, 𝑡, 𝜀)− 𝑑𝑈 (−)

𝑑𝑥
(𝑥̂, 𝑡, 𝜀)

)︂
=𝐻0(𝜀, 𝑡)+𝜀𝐻1(𝜀, 𝑡)+𝜀

2𝐻2(𝜀, 𝑡)+ . . . , (17)
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где

𝐻0(𝜀, 𝑡)=
𝜕𝑄

(+)
0

𝜕𝜉
(0, 𝑥̂)− 𝜕𝑄

(−)
0

𝜕𝜉
(0, 𝑥̂),

𝐻1(𝜀, 𝑡)=
𝑑𝜙(+)

𝑑𝑥
(𝑥̂)− 𝑑𝜙(−)

𝑑𝑥
(𝑥̂)+

(︂
𝜕𝑄

(+)
1

𝜕𝜉
(0, 𝑡, 𝜀)− 𝜕𝑄

(−)
1

𝜕𝜉
(0, 𝑡, 𝜀)

)︂
и т.д.

Условие 𝐶1-сшивания (3) выражается равенством 𝐻(𝜀, 𝑡)=0. В силу леммы и условия 3
с учётом разложения точки перехода (4) это равенство выполнено в порядке 𝜀0.

Анализ задач (9), (10) показывает, что функция 𝐻0(𝜀, 𝑡) может быть представлена в виде

𝐻0(𝜀, 𝑡)= (𝐷𝑥̂−𝑊 (𝑥̂))

[︃
1

𝑣(±)(0, 𝑥̂)

±∞ˆ

0

(𝑣(±)(𝜉, 𝑥̂))2𝑒(𝐷𝑥̂)𝜉𝑝(±)(𝜉, 𝑥̂) 𝑑𝜉

]︃+
−

+𝑂(𝜀2). (18)

Здесь и далее [ ]+− означает разность между выражениями, помеченными символами + и −.
Как следует из разложения (17) и представления (18), члены 𝑥𝑖(𝑡), 𝑖⩾1, высших порядков

в (4) могут быть найдены из следующих задач Коши:

𝑑𝑥𝑖
𝑑𝑡

−𝑊 ′(𝑥0(𝑡))𝑥𝑖(𝑡)=𝐺𝑖(𝑡), 𝑥𝑖(0)= 0,

где 𝐺𝑖(𝑡) — известные функции.

4. ОБОСНОВАНИЕ ФОРМАЛЬНОЙ АСИМПТОТИКИ

Положим

𝑋𝑛(𝑡, 𝜀)=
𝑛+1∑︁
𝑖=0

𝜀𝑖𝑥𝑖(𝑡), 𝜉=
𝑥−𝑋𝑛(𝑡, 𝜀)

𝜀
.

Кривая 𝑋𝑛(𝑡, 𝜀) разделяет область 𝐷̄ : (𝑥, 𝑡)∈ [−1, 1]× [0, 𝑇 ] на две подобласти:

𝐷̄(−)
𝑛 : (𝑥, 𝑡)∈ [−1, 𝑋𝑛(𝑡, 𝜀)]× [0, 𝑇 ] и 𝐷̄(+)

𝑛 : (𝑥, 𝑡)∈ [𝑋𝑛(𝑡, 𝜀), 1]× [0, 𝑇 ].

Определим функции

𝑈 (−)
𝑛 (𝑥, 𝑡, 𝜀)=

𝑛∑︁
𝑖=0

𝜀𝑖
(︁
𝑢̄
(−)
𝑖 (𝑥)+𝑄

(−)
𝑖 (𝜉, 𝑡, 𝜀)+𝑅

(−)
𝑖 (𝜂(−))

)︁
, (𝑥, 𝑡)∈ 𝐷̄(−)

𝑛 ,

𝑈 (+)
𝑛 (𝑥, 𝑡, 𝜀)=

𝑛∑︁
𝑖=0

𝜀𝑖
(︁
𝑢̄
(+)
𝑖 (𝑥)+𝑄

(+)
𝑖 (𝜉, 𝑡, 𝜀)+𝑅

(+)
𝑖 (𝜂(+))

)︁
, (𝑥, 𝑡)∈ 𝐷̄(+)

