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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Дифференциальные уравнения с кусочно-постоянными аргументами встречаются при
изучении гибридных систем и могут моделировать определённые гармонические осцилляторы
с почти периодическим воздействием [1, 2]. Широкий обзор исследований, посвящённых
обыкновенным уравнениям и уравнениям с частными производными с кусочно-постоянными
аргументами, приведён в работах [3, 4].

В статьях [5, 6] изучены дифференциальные уравнения специального вида с кусочно-
постоянным аргументом. Периодические (разрешимые) задачи сведены к системе линейных
алгебраических уравнений, описаны все условия существования её 𝑛-периодических решений,
с помощью которых найдены явные формулы решений дифференциальных уравнений.

Уравнения с частными производными с кусочно-постоянным временны́м аргументом есте-
ственным образом возникают в процессе аппроксимации [7].

В статье [8] для уравнения с частными производными с кусочно-постоянным аргументом
изучены существование, осцилляционность и асимптотические границы решений начальных
задач с кусочно-постоянными запаздываниями.

Краевые и начальные задачи для уравнения диффузии с кусочно-постоянными аргумента-
ми исследовались в [9] и [10] соответственно. Уравнение с кусочно-постоянными смешанными
аргументами вида

𝑢𝑡(𝑥, 𝑡)= 𝑎2𝑢𝑥𝑥(𝑥, 𝑡)+𝑏𝑢𝑥𝑥(𝑥, [𝑡−1])+𝑐𝑢(𝑥, [𝑡])+𝑑𝑢(𝑥, [𝑡+1])

рассматривалось в [11], где были исследованы вопросы существования решений, сходимости
решений к нулю, неограниченность решений и их осцилляции.
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В статье [12] найдено асимптотическое поведение решения уравнения диффузии с кусочно-
постоянным аргументом обобщённого вида.

В настоящей работе рассматривается краевая задача для уравнения диффузии с кусочно-
постоянными аргументами вида [10, 13]

𝑢𝑡(𝑥, 𝑡)= 𝑎2𝑢𝑥𝑥(𝑥, 𝑡)−𝑏𝑢𝑥𝑥(𝑥, [𝑡])−𝑐𝑢𝑥𝑥(𝑥, [𝑡+1]), 0<𝑥< 1, 𝑡 > 0, (1)

𝑢(0, 𝑡)=𝑢(1, 𝑡)= 0, (2)

𝑢(𝑥, 0)= 𝑣(𝑥). (3)

Адаптировав метод [10, 14], получим сначала формальное решение задачи (1)–(3) в виде
ряда. Для этого после разделения переменных исследуем дифференциальное уравнение пер-
вого порядка с кусочно-постоянным аргументом времени, получим условие существования и
явную формулу его решения. Затем, применив метод [5, 6, 15, 16], найдём 𝑁 -периодические
решения и их явные формулы этого дифференциального уравнения. В частном случае дока-
жем существование бесконечного числа решений дифференциального уравнения с кусочно-
постоянным аргументом, что показывает некорректность результата о единственности, при-
ведённого в [13].

2. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С КУСОЧНО-ПОСТОЯННЫМ
АРГУМЕНТОМ

Пусть 𝑣𝑗 — коэффициенты синусоидального ряда Фурье для функции 𝑣(𝑥), т.е.

𝑣(𝑥)=
+∞∑︁
𝑗=1

𝑣𝑗 sin(𝑗𝜋𝑥), 𝑣𝑗 =2

1ˆ

0

𝑣(𝑥) sin(𝑗𝜋𝑥) 𝑑𝑥.

Решение задачи (1)–(3) ищем в виде

𝑢(𝑥, 𝑡)=
+∞∑︁
𝑗=1

𝑇𝑗(𝑡) sin(𝑗𝜋𝑥). (4)

Подставив функцию (4) в уравнение (1) и начальные условия (3), получим
∞∑︁
𝑗=1

(︁
𝑇 ′
𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑗(𝑡)+𝑏𝜋
2𝑗2𝑇𝑗([𝑡])+𝑐𝜋

2𝑗2𝑇𝑗([𝑡+1])
)︁
sin(𝑗𝜋𝑥)= 0,

𝑢(𝑥, 0)=
∞∑︁
𝑗=1

𝑇𝑗(0) sin(𝑗𝜋𝑥)= 𝑣(𝑥), 𝑇𝑗(0)= 𝑣𝑗 .

