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Abstract. In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variablesmethod, the considered BVP is reduced to the investigation
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1. INTRODUCTION. PROBLEM STATEMENT

Differential equations with piecewise constant arguments are encountered in the study of hybrid systems and
can model certain harmonic oscillators with almost periodic effects [1, 2]. A wide review of studies devoted to
ordinary equations and partial differential equations with piecewise constant arguments is given in [3, 4].

In articles [5, 6], differential equations of special kind with piecewise constant argument are studied. Periodic
(solvable) problems are reduced to a system of linear algebraic equations, all conditions for the existence of its
n-periodic solutions are described, by means of which explicit formulas for solutions of differential equations are
found.

Partial derivative equations with piecewise constant temporal argument arise naturally in the process of approx-
imation [7].

In [8], the existence, oscillation and asymptotic bounds of solutions of initial problems with piecewise constant
lags are studied for a partial derivative equation with piecewise constant argument.

Boundary and initial problems for the diffusion equation with piecewise constant arguments were studied in
[9] and [10], respectively. The equation with piecewise constant mixed arguments of the form

ut(x, t) = a2uxx(x, t) + buxx(x, [t− 1]) + cu(x, [t]) + du(x, [t+ 1])

was considered in [11], where the questions of existence of solutions, convergence of solutions to zero, unbound-
edness of solutions and their oscillations were investigated.

In the paper [12], the asymptotic behavior of the solution of the diffusion equation with piecewise constant
argument of generalized form is found.
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In this paper, we consider a boundary value problem for the diffusion equation with piecewise constant argu-
ments of the form [10, 13]

ut(x, t) = a2uxx(x, t)− buxx(x, [t])− cuxx(x, [t+ 1]), 0 < x < 1, t > 0, (1)

u(0, t) = u(1, t) = 0, (2)

u(x, 0) = v(x). (3)

Adapting the method of [10, 14], we first obtain the formal solution of the problem (1)–(3) in the form of a
series. For this purpose, after the separation of variables, we study the first order differential equationwith piecewise
constant time argument, obtain the existence condition and the explicit formula for its solution. Then, applying the
method of [5, 6, 15, 16], we will findN-periodic solutions and their explicit formulas of this differential equation.
In a special case, we prove the existence of an infinite number of solutions of the differential equationwith piecewise
constant argument, which shows the incorrectness of the result about the uniqueness given in [13].

2. DIFFERENTIAL EQUATIONWITH PIECEWISE CONSTANT ARGUMENT

Let vj be the coefficients of the sinusoidal Fourier series for the function v(x), i.e.,

v(x) =

+∞∑
j=1

vj sin(jπx), vj = 2

∫ 1

0

v(x) sin(jπx)dx.

The solution of the problem (1)–(3) is found in the form

u(x, t) =
+∞∑
j=1

Tj(t) sin(jπx). (4)

Substituting the function (4) into equation (1) and initial conditions from (3), we obtain
∞∑
j=1

(
T ′
j(t) + a2π2j2Tj(t) + bπ2j2Tj([t]) + cπ2j2Tj([t+ 1])

)
sin(jπx) = 0,

u(x, 0) =

∞∑
j=1

Tj(0) sin(jπx) = v(x), Tj(0) = vj .

Hence, taking into account orthogonality of functions sin(nπx), we have an infinite sequence of ordinary dif-
ferential equations with piecewise constant argument

T ′
j(t) + a2π2j2Tj(t) + bπ2j2Tj([t]) + cπ2j2Tj([t+ 1]) = 0, t > 0, j ∈ N, (5)

with the initial condition
Tj(0) = vj . (6)

Definition 1. The function T (t) is called a solution to the problem (5), (6), if it satisfies the following conditions:
(i) T (t) is continuous with R+;
(ii) the derivative of T ′(t) exists and is continuous withR+, except for points [t] ∈ R+ where one-sided deriva-

tives exist;
(iii) T (t) satisfies (5) and (6) at R+ with a possible exception at [t] ∈ R+.
Let’s denote

Ej(t) = e−a2π2j2t − b

a2
(1− e−a2π2j2t), Dj(t) =

c

a2
(1− e−a2π2j2t), j ∈ N.