𝑛 ,

где 𝑥̂(𝑡, 𝜀), входящие в выражения для функций переходного слоя, заменены на 𝑋𝑛(𝑡, 𝜀), и
обозначим

𝑈𝑛(𝑥, 𝑡, 𝜀)=

{︃
𝑈

(−)
𝑛 (𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)

𝑛 ,

𝑈
(+)
𝑛 (𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)

𝑛 .
(19)

Для доказательства существования и единственности решения вида движущегося фрон-
та используем асимптотический метод дифференциальных неравенств [16]. Построим непре-
рывные функции 𝛼(𝑥, 𝑡, 𝜀), 𝛽(𝑥, 𝑡, 𝜀) таким образом, чтобы они удовлетворяли следующим
условиям.
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1. Условие упорядоченности:

𝛼(𝑥, 𝑡, 𝜀)⩽𝛽(𝑥, 𝑡, 𝜀), 𝑥∈ [−1, 1], 𝑡∈ [0, 𝑇 ], 𝜀∈ (0, 𝜀0]. (20)

2. Действие дифференциального оператора на верхнее и нижнее решения:

𝐿[𝛽] := 𝜀2
𝜕2𝛽

𝜕𝑥2
−𝜀𝜕𝛽

𝜕𝑡
−𝜀2𝐴(𝛽, 𝑥)

(︂
𝜕𝛽

𝜕𝑥

)︂2
−𝑓(𝛽, 𝑥, 𝜀)⩽ 0⩽

⩽𝐿[𝛼] := 𝜀2
𝜕2𝛼

𝜕𝑥2
−𝜀𝜕𝛼

𝜕𝑡
−𝜀2𝐴(𝛼, 𝑥)

(︂
𝜕𝛼

𝜕𝑥

)︂2
−𝑓(𝛼, 𝑥, 𝜀) (21)

для всех 𝑥 ∈ (−1, 1) и 𝑡 ∈ [0, 𝑇 ], за исключением тех 𝑥(𝑡), в которых функции 𝛼(𝑥, 𝑡, 𝜀) и
𝛽(𝑥, 𝑡, 𝜀) являются негладкими.

3. Условия на границе:

𝑑𝛼

𝑑𝑥
(−1, 𝑡, 𝜀)⩾ 0⩾

𝜕𝛽

𝜕𝑥
(−1, 𝑡, 𝜀),

𝜕𝛼

𝜕𝑥
(+1, 𝑡, 𝜀)⩽ 0⩽

𝜕𝛽

𝜕𝑥
(+1, 𝑡, 𝜀), 𝑡∈ [0, 𝑇 ], 𝜀∈ (0, 𝜀0]. (22)

4. Условия на начальную функцию:

𝛼(𝑥, 0, 𝜀)⩽𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀)⩽𝛽(𝑥, 0, 𝜀), 𝑥∈ [−1, 1], 𝜀∈ (0, 𝜀0]. (23)

5. Условия на скачок производных:

𝜕𝛽

𝑑𝑥
(𝑥(𝑡)−0, 𝑡, 𝜀)⩾

𝜕𝛽

𝑑𝑥
(𝑥(𝑡)+0, 𝑡, 𝜀), (24)

где 𝑥(𝑡) — точка, в которой верхнее решение является негладким;

𝜕𝛼

𝑑𝑥
(𝑥(𝑡)−0, 𝑡, 𝜀)⩽

𝜕𝛼

𝑑𝑥
(𝑥(𝑡)+0, 𝑡, 𝜀), (25)

где 𝑥(𝑡) — точка, в которой нижнее решение является негладким.
Известно (см. [20]), что при выполнении условий (20)–(25) существует единственное ре-

шение задачи (1), для которого выполняются неравенства

𝛼(𝑥, 𝑡, 𝜀)⩽𝑢(𝑥, 𝑡, 𝜀)⩽𝛽(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ [−1, 1]× [0, 𝑇 ].