Отсюда, с учётом ортогональности функций sin(𝑛𝜋𝑥), имеем бесконечную последовательность
обыкновенных дифференциальных уравнений с кусочно-постоянным аргументом

𝑇 ′
𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑗(𝑡)+𝑏𝜋
2𝑗2𝑇𝑗([𝑡])+𝑐𝜋

2𝑗2𝑇𝑗([𝑡+1])= 0, 𝑡 > 0, 𝑗 ∈N, (5)

с начальным условием
𝑇𝑗(0)= 𝑣𝑗 . (6)

Определение 1. Функция 𝑇 (𝑡) называется решением задачи (5), (6), если она удовле-
творяет следующим условиям:

(i) 𝑇 (𝑡) непрерывна на R+;
(ii) производная 𝑇 ′(𝑡) существует и непрерывна в R+, за исключением точек [𝑡]∈R+, где

существуют односторонние производные;
(iii) 𝑇 (𝑡) удовлетворяет (5) и (6) в R+ с возможным исключением в точках [𝑡]∈R+.
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Обозначим

𝐸𝑗(𝑡)= 𝑒−𝑎2𝜋2𝑗2𝑡− 𝑏

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2𝑡

)︀
, 𝐷𝑗(𝑡)=

𝑐

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2𝑡

)︀
, 𝑗 ∈N.

Теорема 1. Пусть 𝑎, 𝑏, 𝑐 — действительные числа. Если 𝐷𝑗(1) ̸=−1, то уравнение (5)
имеет единственное решение, представимое на промежутках 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . , в
виде

𝑇𝑗(𝑡)=

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 . (7)

Теорема 2. 1. Если 𝐷𝑗(1) =−1 и 𝐸𝑗(1) = 0 для 𝑗 > 0, то задача (5), (6) имеет беско-
нечно много решений. В частности, эта задача имеет единственное однопериодическое и
бесконечное множество 𝑁-периодических решений, 𝑁 =2, 3, . . .

2. Пусть 𝐷𝑗(1)=−1 и 𝐸𝑗(1) ̸=0. Тогда если 𝑣𝑗 ̸=0, то задача (5), (6) не имеет решения.
Если 𝑣𝑗 =0, то эта задача имеет тривиальное решение.

Пример 1. Пусть 𝑗 =1, 𝑎∈R, 𝑐= 𝑎2/(𝑒−𝑎2𝜋2𝑗2 −1), 𝑏=−𝑎2𝑒−𝑎2𝜋2𝑗2/(𝑒−𝑎2𝜋2𝑗2 −1), 𝑣1 =1.
В этом случае 𝐷𝑗(1)=−1, 𝐸𝑗(1)= 0. Функции

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

1

1−𝑒𝑎2𝜋2 +
𝑒𝑎

2𝜋2

𝑒𝑎2𝜋2 −1
𝑒−𝑎2𝜋2𝑡

)︂
𝑣1−

1−𝑒−𝑎2𝜋2𝑡

𝑒−𝑎2𝜋2 −1
𝑇11(1), 𝑡∈ [0, 1),(︂

1

1−𝑒𝑎2𝜋2 +
𝑒𝑎

2𝜋2

𝑒𝑎2𝜋2 −1
𝑒−𝑎2𝜋2(𝑡−1)

)︂
𝑇11(1)−

1−𝑒−𝑎2𝜋2(𝑡−1)

𝑒−𝑎2𝜋2 −1
𝑣1, 𝑡∈ [1, 2],

и

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2𝑡)+𝑒−𝑎2𝜋2𝑡

)︂
𝑣1−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2𝑡)𝑇11(1), 𝑡∈ [0, 1),(︂

− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−1))+𝑒−𝑎2𝜋2(𝑡−1)

)︂
𝑇11(1)−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−1))𝑇21(2), 𝑡∈ [1, 2),(︂

− 𝑏

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−2))+𝑒−𝑎2𝜋2(𝑡−2)

)︂
𝑇21(2)−

𝑐

𝑎2
(1−𝑒−𝑎2𝜋2(𝑡−2))𝑣1, 𝑡∈ [2, 3),

являются двух- и трёхпериодическими решениями задачи (5), (6) при 𝑗=1 соответственно,
где 𝑇11(1), 𝑇21(2) — произвольные числа. Выбрав эти константы, приведём решения и их
графики.