Theorem 1. Let a, b, c be real numbers. If Dj(1) ̸= −1, then the equation (5) has a single solution represented at
the intervals t ∈ [n, n+ 1), n = 0, 1, 2, . . ., in the form of

Tj(t) =

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj . (7)
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Theorem 2. 1. IfDj(1) = −1 andEj(1) = 0 for j > 0, then the problem (5), (6) has infinitely many solutions. In
particular, this problem has a single one-periodic and infinitely manyN-periodic solutions,N = 2, 3, . . .

2. Let Dj(1) = −1 and Ej(1) ̸= 0. Then if vj ̸= 0, then problems (5), (6) have no solution. If vj = 0, then this
problem has a trivial solution.

Example 1. Let j = 1, a ∈ R, c = a2/(e−a2π2j2 − 1), b = −a2e−a2π2j2/(e−a2π2j2 − 1), v1 = 1. In this case,
Dj(1) = −1, Ej(1) = 0. Functions

F2(t) =




(
1

1−ea2π2 + ea
2π2

ea2π2−1
e−a2π2t

)
v1 − 1−e−a2π2t

e−a2π2−1
T11(1), t ∈ [0, 1),(

1
1−ea2π2 + ea

2π2

ea2π2−1
e−a2π2(t−1)

)
T11(1)− 1−e−a2π2(t−1)

e−a2π2−1
v1, t ∈ [1, 2],

and

F3(t) =





(
− b

a2 (1− e−a2π2t) + e−a2π2t
)
v1 − c

a2 (1− e−a2π2t)T11(1), t ∈ [0, 1),(
− b

a2 (1− e−a2π2(t−1)) + e−a2π2(t−1)
)
T11(1)− c

a2 (1− e−a2π2(t−1))T21(2), t ∈ [1, 2),(
− b

a2 (1− e−a2π2(t−2)) + e−a2π2(t−2)
)
T21(2)− c

a2 (1− e−a2π2(t−2))v1, t ∈ [2, 3),

are two- and three-periodic solutions of the problem (5), (6) at j = 1, respectively, where T11(1), T21(2) are
arbitrary numbers. Having chosen these constants, we give the solutions and their graphs.

The function F2(t) at T11(1) = 3 and a = 1
π has the following form (Fig. 1, a)

F2(t) =




1
1−e + e1−t

e−1 − 3(1−e−t)
e−1−1 , t ∈ [0, 1),

1−e1−t

1−e−1 + 3
(

1
1−e + e2−t

e−1

)
, t ∈ [1, 2].

(8)

Fig. 1. Graphs of the function F2(t)

and at T11(1) = −2 and a = 1
π (Fig. 1, b)

F2(t) =




1
1−e + e1−t

e−1 + 2(1−e−t)
e−1−1 , t ∈ [0, 1),

e1−t−1
e−1−1 − 2

(
1

1−e + e2−t

e−1

)
, t ∈ [1, 2].

(9)

The function F3(t) at T11(1) = 2, T21(2) =
3
2 and a = 1

π is represented as (Fig. 2, a)

F3(t) =





1
1−e + e(2−e−t)

e−1 , t ∈ [0, 1),
2

1−e + e(3+e1−t)
2(e−1) , t ∈ [1, 2),

3
2(1−e) +

e(2+e2−t)
2(e−1) , t ∈ [2, 3],

(10)
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at T11(1) = −2, T21(2) = − 3
2 and a = 1

π (Fig. 2, b)

F3(t) =




1
1−e + e(3e−t−2)

e−1 , t ∈ [0, 1),
2

e−1 − e(3+e1−t)
2(e−1) , t ∈ [1, 2),

3
2(e−1) −

e(5e2−t−2)
2(e−1) , t ∈ [2, 3],

(11)

and at T11(1) = 3, T21(2) = −4 and a = 1
π (Fig. 2, c)

F3(t) =





1
1−e + e(3−2e−t)

e−1 , t ∈ [0, 1),
3

1−e + e(7e1−t−4)
e−1 , t ∈ [1, 2),

4
e−1 − e(5e2−t−1)

e−1 , t ∈ [2, 3].

