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Abstract. In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variables method, the considered BVP is reduced to the investigation
ofthe existence conditions of solutions of initial value problems for differential equation with piecewise constant
arguments. Existence conditions of infinitely many solutions or emptiness for considered differential equation
are established, and explicit formulas for these solutions are obtained. Several examples are given to illustrate
the obtained results.
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1. INTRODUCTION. PROBLEM STATEMENT

Differential equations with piecewise constant arguments are encountered in the study of hybrid systems and
can model certain harmonic oscillators with almost periodic effects [1, 2]. A wide review of studies devoted to
ordinary equations and partial differential equations with piecewise constant arguments is given in [3, 4].

In articles [3, 6], differential equations of special kind with piecewise constant argument are studied. Periodic
(solvable) problems are reduced to a system of linear algebraic equations, all conditions for the existence of its
n-periodic solutions are described, by means of which explicit formulas for solutions of differential equations are
found.

Partial derivative equations with piecewise constant temporal argument arise naturally in the process of approx-
imation [7].

In [8], the existence, oscillation and asymptotic bounds of solutions of initial problems with piecewise constant
lags are studied for a partial derivative equation with piecewise constant argument.

Boundary and initial problems for the diffusion equation with piecewise constant arguments were studied in
[9] and [10], respectively. The equation with piecewise constant mixed arguments of the form

e (2,1) = a*Upy (2, 1) + bugy (2, [t — 1)) + cu(z, [t]) + du(x, [t + 1])

was considered in [11], where the questions of existence of solutions, convergence of solutions to zero, unbound-
edness of solutions and their oscillations were investigated.

In the paper [12], the asymptotic behavior of the solution of the diffusion equation with piecewise constant
argument of generalized form is found.
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EXISTENCE OF SOLUTIONS OF THE BOUNDARY VALUE PROBLEM 19

In this paper, we consider a boundary value problem for the diffusion equation with piecewise constant argu-
ments of the form [ 10, 13]

e (2,1) = a*Upy (2, 1) — by (2, [t]) — cuge(z, [t +1]), 0<z<1,t>0, (1)
u(0,t) = u(l,t) =0, 2)
u(z,0) = v(x). (3)

Adapting the method of [10, 14], we first obtain the formal solution of the problem (1)—(3) in the form of a
series. Forthis purpose, after the separation of variables, we study the first order differential equation with piecewise
constant time argument, obtain the existence condition and the explicit formula for its solution. Then, applying the
method of [5, 6, 15, 16], we will find NV -periodic solutions and their explicit formulas of this differential equation.
In aspecial case, we prove the existence of an infinite number of solutions of the differential equation with piecewise
constant argument, which shows the incorrectness of the result about the uniqueness given in [13].

2. DIFFERENTIAL EQUATION WITH PIECEWISE CONSTANT ARGUMENT

Let v; be the coefficients of the sinusoidal Fourier series for the function v(x), i.e.,
+o00 1
x) = Zvj sin(jrx), v = 2/ v(x)sin(jrz)dz.
j=1 0
The solution of the problem (1)—(3) is found in the form
Z T;(t) sin(jmz). 4)
Substituting the function (4) into equation (1) and initial conditions from (3), we obtain

Z (Tj'(t) +a?m? 525 (t) + b2 52Ty ([t]) + en? 32Ty ([t + 1])) sin(jmx) =0,

ZT sin(jrx) = v(z), T;(0) =v;.

Hence, taking into account orthogonallty of functions sin(nmz), we have an infinite sequence of ordinary dif-
ferential equations with piecewise constant argument

Tj(t) + a7 52T (t) + br® 2T ([t]) + en? 5T ([t +1]) =0, t>0,j €N, (5)

with the initial condition
Tj (0) = ’Uj. (6)

Definition 1. The function 7'(¢) is called a solution to the problem (5), (6), if it satisfies the following conditions:

(i) T(t) is continuous with R ;

(ii) the derivative of 7" (t) exists and is continuous with R, except for points [¢] € R, where one-sided deriva-
tives exist;

(iii) T'(¢) satisfies (5) and (6) at R with a possible exception at [t] € R .