Докажем следующую теорему существования и единственности.
Теорема. При выполнении условий 1–3 для любой достаточно гладкой начальной функ-

ции 𝑢𝑖𝑛𝑖𝑡(𝑥), лежащей между верхним и нижним решениями

𝛼(𝑥, 0, 𝜀)⩽𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀)⩽𝛽(𝑥, 0, 𝜀),

существует единственное решение 𝑢(𝑥, 𝑡, 𝜀) задачи (1), которое при любом 𝑡 ∈ [0, 𝑇 ] за-
ключено между этими верхним и нижним решениями и для которого функция 𝑈𝑛(𝑥, 𝑡, 𝜀)
является равномерным в области [−1, 1]× [0, 𝑇 ] асимптотическим приближением с точ-
ностью 𝑂(𝜀𝑛+1).

Доказательство. Верхнее и нижнее решения задачи будем строить как модификацию
асимптотических рядов (19). Зададим функцию

𝑥𝛽(𝑡, 𝜀)=𝑋𝑛+1(𝑡)−𝜀𝑛+1𝛿(𝑡),
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а положительную функцию 𝛿(𝑡)> 0 определим ниже. Построим верхнее решение задачи в
каждой из областей 𝐷̄

(−)
𝛽 : (𝑥, 𝑡)∈ [−1, 𝑥𝛽(𝑡, 𝜀)]× [0, 𝑇 ] и 𝐷̄

(+)
𝛽 : (𝑥, 𝑡)∈ [𝑥𝛽(𝑡, 𝜀), 1]× [0, 𝑇 ]:

𝛽(𝑥, 𝑡, 𝜀)=

⎧⎨⎩𝛽(−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)
𝛽 ,

𝛽(+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)
𝛽 .

Сшивать функции 𝛽(−)(𝑥, 𝑡, 𝜀) и 𝛽(+)(𝑥, 𝑡, 𝜀) в точке 𝑥𝛽(𝑡, 𝜀) будем таким образом, чтобы
было выполнено равенство

𝛽(−)(𝑥𝛽(𝑡, 𝜀), 𝑡, 𝜀)=𝛽(+)(𝑥𝛽(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥𝛽(𝑡, 𝜀)).

Отметим, что функция 𝛽(𝑥, 𝑡, 𝜀) не является гладкой. Введём растянутую переменную

𝜉𝛽 =
𝑥−𝑥𝛽(𝑡, 𝜀)

𝜀
.

Построим функции 𝛽(±)(𝑥, 𝑡, 𝜀) как модификации формальной асимптотики (19):

𝛽(−)(𝑥, 𝑡, 𝜀)=𝑈
(−)
𝑛+1|𝜉𝛽 +𝜀

𝑛+1
(︀
𝜇+𝑞

(−)
𝛽 (𝜉𝛽, 𝑡, 𝜀)

)︀
+𝜀𝑛+1𝑅

(−)
𝛽 (𝜂(−)), (𝑥, 𝑡)∈𝐷(−)

𝛽 , 𝜉𝛽 ⩽ 0, 𝜂(−)⩾ 0;

𝛽(+)(𝑥, 𝑡, 𝜀)=𝑈
(+)
𝑛+1|𝜉𝛽 +𝜀

𝑛+1
(︀
𝜇+𝑞

(+)
𝛽 (𝜉𝛽, 𝑡, 𝜀)

)︀
+𝜀𝑛+1𝑅

(+)
𝛽 (𝜂(+)), (𝑥, 𝑡)∈𝐷(+)

𝛽 , 𝜉𝛽 ⩾ 0, 𝜂(+)⩽ 0.

Здесь под обозначениями 𝑈
(±)
𝑛+1|𝜉𝛽 понимаем функции из (19), в которых аргумент 𝜉 у

функций переходного слоя заменён на 𝜉𝛽 , а 𝑋𝑛+1 — на 𝑥𝛽 .
Положительная величина 𝜇 выбирается так, чтобы были выполнены условия (20) и (21).