(12)

Fig. 2. Graphs of the function F3(t)

Remark 1. In Example 1, the parameters of the equation satisfy the conditions of the singularity theorem from
[13]. It shows the incorrectness of the results of Theorem 2 of [11], which asserts the uniqueness of the solution of
the problem (5), (6).

3. PROBLEM SOLVING

Definition 2. The function u(x, t) is called a solution of the problem (1)–(3), if the following conditions are
satisfied:

(i) u(x, t) is continuous on the set Ω = [0, 1]× R+, R+ = [0,∞);
(ii) the partial derivatives ofut anduxx exist and are continuous atΩwith a possible exception at points (x, [t]) ∈

Ω, where one-sided derivatives exist on the second argument;
(iii) u(x, t) satisfies (1)–(3) at Ω with a possible exception at (x, [t]) ∈ Ω.
Assumption. Let the function v(·) have continuous derivatives up to and including third order at the segment [0, 1]

and satisfy the conditions v(0) = v(1) = v′′(0) = v′′(1) = 0.
Theorem 3. Let the assumption c ̸= −a2 andDj(1) ̸= −1 at j ∈ N be satisfied. Then the problem (1)–(3) has a

single solution represented as a series

u(x, t) =
+∞∑
j=1

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj sin(jπx), t ∈ [n, n+ 1), n = 0, 1, 2, . . .

Theorem 4. 1. Let the assumption be satisfied, Dj0(1) = −1 and Ej0(1) = 0. Then the problem (1)–(3) has an
infinite number of solutions represented by t ∈ [n, n+ 1), n = 0, 1, 2, . . ., as

u(x, t) =
+∞∑
j=1
j ̸=j0

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj sin(jπx) + Tj0(t) sin(jπx), (12)
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where Tj0(t) is an arbitrary solution of the problem (5), (6) (see point 2 in Theorem 2).
2. IfDj0(1) = −1, Ej0(1) ̸= 0 and vj0 ̸= 0 at j = j0, then the problem (1)–(3) has no solution.
Example 2. Let a = 1/π, c = 2, b = 3 in equation (1) and u(x, 0) =

∑5
j=1

sin(jπx)
j in condition (3). Then the

solution of the problem (1)–(3) has the following form (Fig. 3)

u(x, t) =
5∑

j=1

[(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
vj

]
sin(jπx), t ∈ [n, n+ 1), n = 0, 1, 2, . . .

Fig. 3. Graph of the function u(x, t)

Example 3. Let a ∈ R, c = a2

e−a2π2j2−1
, b = −a2e−a2π2j2/(e−a2π2j2 − 1), v(x) = sin(πx) + 2 sin(2πx). Then

the solution of the problem (1)–(3) is defined by the formula

u(x, t) = T1(t) sin(πx) + 2T2(t) sin(2πx).

Note that D1(1) = −1, E1(1) = 0 and D2(1) = −1, i.e., the numbers a, b and c satisfy the conditions of point 1
of Theorem 2 and Theorem 1. Therefore, according to Theorem 1, the function T2(t) has the form

T2(t) = 2(E2(t− n)−D2(t− n)), t ∈ [n, n+ 1),

and the function T1(t) can be defined in many ways.
Here are the graphs of u(x, t) for Example 1. In the case when T1(t) = F2(t) and F2(t) are defined by the

equality (8), the graph of the function u(x, t) is shown in Fig. 4, a; if F2(t) is defined by expression (9), then in
Fig. 4, b. When T1(t) = F3(t), where F3(t) is defined by equality (10), the graph of the function u(x, t) is shown
in Fig. 5, a; and if F3(t) is defined by equality (11), then in Fig. 5, b.