Let’s denote

2_2.2 b 22,2

Ej(t)=e T = —(1—eT T, Di(t) =

C —a2r2i? .

o) ?(1—6 Jt), jeN.
Theorem 1. Let a,b, ¢ be real numbers. If D;(1) # —1, then the equation (5) has a single solution represented at

the intervalst € [n,n+ 1), n=0,1,2,..., in the form of

. B,(1) ) E(1)

(Bt —n) - Di(t — i 4
56 = (Extt=m) = D= m) 720 ) s 0
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Theorem 2. 1. If D;(1) = —1and E;(1) = 0 for j > 0, then the problem (5), (6) has infinitely many solutions. In
particular, this problem has a single one-periodic and infinitely many N -periodic solutions, N = 2,3, ...

2. Let D;j(1) = —1 and E;(1) # 0. Then ifv; # 0, then problems (5), (6) have no solution. If v; = 0, then this
problem has a trivial solution.

Example 1. Let j = 1,a € R, c = a2/(e7* ™ 9" —1),b = —a2e~*" 73" J(e=""3* — 1), v; = 1. In this case,
D;(1) = -1, E;(1) = 0. Functions

a?x? 2, 2 7e—a27r2t
R < | (T Fmme ) n - e (), telo.),
(ke + e ™ D) T (1) - o, e (1,2
and
(L= e T T oy = (1 e T (), t€0,1),
Bt)={ (~&1 —e @00y @ D) 7 (1) = S(1—e @™ D)y (2), te[l,2),
— b (1= 0’2y =" (22)) Ty (2) — S (1 — 70" (D) )y, te2,3),

are two- and three-periodic solutions of the problem (5), (6) at j = 1, respectively, where 771 (1), T51(2) are
arbitrary numbers. Having chosen these constants, we give the solutions and their graphs.
The function F5(t) at 711 (1) = 3and a = % has the following form (Fig. 1, a)

—t Q(1_—t
el _30oe D e o),

Fz(ﬁ) = 1:21 t e2—t (8)
1176*1 +3 1ie + efl) ’ t )
s A a
3,0 -
2,5
2,0 -
1,5
1,0 : : : >
0 1 2 3 4 5 6 t
Fig. 1. Graphs of the function F»(t)
andat 711 (1) = —2and a =  (Fig. 1, b)
1 elt 2(1—e™ %)
pet e pe0,1),
F(t) = ifﬁ_l et € 1_6127t ) )]
e~1-1 _2(176—*— 871)7 € 1’2]
The function F3(t) at Ty1(1) = 2, T»1(2) = 3 and a = L is represented as (Fig. 2, a)
Lope ) tefo,),
Fy(t) = { 2 + <520 te(1,2), (10)
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EXISTENCE OF SOLUTIONS OF THE BOUNDARY VALUE PROBLEM 21

atTh1(1) = —2,T51(2) = =2 and a = 1 (Fig. 2, b)

T

=t 6(3Z:t1_2)> t€0,1),
1—t
Fy(t) =4 2 - <Gte), te(L,2), (11)
e(pe? t—2
2(63—1) IICESY }, tel2,3],

andat 711 (1) = 3, T1(2) = —4and a = 1 (Fig. 2, ¢)

1t
Fy(t) = { 54 c0e 20 oy o) (12)
5e27t—1
eil 2 e—1 )7 te [273}

Fy a
2,0
1,8
1,6
1,4
1,2
1,0

Fig. 2. Graphs of the function F5(t)

Remark 1. In Example 1, the parameters of the equation satisfy the conditions of the singularity theorem from
[13]. It shows the incorrectness of the results of Theorem 2 of [11], which asserts the uniqueness of the solution of
the problem (5), (6).

3. PROBLEM SOLVING

Definition 2. The function u(x,t) is called a solution of the problem (1)—(3), if the following conditions are
satisfied:

(i) u(x, t) is continuous on the set Q = [0, 1] x Ry, Ry = [0, 00);

(ii) the partial derivatives of u; and u,,, exist and are continuous at 2 with a possible exception at points (x, [t]) €
), where one-sided derivatives exist on the second argument;

(iii) u(x, t) satisfies (1)—(3) at Q2 with a possible exception at (z, [t]) € §2.

Assumption. Let the function v(-) have continuous derivatives up to and including third order at the segment |0, 1]
and satisfy the conditions v(0) = v(1) = v”(0) = v"(1) = 0.

Theorem 3. Let the assumption ¢ # —a® and D;(1) # —1at j € N be satisfied. Then the problem (1)—(3) has a
single solution represented as a series

1) )( E7(1)

+00 )
u(z,t) = ; (Ej(t —n)—D,;(t— n)lf]D(j(l) 1—|—Dj(1))”vj sin(jrz), te€n,n+1),n=0,1,2,...