Функции 𝑅
(±)
𝛽 (𝜂(±)) подбираются так, чтобы было выполнено условие (22) (их построение в

данной работе не рассматривается). Функции 𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀) нужны для устранения невязок,

которые возникают при действии оператора на верхнее решение. Определим их из следующих
задач:

𝜕2𝑞
(±)
𝛽

𝜕𝜉2𝛽
+𝐷𝑥𝛽

𝜕𝑞
(±)
𝛽

𝜕𝜉𝛽
−2𝐴(𝜉𝛽, 𝑡)𝑣

(±)(𝜉𝛽, 𝑥𝛽)
𝜕𝑞

(±)
𝛽

𝜕𝜉𝛽
−

−
(︀
𝐴𝑢(𝜉𝛽, 𝑡)

(︀
𝑣(±)(𝜉𝛽, 𝑥𝛽)

)︀2
+𝑓𝑢(𝜉𝛽, 𝑡)

)︀
𝑞
(±)
𝛽 −𝑞𝑓 (±)(𝜉𝛽, 𝑡, 𝜀)= 0,

𝑞
(±)
𝛽 (0, 𝑡, 𝜀)+𝜇=0, 𝑞

(±)
𝛽 (±∞, 𝑡, 𝜀)= 0, (26)

где 𝑞𝑓 (±)(𝜉𝛽, 𝑡, 𝜀)=𝜇
(︀
𝐴𝑢(𝜉𝛽, 𝑡)

(︀
𝑣(±)(𝜉𝛽, 𝑥𝛽)

)︀2
+𝑓𝑢(𝜉𝛽, 𝑡)−𝑓

(±)
𝑢 (𝑥𝛽)

)︀
.

Для данных функций можно получить явные выражения

𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀)=−𝜇

𝑣(±)(𝜉, 𝑥𝛽)

𝑣(±)(0, 𝑥𝛽)
+

+𝑣(±)(𝜉𝛽,𝑥𝛽)

𝜉𝛽ˆ

0

𝑒−(𝐷𝑥𝛽)𝜂

(𝑣(±)(𝜂,𝑥𝛽))2𝑝(±)(𝜂,𝑥𝛽)

𝜂ˆ

±∞

𝑣(±)(𝜎,𝑥𝛽)𝑒
(𝐷𝑥𝛽)𝜎𝑝(±)(𝜎,𝑥𝛽)𝑞𝑓

(±)(𝜎,𝑡,𝜀) 𝑑𝜎 𝑑𝜂. (27)

Функции 𝑞(±)(𝜉𝛽, 𝑡, 𝜀) имеют экспоненциальные оценки [16].
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Можно упростить выражения (27) следующим образом:

𝑞
(±)
𝛽 (𝜉𝛽, 𝑡, 𝜀)=

=−𝜇−𝜇𝑓 (±)
𝑢 (𝑥𝛽)𝑣

(±)(𝜉𝛽, 𝑥𝛽)

𝜉𝛽ˆ

0

𝑒−(𝐷𝑥𝛽)𝜂

(𝑣(±)(𝜂, 𝑥𝛽))2𝑝(±)(𝜂, 𝑥𝛽)

𝜂ˆ

±∞

𝑣(±)(𝜎, 𝑥𝛽)𝑒
(𝐷𝑥𝛽)𝜎𝑝(±)(𝜎, 𝑥𝛽) 𝑑𝜎 𝑑𝜂.

По аналогичному алгоритму построим нижнее решение. Зададим функцию

𝑥𝛼(𝑡, 𝜀)=𝑋𝑛+1(𝑡)+𝜀
𝑛+1𝛿(𝑡),

где 𝛿(𝑡) — та же самая функция, что и при построении верхнего решения.
Построим нижнее решение задачи в каждой из областей 𝐷̄

(−)
𝛼 : (𝑥, 𝑡)∈ [−1, 𝑥𝛼(𝑡, 𝜀)]× [0, 𝑇 ]

и 𝐷̄
(+)
𝛼 : (𝑥, 𝑡)∈ [𝑥𝛼(𝑡, 𝜀), 1]× [0, 𝑇 ]:

𝛼(𝑥, 𝑡, 𝜀)=

{︃
𝛼(−)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(−)

𝛼 ,

𝛼(+)(𝑥, 𝑡, 𝜀), (𝑥, 𝑡)∈ 𝐷̄(+)
𝛼 .

Будем сшивать функции 𝛼(−)(𝑥, 𝑡, 𝜀) и 𝛼(+)(𝑥, 𝑡, 𝜀) в точке 𝑥𝛼(𝑡, 𝜀) таким образом, чтобы
было выполнено равенство

𝛼(−)(𝑥𝛼(𝑡, 𝜀), 𝑡, 𝜀)=𝛼(+)(𝑥𝛼(𝑡, 𝜀), 𝑡, 𝜀)=𝜙(0)(𝑥𝛼(𝑡, 𝜀)).