Remark 2. In Example 3, the parameters of the equation do not satisfy the conditions of Corollary 1 in [13],
i.e., a2 + b + c = 0. The solution of u is periodic on t. This means that the null solution of the problem (1)–
(3) is not asymptotically stable. Therefore, the conditions of Corollary 1 are sufficient for the null solution to be
asymptotically stable.

4. EVIDENCE FOR KEY FINDINGS

Proof of theorem 1. Let us denote by Tnj(t) the solution of equation (5) on the interval [n, n+ 1), i.e.

Tj(t) = Tnj(t), t ∈ [n, n+ 1), n = 0, 1, 2, . . .
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Fig. 4. Graph of the function u(x, t)

Then
T ′
nj(t) + a2π2j2Tnj(t) = −bπ2j2Tnj(n)− cπ2j2Tnj(n+ 1), t ∈ [n, n+ 1). (13)

The solution of the equation (13) is determined by the formula

Tnj(t) = −bTnj(n)

a2
(1− e−a2π2j2(t−n)) + Tnj(n)e

−a2π2j2(t−n) − cTnj(n+ 1)

a2
(1− e−a2π2j2(t−n))

or
Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Tnj(n+ 1), t ∈ [n, n+ 1). (14)

Putting t = n+ 1 in (14) for all n = 0, 1, 2, . . ., we get

Tnj(n+ 1) = Ej(1)Tnj(n)−Dj(1)Tnj(n+ 1).

Hence, taking into accountDj(1) ̸= −1 we have

Tnj(n+ 1) =
Ej(1)Tnj(n)

1 +Dj(1)
. (15)
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Fig. 5. Graph of the function u(x, t)

Then we write (14) as

Tnj(t) = Ej(t− n)Tnj(n)−
Dj(t− n)

1 +Dj(1)
Ej(1)Tnj(n). (16)

From the continuity of the function Tj(t) over t > 0 the following equations follow

T(n+1)j(n+ 1) = Tj(n+ 1) = lim
t→n+1−0

Tj(t) = Tnj(n+ 1).

Consequently, formula (15) can be rewritten in the form

T(n+1)j(n+ 1) =
Ej(1)Tnj(n)

1 +Dj(1)
,

from where

Tnj(n) =
Ej(1)

1 +Dj(1)
T(n−1)j(n− 1) =

E2
j (1)

(1 +Dj(1))2
T(n−2)j(n− 2) = · · · =

En
j (1)

(1 +Dj(1))n
T0j(0),
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or

Tnj(n) =
En

j (1)

(1 +Dj(1))n
T0j(0).

Thus, the solution Tnj(t), defined by the formula (16), is represented only via T0j(0):

Tnj(t) =

(
Ej(t− n)−Dj(t− n)

Ej(1)

1 +Dj(1)

)
En

j (1)

(1 +Dj(1))n
T0j(0).

The equality T0j(0) = vj completes the proof of the theorem.
Proof of theorem 2. 1. Let Dj(1) = −1, Ej(1) = 0. Construct the function Tj(t) = Tnj(t), t ∈ [n, n + 1),

n = 0, 1, 2, . . ., as follows. Function

T0j(t) = Ej(t)T0j(0)−Dj(t)C0j , t ∈ [0, 1),

satisfies the equation (5), where T0j(0) = vj and C0j are arbitrary numbers. Since Dj(1) = −1 and Ej(1) = 0,
there is an equality T0j(1) = limt→1 T0j(t) = C0j . It is easy to check that the function

T1j(t) = Ej(t− 1)T1j(1)−Dj(t− 1)C1j , t ∈ [1, 2),

satisfies equation (5), where C1j is an arbitrary number.
By virtue of continuity of the function Tj(t) we have

Tj(1) = T1j(1) = lim
t→1−0

T0j(t) = T0j(1).

The equalitiesDj(1) = −1 and Ej(1) = 0 give T1j(2) = limt→2 T1j(t) = C1j .
Function

Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Cnj , at (n, n+ 1), n ∈ N,
satisfies the equation (5), where Cnj is an arbitrary number. Clearly,

Tj(n) = Tnj(n) = lim
t→n−0

T(n−1)j(t) = T(n−1)j(n).