Theorem 4. 1. Let the assumption be satisfied, D; (1) = —1 and E; (1) = 0. Then the problem (1)—(3) has an
infinite number of solutions represented byt € [n,n+1),n=0,1,2,..., as

+oo ) En
u(z,t) = ; (Ej(t —n)—D;(t—n) 1 f]D(i)(l)> i jDil()l))”U] sin(jma) + Tj, (t) sin(jma), (12)
J#3jo
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22 MUMINOYVY, RAJABOV

where T} (t) is an arbitrary solution of the problem (5), (6) (see point 2 in Theorem 2).

2.IfD;,(1) = -1, E;,(1) # 0 and vj, # 0 at j = jo, then the problem (1)—(3) has no solution.

Example 2. Leta = 1/7, ¢ = 2, b = 3 in equation (1) and u(z,0) = 2?21 Sm(ii’”“) in condition (3). Then the
solution of the problem (1)—(3) has the following form (Fig. 3)

B E;(1) Er)
e =32 | (B0 it =025 ) G T

j=1 J

v]} sin(jrx), t€n,n+1),n=0,1,2...

Fig. 3. Graph of the function u(z, t)

Example 3. Leta € R, ¢ = ﬁ, b=—a2e= 73" J(e=2’™"3* _ 1), v(x) = sin(rz) + 2sin(2rz). Then
the solution of the problem (1)—(3) is defined by the formula

u(z,t) = T1(t) sin(rz) + 2T5(t) sin(27wzx).

Note that D;(1) = —1, F1(1) = 0and Dy(1) = —1, i.e., the numbers a, b and ¢ satisfy the conditions of point 1
of Theorem 2 and Theorem 1. Therefore, according to Theorem 1, the function T5(¢) has the form

Tg(t)=2(E2(t—n)—D2(t—n)), t e [n,n+1),

and the function T (¢) can be defined in many ways.

Here are the graphs of u(z,t) for Example 1. In the case when T3 (t) = F(t) and Fy(t) are defined by the
equality (8), the graph of the function w(z, t) is shown in Fig. 4, a; if F5(¢) is defined by expression (9), then in
Fig. 4, b. When T (t) = F5(t), where F3(t) is defined by equality (10), the graph of the function u(x, t) is shown
in Fig. 5, a; and if F3(t) is defined by equality (11), then in Fig. 5, b.

Remark 2. In Example 3, the parameters of the equation do not satisfy the conditions of Corollary 1 in [13],
i.e., a2 + b+ ¢ = 0. The solution of u is periodic on ¢. This means that the null solution of the problem (1)—
(3) is not asymptotically stable. Therefore, the conditions of Corollary 1 are sufficient for the null solution to be
asymptotically stable.

4. EVIDENCE FOR KEY FINDINGS

Proof of theorem 1. Let us denote by T;,;(¢) the solution of equation (5) on the interval [n,n + 1), i.e.

T;(t) =T,;(t), ten,n+1), n=0,12,...

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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0,5
—2

Fig. 4. Graph of the function u(z, t)

Then

T, (t) + a®n®5° T (t) =

= —br?j%Ty;(n) — cn®?Thj(n + 1), t€[n,n+1).
The solution of the equation (13) is determined by the formula

(13)
Toy(t) = ~2Ea ) (g _ pmanteomy | (rye-eteiteem - D) ety
a a
or
T,i(t) = Ej(t —n)Tn;(n) — Dj(t —n)T,j(n+1), tenn+1). (14)
Puttingt =n + 1in (14) foralln =0,1,2, ..., we get
T,j(n+1)=E;(1)T,;(n) — D;(1)T,;(n+1).
Hence, taking into account D;(1) # —1 we have
Ej(1)Tn;(n)
Tpj(n+1) = =220 1
i+ 1) =S5 (15)

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025



24 MUMINOYVY, RAJABOV

Fig. 5. Graph of the function u(z, t)

Then we write (14) as
D;(t—
T8 = Bt = Ty () = DB () o) (16)

From the continuity of the function Tj(¢) over ¢t > 0 the following equations follow

Tiwens(n+1) =Tyl +1) = | lim T(t) = Tog(n +1).