Функция 𝐹2(𝑡) при 𝑇11(1)= 3 и 𝑎=1/𝜋 имеет вид (рис. 1, а)

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−𝑒
+
𝑒1−𝑡

𝑒−1
− 3(1−𝑒−𝑡)

𝑒−1−1
, 𝑡∈ [0, 1),

1−𝑒1−𝑡

1−𝑒−1
+3

(︂
1

1−𝑒
+
𝑒2−𝑡

𝑒−1

)︂
, 𝑡∈ [1, 2].

(8)

Рис. 1. Графики функции 𝐹2(𝑡)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 61 № 1 2025



СУЩЕСТВОВАНИЕ РЕШЕНИЙ КРАЕВОЙ ЗАДАЧИ 25

а при 𝑇11(1)=−2 и 𝑎=1/𝜋 (рис. 1, б )

𝐹2(𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−𝑒
+
𝑒1−𝑡

𝑒−1
+
2(1−𝑒−𝑡)

𝑒−1−1
, 𝑡∈ [0, 1),

𝑒1−𝑡−1

𝑒−1−1
−2

(︂
1

1−𝑒
+
𝑒2−𝑡

𝑒−1

)︂
, 𝑡∈ [1, 2].

(9)

Функция 𝐹3(𝑡) при 𝑇11(1)= 2, 𝑇21(2)= 3/2 и 𝑎=1/𝜋 представима в виде (рис. 2, а)

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(2−𝑒−𝑡)

𝑒−1
, 𝑡∈ [0, 1),

2

1−𝑒
+
𝑒(3+𝑒1−𝑡)

2(𝑒−1)
, 𝑡∈ [1, 2),

3

2(1−𝑒)
+
𝑒(2+𝑒2−𝑡)

2(𝑒−1)
, 𝑡∈ [2, 3],

(10)

при 𝑇11(1)=−2, 𝑇21(2)=−3/2 и 𝑎=1/𝜋 (рис. 2, б )

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(3𝑒−𝑡−2)

𝑒−1
, 𝑡∈ [0, 1),

2

𝑒−1
− 𝑒(3+𝑒1−𝑡)

2(𝑒−1)
, 𝑡∈ [1, 2),

3

2(𝑒−1)
− 𝑒(5𝑒2−𝑡−2)

2(𝑒−1)
, 𝑡∈ [2, 3],

(11)

а при 𝑇11(1)= 3, 𝑇21(2)=−4 и 𝑎=1/𝜋 (рис. 2, в)

𝐹3(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1−𝑒
+
𝑒(3−2𝑒−𝑡)

𝑒−1
, 𝑡∈ [0, 1),

3

1−𝑒
+
𝑒(7𝑒1−𝑡−4)

𝑒−1
, 𝑡∈ [1, 2),

4

𝑒−1
− 𝑒(5𝑒2−𝑡−1)

𝑒−1
, 𝑡∈ [2, 3].

Рис. 2. Графики функции 𝐹3(𝑡)

Замечание 1. В примере 1 параметры уравнения удовлетворяют условиям теоремы
единственности из статьи [13]. В нём показана некорректность результатов теоремы 2 из [11],
утверждающей единственность решения задачи (5), (6).
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3. РЕШЕНИЕ ЗАДАЧИ

Определение 2. Функция 𝑢(𝑥, 𝑡) называется решением задачи (1)–(3), если выполняются
следующие условия:

(i) 𝑢(𝑥, 𝑡) непрерывна на множестве Ω= [0, 1]×R+, R+= [0,∞);
(ii) частные производные 𝑢𝑡 и 𝑢𝑥𝑥 существуют и непрерывны на Ω с возможным ис-

ключением в точках (𝑥, [𝑡]) ∈ Ω, где односторонние производные существуют по второму
аргументу;