Отметим, что функция 𝛼(𝑥, 𝑡, 𝜀) не является гладкой. Введём растянутую переменную

𝜉𝛼=
𝑥−𝑥𝛼(𝑡, 𝜀)

𝜀
.

Построим функции 𝛼(±)(𝑥, 𝑡, 𝜀) как модификации формальной асимптотики (19):

𝛼(−)(𝑥,𝑡,𝜀)=𝑈
(−)
𝑛+1

⃒⃒
𝜉𝛼
−𝜀𝑛+1(𝜇+𝑞(−)

𝛼 (𝜉𝛼,𝑡,𝜀))+𝜀
𝑛+1𝑅(−)

𝛼 (𝜂(−)), (𝑥,𝑡)∈𝐷(−)
𝛼 , 𝜉𝛼⩽0, 𝜂(−)⩾0;

𝛼(+)(𝑥,𝑡,𝜀)=𝑈
(+)
𝑛+1

⃒⃒
𝜉𝛼
−𝜀𝑛+1(𝜇+𝑞(+)

𝛼 (𝜉𝛼,𝑡,𝜀))+𝜀
𝑛+1𝑅(+)

𝛼 (𝜂(+)), (𝑥,𝑡)∈𝐷(+)
𝛼 , 𝜉𝛼⩾0, 𝜂(+)⩽0.

Здесь 𝜇> 0 — величина, что и в выражении для верхнего решения, а 𝑞
(±)
𝛼 (𝜉𝛼, 𝑡, 𝜀) опреде-

ляются из задач (26), в которых растянутая переменная 𝜉𝛽 заменена на 𝜉𝛼, а 𝑥𝛽 — на 𝑥𝛼.
Убедимся, что построенные функции 𝛼(𝑥, 𝑡, 𝜀) и 𝛽(𝑥, 𝑡, 𝜀) удовлетворяют дифференци-

альным неравенствам (20)–(25). Условие упорядоченности (20) можно проверить аналогично
тому, как это было сделано в работе [2].

Покажем, что неравенство (21) выполняется. Из способа построения верхнего и нижнего
решений следуют равенства

𝐿
[︀
𝛼(±)

]︀
= 𝜀𝑛+1𝑓 (±)

𝑢 (𝑥𝛼)𝜇+𝑂(𝜀𝑛+2), 𝐿
[︀
𝛽(±)

]︀
=−𝜀𝑛+1𝑓 (±)

𝑢 (𝑥𝛽)𝜇+𝑂(𝜀𝑛+2).

Неравенства вблизи границы (22) выполняются за счёт стандартной модификации по-
гранслойных функций [16] (их проверка в данной работе не предусматривается).

Проверим условие скачка производной (24)

𝜀

(︂
𝜕𝛽(+)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

− 𝜕𝛽(−)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

)︂
=−𝜀𝑛+1 1

𝑣(0, 𝑥0)

(︂
𝐿(𝑥0)

𝑑𝛿

𝑑𝑡
−𝐿(𝑥0)𝑊 ′(𝑥0(𝑡))𝛿(𝑡)+𝐹 (𝑥0)

)︂
+𝑂(𝜀𝑛+2),
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где

𝐹 (𝑥0)=𝜇

[︃
𝑓 (±)
𝑢 (𝑥0)

0ˆ

±∞

𝑝(𝜎, 𝑥0)𝑣(𝜎, 𝑥0)𝑒
(𝐷𝑥0)𝜎 𝑑𝜎

]︃+
−

,

𝐿(𝑥0)=

+∞ˆ

−∞

𝑣2(𝜉, 𝑥0)𝑒
(𝐷𝑥0)𝜉𝑝(𝜉, 𝑥0) 𝑑𝜉 > 0.