Consequently, formula (15) can be rewritten in the form

E; Tn]‘ n
Tnni(n+1) = 4547 (i)Dj(i) ),
from where
B B B
Tyj(n) = I Dj(l)T(n—l)j(n -1)= WT(n—mj(n —2)=-= WTOj(O)’

DIFFERENTIAL EQUATIONS Vol. 61 No. 1 2025
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or B ()
J
—— T, (0).
L+ D)~
Thus, the solution 7, ;(t), defined by the formula (16), is represented only via T;(0):
E;(1) ) B7 (1)

1+D;(1)) (1+ D;(1))
The equality T;(0) = v; completes the proof of the theorem.

Proof of theorem 2. 1. Let D;(1) = —1, E;(1) = 0. Construct the function 7}(t) = T,;(t), t € [n,n + 1),
n=20,1,2,...,as follows. Function

To;(t) = E;(t)To;(0) — D;(t)Coj, t€]0,1),

Ty (n) =

Ty 1) = (Ej (t —n)— Dyt —n) 70,(0).

satisfies the equation (5), where Tp;(0) = v; and Cy; are arbitrary numbers. Since D;(1) = —1 and E;(1) = 0,
there is an equality Tp; (1) = lim,_,1 T, (t) = Co,. It is easy to check that the function

le(t) = Ej(t — I)le(l) — Dj(t — 1)C1j, t e [1, 2),

satisfies equation (5), where C; is an arbitrary number.
By virtue of continuity of the function T (¢) we have

T3(1) = Th; (1) = lim To;(t) = To;(1).

The equalities D; (1) = —1 and E;(1) = 0 give T1,(2) = lim;_,o T4 (t) = Ch;.
Function
T,;(t) = Ej(t —n)Ty,j(n) — D;j(t —n)Cpj;, at(n,n+1),neN,
satisfies the equation (5), where C,,; is an arbitrary number. Clearly,

Tj(n) = Tpj(n) = lim Ti1);(t) = Tino1y; (1)-

Similarly, from the equalities D;(1) = —1 and E;(1) = 0, we obtain T,,;(n) = lim;_,,,+1 T,;(t) = Cy,;. After
the construction of the function

j‘lj(t):Tnj(t% te[n7n+1)7n:031727"'5

appears the solution of the problem (5), (6). Since the constants Cy;, Cyj,. .., Cy,;, ... are arbitrary, the problem
has an infinite number of solutions.
Let Tj;(t) be a one-periodic solution of the problem (5), (6), then it can be represented as

Tj(t) = Toj(t) = E](t)Toj(O) — Dj(t)COj, te [0, 1]

Since the function T (¢) is one-periodic and Tpj(1) = Cyj, then Tp5(0) = Toj(1), Coj(1) = Tpj(0) = v;. This
shows the uniqueness of the one-periodic solution (5), (6).
Let T} (t) be a two-periodic solution of the problem (5), (6). Then the function T7(¢) on [0, 2] has the form

() = E;(t)T05(0) — D;(t)T1j(1), telo,1),
P B (- DTj(1) = Dyt —1)Cj, te1,2),

where Tj(0) = v;, T1j(1) is an arbitrary number. From the periodicity of T} (t) it follows that T};(0) = Tyj(0) =
T;(2) = C1j. This shows that the problem (5), (6) has infinitely many two-periodic solutions.
Let 7} (t) be the N-periodic solution of the problem (5), (6). The function T7(t) on the interval [0, N] has the
form
Ej(t)vj - Dj(t)le 1)7 te [O, 1)7
E](t—l)TL](].)—Dj(t—l)sz(2)7 t e [].,2)7

Bi(t— N +2)Tix_1.5(N —2) = Dj(t— N+ 2)T(y_1.(N —1), te[N—2N—1),
Ej(t — N+ 1)T(N_1’j)(N — 1) — Dj(t — N+ 1)’(}]', t e [N — 1,N),

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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where T15(1), T25(2), . .., T(n—1,;)(IN — 1) are arbitrary numbers.

2. Suppose that the function T} (t) is a solution of the problem (5), (6). Then, according to (14), the following
equality holds

T,j(t) = E;j(t —n)T,j(n) — Dj(t —n)T,j(n+1), te€[n,n+1).

Hence at t = n + 1 taking into account D;(1) = —1, we have E;(1)T,,j(n) = 0 foralln = 0,1,2,... Therefore,
T,j(n) = O0foralln = 0,1,2,..., since E;(1) # 0, i.e., the equation has only a trivial solution. Hence, if
T;(0) = v; = Tpj(0) # 0, then the problem (5), (6) has no solution.