(iii) 𝑢(𝑥, 𝑡) удовлетворяет (1)–(3) в Ω с возможным исключением в точках (𝑥, [𝑡])∈Ω.
Предположение. Пусть функция 𝑣(·) имеет на отрезке [0, 1] непрерывные производные

до третьего порядка включительно и удовлетворяет условиям 𝑣(0)=𝑣(1)=𝑣′′(0)=𝑣′′(1)=0.
Теорема 3. Пусть выполняется предположение, 𝑐 ̸=−𝑎2 и 𝐷𝑗(1) ̸=−1 при 𝑗 ∈N. Тогда

задача (1)–(3) имеет единственное решение, представимое в виде ряда

𝑢(𝑥,𝑡)=
+∞∑︁
𝑗=1

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 sin(𝑗𝜋𝑥), 𝑡∈ [𝑛,𝑛+1), 𝑛=0,1,2, . . .

Теорема 4. 1. Пусть выполняется предположение, 𝐷𝑗0(1)=−1 и 𝐸𝑗0(1)= 0. Тогда за-
дача (1)–(3) имеет бесконечное число решений, представимых на 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . ,
как

𝑢(𝑥, 𝑡)=

+∞∑︁
𝑗=1,𝑗 ̸=𝑗0

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 sin(𝑗𝜋𝑥)+𝑇𝑗0(𝑡) sin(𝑗𝜋𝑥), (12)

где 𝑇𝑗0(𝑡) — произвольное решение задачи (5), (6) (см. п. 2 в теореме 2).
2. Если 𝐷𝑗0(1)=−1, 𝐸𝑗0(1) ̸=0 и 𝑣𝑗0 ̸=0 при 𝑗= 𝑗0, то задача (1)–(3) не имеет решения.
Пример 2. Пусть 𝑎 = 1/𝜋, 𝑐 = 2, 𝑏 = 3 в уравнении (1) и 𝑢(𝑥, 0) =

∑︀5
𝑗=1 sin(𝑗𝜋𝑥)/𝑗 в

условии (3). Тогда решение задачи (1)–(3) имеет вид (рис. 3)

𝑢(𝑥,𝑡)=
5∑︁

𝑗=1

[︂(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗

]︂
sin(𝑗𝜋𝑥), 𝑡∈ [𝑛,𝑛+1), 𝑛=0,1,2, . . .

Рис. 3. График функции 𝑢(𝑥, 𝑡)
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Пример 3. Пусть 𝑎∈R, 𝑐=𝑎2/(𝑒−𝑎2𝜋2𝑗2−1), 𝑏=−𝑎2𝑒−𝑎2𝜋2𝑗2/(𝑒−𝑎2𝜋2𝑗2−1), 𝑣(𝑥)=sin(𝜋𝑥)+
+2 sin(2𝜋𝑥). Тогда решение задачи (1)–(3) определяется по формуле

𝑢(𝑥, 𝑡)=𝑇1(𝑡) sin(𝜋𝑥)+2𝑇2(𝑡) sin(2𝜋𝑥).

Отметим, что 𝐷1(1)=−1, 𝐸1(1)=0 и 𝐷2(1) ̸=−1, т.е. числа 𝑎, 𝑏 и 𝑐 удовлетворяют условиям
п. 1 теоремы 2 и теореме 1. Поэтому согласно теореме 1 функция 𝑇2(𝑡) имеет вид

𝑇2(𝑡)= 2(𝐸2(𝑡−𝑛)−𝐷2(𝑡−𝑛)), 𝑡∈ [𝑛, 𝑛+1),

а функцию 𝑇1(𝑡) можно определить многими способами.
Приведём графики 𝑢(𝑥, 𝑡) для примера 1. В случае когда 𝑇1(𝑡)=𝐹2(𝑡) и 𝐹2(𝑡) определяется

равенством (8), график функции 𝑢(𝑥, 𝑡) изображён на рис. 4, а, если 𝐹2(𝑡) определяется
выражением (9), то на рис. 4, б. При 𝑇1(𝑡)=𝐹3(𝑡), где 𝐹3(𝑡) определяется равенством (10),
график функции 𝑢(𝑥, 𝑡) представлен на рис. 5, а, а если 𝐹3(𝑡) определяется равенством (11),
то на рис. 5, б.