Similarly, from the equalitiesDj(1) = −1 and Ej(1) = 0, we obtain Tnj(n) = limt→n+1 Tnj(t) = Cnj . After
the construction of the function

Tj(t) = Tnj(t), t ∈ [n, n+ 1), n = 0, 1, 2, . . . ,

appears the solution of the problem (5), (6). Since the constants C0j , C1j , . . . , Cnj , . . . are arbitrary, the problem
has an infinite number of solutions.

Let Tj(t) be a one-periodic solution of the problem (5), (6), then it can be represented as

Tj(t) = T0j(t) = Ej(t)T0j(0)−Dj(t)C0j, t ∈ [0, 1].

Since the function Tj(t) is one-periodic and T0j(1) = C0j, then T0j(0) = T0j(1), C0j(1) = T0j(0) = vj . This
shows the uniqueness of the one-periodic solution (5), (6).

Let Tj(t) be a two-periodic solution of the problem (5), (6). Then the function Tj(t) on [0, 2] has the form

Tj(t) =

{
Ej(t)T0j(0)−Dj(t)T1j(1), t ∈ [0, 1),

Ej(t− 1)T1j(1)−Dj(t− 1)C1j, t ∈ [1, 2),

where T0j(0) = vj, T1j(1) is an arbitrary number. From the periodicity of Tj(t) it follows that Tj(0) = T0j(0) =
Tj(2) = C1j. This shows that the problem (5), (6) has infinitely many two-periodic solutions.

Let Tj(t) be theN-periodic solution of the problem (5), (6). The function Tj(t) on the interval [0, N ] has the
form

Tj(t) =




Ej(t)vj −Dj(t)T1j(1), t ∈ [0, 1),

Ej(t− 1)T1j(1)−Dj(t− 1)T2j(2), t ∈ [1, 2),
...
Ej(t−N + 2)T(N−1,j)(N − 2)−Dj(t−N + 2)T(N−1,j)(N − 1), t ∈ [N − 2, N − 1),

Ej(t−N + 1)T(N−1,j)(N − 1)−Dj(t−N + 1)vj , t ∈ [N − 1, N),
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where T1j(1), T2j(2), . . . , T(N−1,j)(N − 1) are arbitrary numbers.
2. Suppose that the function Tj(t) is a solution of the problem (5), (6). Then, according to (14), the following

equality holds
Tnj(t) = Ej(t− n)Tnj(n)−Dj(t− n)Tnj(n+ 1), t ∈ [n, n+ 1).

Hence at t = n + 1 taking into account Dj(1) = −1, we have Ej(1)Tnj(n) = 0 for all n = 0, 1, 2, . . . Therefore,
Tnj(n) = 0 for all n = 0, 1, 2, . . ., since Ej(1) ̸= 0, i.e., the equation has only a trivial solution. Hence, if
Tj(0) = vj = T0j(0) ̸= 0, then the problem (5), (6) has no solution.

Proof of Theorem 3. First, prove uniform convergence in any closed set Λ ⊂ [0, 1]×R+ of the following series:
+∞∑
j=1

Tj(t) sin(jπx), (17)

+∞∑
j=1

T ′
j(t) sin(jπx), (18)

+∞∑
j=1

π2j2Tj(t) sin(jπx), (19)

where Tj(t) is the solution of the problem (5), (6), and at [n, n+ 1), n = 0, 1, 2, . . ., the functions Tj(t), T ′
j(t) are

represented, respectively, as (7) and

T ′
j(t) = −

(
a2 + b+ c

Ej(1)

1 +Dj(1)

)
π2j2e−a2π2j2(t−n)

En
j (1)

(1 +Dj(1))n
vj .

According to the assumption there is equality

vj = −
2v′′′j
π3j3

, v′′′j =

∫ 1

0

v′′′(x) cos(jπx)dx, j = 1, 2, . . .