Здесь индекс у функций 𝑣(𝜉, 𝑥0), 𝑝(𝜉, 𝑥0) опущен в силу их гладкости при 𝜉=0.
Определим функцию 𝛿(𝑡) как решение задачи

𝐿(𝑥0)
𝑑𝛿

𝑑𝑡
−𝐿(𝑥0)𝑊 ′(𝑥0(𝑡))𝛿(𝑡)+𝐹 (𝑥0)=𝜎, 𝛿(0)= 𝛿0,

где 𝜎 — достаточно большая положительная величина и 𝛿0 > 0. В этом случае решение
задачи 𝛿(𝑡) — положительная функция. Таким образом,

𝜀

(︂
𝜕𝛽(+)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

− 𝜕𝛽(−)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝛽

)︂
=−𝜀𝑛+1 𝜎

𝑣(0, 𝑥0)
+𝑂(𝜀𝑛+2).

Выражение в правой части отрицательно ввиду 𝜎 > 0. При том же выборе функции 𝛿(𝑡)
будет выполнено неравенство скачка производной для нижнего решения 𝛼(𝑥, 𝑡, 𝜀). Теорема
доказана.

5. ПРИМЕР

Рассмотрим начально-краевую задачу

𝜀2
𝜕2𝑢

𝜕𝑥2
−𝜀𝜕𝑢

𝜕𝑡
−𝜀2

(︂
𝜕𝑢

𝜕𝑥

)︂2
= 𝑒𝑢(1−𝑒−𝑢)

(︂
1

2
−𝑒−𝑢

)︂
(1−𝜙(0)(𝑥)−𝑒−𝑢), 𝑥∈ (−1, 1), 𝑡∈ (0, 𝑇 ],

𝜕𝑢

𝜕𝑥
(−1, 𝑡, 𝜀)= 0,

𝜕𝑢

𝜕𝑥
(1, 𝑡, 𝜀)= 0, 𝑡∈ [0, 𝑇 ],

𝑢(𝑥, 0, 𝜀)=𝑢𝑖𝑛𝑖𝑡(𝑥, 𝜀), 𝑥∈ [−1, 1].

Будем считать, что при всех 𝑥∈ [−1, 1] выполнено неравенство 1/4<𝜙(0)(𝑥)<1/2. Члены
регулярной части нулевого порядка легко определяются:

𝑢̄
(−)
0 (𝑥)= 0, 𝑢̄

(+)
0 (𝑥)= ln 2.

Задача для функции 𝑢̃(𝜉, 𝑥0) имеет следующий вид:

𝜕2𝑢̃

𝜕𝜉2
+𝑊

𝜕𝑢̃

𝜕𝜉
−
(︂
𝜕𝑢̃

𝜕𝜉

)︂2
= 𝑒𝑢̃(1−𝑒−𝑢̃)

(︂
1

2
−𝑒−𝑢̃

)︂
(1−𝜙(0)(𝑥0)−𝑒−𝑢̃),

𝑢̃(0, 𝑥0)=− ln(1−𝜙(0)(𝑥0)), 𝑢̃(−∞, 𝑥0)= 0, 𝑢̃(∞, 𝑥0)= ln 2. (28)

Заменой 𝑧(𝜉, 𝑥0) := 𝑧(𝑢̃(𝜉, 𝑥0))= 1−𝑒−𝑢̃(𝜉,𝑥0) задача (28) преобразуется к виду

𝜕2𝑧

𝜕𝜉2
+𝑊

𝜕𝑧

𝜕𝜉
= 𝑧

(︂
𝑧− 1

2

)︂
(𝑧−𝜙0(𝑥0)), 𝑧(−∞, 𝑥0)= 0, 𝑧(∞, 𝑥0)= 1/2. (29)
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Решение задачи (29) определяется по формуле

𝑧=

(︂
2+

(︂
1

𝜙(𝑥0)
−2

)︂
exp

{︂
− 𝜉

2
√
2

}︂)︂−1

.

Сделав обратную замену, получим выражение для решения исходной задачи (28):

𝑢̃(𝜉, 𝑥0)=− ln

(︂
1−
(︂
2+

(︂
1

𝜙(𝑥0)
−2

)︂
exp

{︂
− 𝜉

2
√
2

}︂)︂−1)︂
.

Начальная задача для определения положения фронта в нулевом приближении имеет вид

𝑑𝑥0
𝑑𝑡

=
√
2

(︂
𝜙(0)(𝑥0)−

1

4

)︂
, 𝑥0(0)=𝑥00. (30)
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