Proof of Theorem 3. First, prove uniform convergence in any closed set A C [0, 1] x R of the following series:

ZT sin(jmz), (17)
ZT sin(jrz), (18)
Z’]T2]2T )sin(jrz), (19)

where Tj(t) is the solution of the problem (5), (6), and at [n,n + 1), n =0, 1,2, ..., the functions 7} (t), T’j(t) are
represented, respectively, as (7) and

E(l) 2 2.2 En(l)
/ - 2 J 2 —a“m 5% (t—n) J .
Ti(t) (a +b+cl+Dj(1))7T‘7 7(1+Dj(1))”vj'

According to the assumption there is equality

2,1}///

1
v; = — 7T3;3, v;”:/o " (x) cos(jma)dr, j=1,2,...

The continuity of the function v"’ (x) implies the convergence of the series Z;;OT (v!")2. Hence, taking into account

J
the Cauchy-Bunyakovsky inequality, we have

+oo 9 +oo o

2 | & 23
D3| = 5 D | < Hoe (20)
j=1 =1
Since 0 < 1 — e~9"™"3°t < 1, the inequalities are true for all ¢ € [0,00) and j € N:

0]

]

B0 <1+ 5. D0 < 5. 21
Note that lim;_,, D;(1) = c¢/a?, so given D;(1) # —1 and ¢ # —a? there exists a number p > 0 such that
L+ D;(1)| > p, jEN (22)
Using inequalities (21) and (22), we obtain uniform estimates for 7);(¢) and T7(¢):
1+l
|Tj(t)‘ < P ‘vj|7 te [nvn+1)v (23)
1+ 14
T (t)| < Co T 2j2\vj|, ten,n+1), (24)
where
b 1+
Ci=1+13 M yldita
a?z p
1+ 4

Cy = a® + [b] + ¢

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025
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Letm =1+ SUP(, 1y b Then from (23) and (24) for all (z,t) € A, the series (17)—(19) are evaluated as follows:

[B]
ZT sin(jrz)| < C4 <1+2) Z\vﬂ

148\
> rsngnn) < (L8) 5

1+

ZWQJQT sin(jrz)| < C4 ( ) 22] v

Hence and from (20), we obtain uniform convergence of series (17)—(19) in any closed set A C [0,1] x R.

Thus, the function u(x,t) = j'(xf T;(¢t) sin(jmz) is continuous on the set Q = [0,1] x Ry ; and the partial
derivatives u; = ;roi’ Ti(t)sin(jm), gy Z+ L m252T;(t) sin(jrx) exist and are continuous on  with a

possible exception at points (z, [t]) € €2, where one-sided derivatives exist on the second argument.
Since D;(1) # —1 foreach j € N, then by Theorem 1 the problem (5), (6) has a single solution 7 (¢) for each
J € N. Hence, the function u(x,t), defined by the formula (4), satisfies the equalities (5), (6) in Q with possible
exceptions at the points (z, [t]) € §2 and is the only solution of the problem (1)—(3).
Proof of Theorem 4. 1. Let D (1) = —1 and E;, (1) = 0 for some j = jo. Then D;(1) > —1at j < j, and
D;(1) < —1atj > jo. Hence we have
14+ D;(1)] > p

for some number p; > 0 and forall j € N\{jo}.

By Theorem 1, the problem (5), (6) is solvable for j # jj and the solution of T} (t) at j # jo is of the form
(7). Since D, (1) = —1; and E;, (1) = 0, then by point 1 of Theorem 2, the problem (5), (6) has infinitely many
solutions. Let us denote by T, (-) the solution of the problem (5), (6) for j = j,. Then from (4) the solution of
the boundary value, problem (1)—(3) has the form (12). The uniform convergence of this series to a continuous
function u(z,t) in any closed set A C [0, 1] x R and the existence of continuous partial derivatives of u; and .,
on 2 with a possible exception at the points (z, [t]) € €, where one-sided derivatives exist on the second argument,
are proved similarly as in the proof of Theorem 3.

2.1f D; (1) = —1, Ej,(1) # 0 and v, # 0, then by Theorem 2 the problem (5), (6) has no solution at j = jj.
Hence, according to (4), the boundary value problem (1)—(3) has no solution.
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