The continuity of the function v′′′(x) implies the convergence of the series
∑+∞

j=1(v
′′′
j )2. Hence, taking into account

the Cauchy-Bunyakovsky inequality, we have
∣∣∣∣∣∣
+∞∑
j=1

j2vj

∣∣∣∣∣∣
=

2

π3

∣∣∣∣∣∣
+∞∑
j=1

v′′′j
j

∣∣∣∣∣∣
< +∞. (20)

Since 0 ≤ 1− e−a2π2j2t ≤ 1, the inequalities are true for all t ∈ [0,∞) and j ∈ N:

|Ej(t)| ≤ 1 +
|b|
a2

, |Dj(t)| <
|c|
a2

. (21)

Note that limj→∞ Dj(1) = c/a2, so givenDj(1) ̸= −1 and c ̸= −a2 there exists a number ρ > 0 such that

|1 +Dj(1)| ≥ ρ, j ∈ N. (22)

Using inequalities (21) and (22), we obtain uniform estimates for Tj(t) and T ′
j(t):

|Tj(t)| ≤ C1

(
1 + |b|

a2

ρ

)n

|vj |, t ∈ [n, n+ 1), (23)

|T ′
j(t)| ≤ C2

(
1 + |b|

a2

ρ

)n

π2j2|vj |, t ∈ [n, n+ 1), (24)

where

C1 = 1 +
|b|
a2

+
|c|
a2

1 + |b|
a2

ρ
,

C2 = a2 + |b|+ |c|
1 + |b|

a2

ρ
.
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Letm = 1 + sup(x,t)∈Λ t. Then from (23) and (24) for all (x, t) ∈ Λ, the series (17)–(19) are evaluated as follows:
∣∣∣∣∣∣
+∞∑
j=1

Tj(t) sin(jπx)

∣∣∣∣∣∣
≤ C1

(
1 + |b|

a2

ρ

)m +∞∑
j=1

|vj |,

∣∣∣∣∣∣
+∞∑
j=1

T ′
j(t) sin(jπx)

∣∣∣∣∣∣
≤ C2

(
1 + |b|

a2

ρ

)m

π2
+∞∑
j=1

j2|vj |,

∣∣∣∣∣∣
+∞∑
j=1

π2j2Tj(t) sin(jπx)

∣∣∣∣∣∣
≤ C1

(
1 + |b|

a2

ρ

)m

π2
+∞∑
j=1

j2|vj |.

Hence and from (20), we obtain uniform convergence of series (17)–(19) in any closed set Λ ⊂ [0, 1]× R+.
Thus, the function u(x, t) =

∑+∞
j=1 Tj(t) sin(jπx) is continuous on the set Ω = [0, 1] × R+; and the partial

derivatives ut =
∑+∞

j=1 T
′
j(t) sin(jπx), uxx =

∑+∞
j=1 π

2j2Tj(t) sin(jπx) exist and are continuous on Ω with a
possible exception at points (x, [t]) ∈ Ω, where one-sided derivatives exist on the second argument.

SinceDj(1) ̸= −1 for each j ∈ N, then by Theorem 1 the problem (5), (6) has a single solution Tj(t) for each
j ∈ N. Hence, the function u(x, t), defined by the formula (4), satisfies the equalities (5), (6) in Ω with possible
exceptions at the points (x, [t]) ∈ Ω and is the only solution of the problem (1)–(3).

Proof of Theorem 4. 1. Let Dj0(1) = −1 and Ej0(1) = 0 for some j = j0. Then Dj(1) > −1 at j < j0 and
Dj(1) < −1 at j > j0. Hence we have

|1 +Dj(1)| ≥ ρ1

for some number ρ1 > 0 and for all j ∈ N\{j0}.
By Theorem 1, the problem (5), (6) is solvable for j ̸= j0 and the solution of Tj(t) at j ̸= j0 is of the form

(7). SinceDj0(1) = −1; and Ej0(1) = 0, then by point 1 of Theorem 2, the problem (5), (6) has infinitely many
solutions. Let us denote by Tj0(·) the solution of the problem (5), (6) for j = j0. Then from (4) the solution of
the boundary value, problem (1)–(3) has the form (12). The uniform convergence of this series to a continuous
function u(x, t) in any closed set Λ ⊂ [0, 1]×R+ and the existence of continuous partial derivatives of ut and uxx

onΩwith a possible exception at the points (x, [t]) ∈ Ω, where one-sided derivatives exist on the second argument,
are proved similarly as in the proof of Theorem 3.