Рис. 4. Графики функции 𝑢(𝑥, 𝑡)
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Рис. 5. Графики функции 𝑢(𝑥, 𝑡)

Замечание 2. В примере 3 параметры уравнения не удовлетворяют условиям след-
ствия 1 в [13], т.е. 𝑎2+ 𝑏+ 𝑐= 0. Решение 𝑢 периодично по 𝑡. Это означает, что нулевое
решение задачи (1)–(3) не является асимптотически устойчивым. Поэтому условия след-
ствия 1 являются достаточными для того, чтобы нулевое решение было асимптотически
устойчиво.

4. ДОКАЗАТЕЛЬСТВА ОСНОВНЫХ РЕЗУЛЬТАТОВ

Доказательство теоремы 1. Обозначим через 𝑇𝑛𝑗(𝑡) решение уравнения (5) на проме-
жутке [𝑛, 𝑛+1), т.е.

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . .

Тогда

𝑇 ′
𝑛𝑗(𝑡)+𝑎

2𝜋2𝑗2𝑇𝑛𝑗(𝑡)=−𝑏𝜋2𝑗2𝑇𝑛𝑗(𝑛)−𝑐𝜋2𝑗2𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1). (13)
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Решение уравнения (13) определяется по формуле

𝑇𝑛𝑗(𝑡)=−𝑏𝑇𝑛𝑗(𝑛)
𝑎2

(︀
1−𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

)︀
+𝑇𝑛𝑗(𝑛)𝑒

−𝑎2𝜋2𝑗2(𝑡−𝑛)− 𝑐𝑇𝑛𝑗(𝑛+1)

𝑎2
(︀
1−𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

)︀
или

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1). (14)

Положив 𝑡=𝑛+1 в (14) для всех 𝑛=0, 1, 2, . . . , получим

𝑇𝑛𝑗(𝑛+1)=𝐸𝑗(1)𝑇𝑛𝑗(𝑛)−𝐷𝑗(1)𝑇𝑛𝑗(𝑛+1).

Отсюда с учётом 𝐷𝑗(1) ̸=−1 имеем

𝑇𝑛𝑗(𝑛+1)=
𝐸𝑗(1)𝑇𝑛𝑗(𝑛)

1+𝐷𝑗(1)
. (15)

Тогда (14) запишем как

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−
𝐷𝑗(𝑡−𝑛)
1+𝐷𝑗(1)

𝐸𝑗(1)𝑇𝑛𝑗(𝑛). (16)

Из непрерывности функции 𝑇𝑗(𝑡) по 𝑡> 0 вытекают равенства

𝑇𝑛+1,𝑗(𝑛+1)=𝑇𝑗(𝑛+1)= lim
𝑡→𝑛+1−0

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑛+1).

Следовательно, формулу (15) можно переписать в виде

𝑇𝑛+1,𝑗(𝑛+1)=
𝐸𝑗(1)𝑇𝑛𝑗(𝑛)

1+𝐷𝑗(1)
,

откуда

𝑇𝑛𝑗(𝑛)=
𝐸𝑗(1)

1+𝐷𝑗(1)
𝑇𝑛−1,𝑗(𝑛−1)=

𝐸2
𝑗 (1)

(1+𝐷𝑗(1))2
𝑇𝑛−2,𝑗(𝑛−2)= . . .=

𝐸𝑛
𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0),

или

𝑇𝑛𝑗(𝑛)=
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0).

Таким образом, решение 𝑇𝑛𝑗(𝑡), определённое формулой (16), представляется только через
𝑇0𝑗(0):

𝑇𝑛𝑗(𝑡)=

(︂
𝐸𝑗(𝑡−𝑛)−𝐷𝑗(𝑡−𝑛)

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝐸𝑛

𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑇0𝑗(0).