2. IfDj0(1) = −1, Ej0(1) ̸= 0 and vj0 ̸= 0, then by Theorem 2 the problem (5), (6) has no solution at j = j0.
Hence, according to (4), the boundary value problem (1)–(3) has no solution.

CONFLICT OF INTERESTS

The authors of this paper declare that they have no conflict of interests.

REFERENCES

1. Hale J.K. and Lunel, S.M.V. Introduction to Functional Differential Equations, New York: Springer Science
Business Media, 2013.

2. Hino Y., Naito T., Minh N.V., and Shin J.S. Almost Periodic Solutions of Differential Equations in Banach
Spaces, London; New York: Taylor & Francis, 2002.

3. Wiener J. Generalized Solutions of Functional Differential Equations, Singapore; New Jersey; London;
Hong Kong: World Scientific, 1993.

4. Cooke K.L. and Wiener J. A survey of differential equations with piecewise continuous arguments, in: Delay
Differential Equations and Dynamical Systems, Proc. of a Conf. in Honor of Kenneth Cooke Held in
Claremont, California, Eds. S. Busenberg, M. Martelli, Berlin: Springer-Verlag, 1991.



28

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025

PARTIAL DIFFERENTIAL EQUATIONS

MUMINOV, RAJABOV

5. Muminov M.I. On the method of finding periodic solutions of second-order neutral differential equations
with piecewise constant arguments, Advances in Difference Equations, 2017, Vol. 336, pp. 1–17.

6. Muminov M.I. and Murid Ali H.M. Existence conditions for periodic solutions of second-order neutral delay
differential equations with piecewise constant arguments, Open Math., 2020, Vol. 18, No. 1, pp. 93–105.

7. Wiener J. Boundary-value problems for partial differential equations with piecewise constant delay,
Int. J. Math. Math. Sci., 1991, Vol. 14, pp. 301–321.

8. Wiener J. and Debnath, L. Partial differential equations with piecewise constant delay, Int. J. Math. Math.
Sci., 1991, Vol. 14, pp. 485–496.

9. Wiener J. andHellerW.Oscillatory and periodic solutions to a diffusion equation of neutral type, Int. J.Math.
Math. Sci., 1999, Vol. 22, No. 2, pp. 313–348.

10. Wiener J. and Debnath L. Boundary value problems for the diffusion equation with piecewise continuous
time delay, Int. J. Math. Math. Sci., 1997, Vol. 20, No. 1, pp. 187–195.

11. Buyukkahraman M.L. and Bereketoglu H. On a partial differential equation with piecewise constant mixed
arguments, Iran J. Sci. Technol. Trans. Sci., 2020, Vol. 44, pp. 1791–1801.

12. Veloz T. and Pinto M. Existence, computability and stability for solutions of the diffusion equation with gen-
eral piecewise constant argument, J. Math. Anal. Appl., 2015, Vol. 426, No. 1, pp. 330–339.

13. WangQ. andWen J.Analytical andnumerical stability of partial differential equationswith piecewise constant
arguments, Numer. Methods Partial Differ. Equat., 2014, Vol. 30, No. 1, pp. 1–16.

14. Muminov M.I. and Radjabov T.A. Forced diffusion equation with piecewise continuous time delay, Adv.
Math. Sci. J., 2021, Vol. 10, No. 4, pp. 2269–2283.

15. Muminov M.I. and Radjabov T.A. On existence conditions for periodic solutions to a differential equation
with constant argument, Nanosystems: Phys. Chem. Math., 2022, Vol. 13, No. 5, pp. 491–497.

16. Muminov M.I. and Radjabov T.A. Existence conditions for 2-periodic solutions to a non-homogeneous dif-
ferential equations with piecewise constant argument, Examples and Counterexamples, 2024, Vol. 5, art.
100145.