Равенство 𝑇0𝑗(0)= 𝑣𝑗 завершает доказательство теоремы.
Доказательство теоремы 2. 1. Пусть 𝐷𝑗(1)=−1, 𝐸𝑗(1)=0. Построим функцию 𝑇𝑗(𝑡)=

=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . , следующим образом. Функция

𝑇0𝑗(𝑡)=𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝐶0𝑗 , 𝑡∈ [0, 1),

удовлетворяет уравнению (5), где 𝑇0𝑗(0)=𝑣𝑗 и 𝐶0𝑗 — произвольное число. Так как 𝐷𝑗(1)=−1
и 𝐸𝑗(1)=0, имеет место равенство 𝑇0𝑗(1)= lim𝑡→1 𝑇0𝑗(𝑡)=𝐶0𝑗 . Легко проверить, что функция

𝑇1𝑗(𝑡)=𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝐶1𝑗 , 𝑡∈ [1, 2),

удовлетворяет уравнению (5), где 𝐶1𝑗 — произвольное число.
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В силу непрерывности функции 𝑇𝑗(𝑡) имеем

𝑇𝑗(1)=𝑇1𝑗(1)= lim
𝑡→1−0

𝑇0𝑗(𝑡)=𝑇0𝑗(1).

Равенства 𝐷𝑗(1)=−1 и 𝐸𝑗(1)= 0 дают 𝑇1𝑗(2)= lim𝑡→2 𝑇1𝑗(𝑡)=𝐶1𝑗 .
Функция

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝐶𝑛𝑗

на [𝑛, 𝑛+1), 𝑛∈N, удовлетворяет уравнению (5), где 𝐶𝑛𝑗 — произвольное число. Ясно, что
𝑇𝑗(𝑛)=𝑇𝑛𝑗(𝑛)= lim𝑡→𝑛−0 𝑇𝑛−1,𝑗(𝑡)=𝑇𝑛−1,𝑗(𝑛).

Аналогично из равенств 𝐷𝑗(1) =−1 и 𝐸𝑗(1) = 0 получим 𝑇𝑛𝑗(𝑛) = lim𝑡→𝑛+1 𝑇𝑛𝑗(𝑡) =𝐶𝑛𝑗 .
По построению функция

𝑇𝑗(𝑡)=𝑇𝑛𝑗(𝑡), 𝑡∈ [𝑛, 𝑛+1), 𝑛=0, 1, 2, . . . ,

является решением задачи (5), (6). Так как константы 𝐶0𝑗 , 𝐶1𝑗 , . . . , 𝐶𝑛𝑗 , . . . произвольные,
то задача имеет бесконечное число решений.

Пусть 𝑇𝑗(𝑡) — однопериодическое решение задачи (5), (6), тогда его можно представить
в виде

𝑇𝑗(𝑡)=𝑇0𝑗(𝑡)=𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝐶0𝑗 , 𝑡∈ [0, 1].

Поскольку функция 𝑇𝑗(𝑡) однопериодическая и 𝑇0𝑗(1) = 𝐶0𝑗 , то 𝑇0𝑗(0) = 𝑇0𝑗(1), 𝐶0𝑗(1) =
=𝑇0𝑗(0)= 𝑣𝑗 . Это показывает единственность однопериодического решения (5), (6).

Пусть 𝑇𝑗(𝑡) является двухпериодическим решением задачи (5), (6). Тогда функция 𝑇𝑗(𝑡)
на [0, 2] имеет вид

𝑇𝑗(𝑡)=

{︃
𝐸𝑗(𝑡)𝑇0𝑗(0)−𝐷𝑗(𝑡)𝑇1𝑗(1), 𝑡∈ [0, 1),

𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝐶1𝑗 , 𝑡∈ [1, 2),

где 𝑇0𝑗(0) = 𝑣𝑗 , 𝑇1𝑗(1) — произвольное число. Из периодичности 𝑇𝑗(𝑡) следует, что 𝑇𝑗(0) =
= 𝑇0𝑗(0) = 𝑇𝑗(2) =𝐶1𝑗 . Это показывает, что задача (5), (6) имеет бесконечно много двухпе-
риодических решений.

Пусть 𝑇𝑗(𝑡) — 𝑁 -периодическое решение задачи (5), (6). Функция 𝑇𝑗(𝑡) на промежутке
[0, 𝑁 ] имеет вид

𝑇𝑗(𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸𝑗(𝑡)𝑣𝑗−𝐷𝑗(𝑡)𝑇1𝑗(1), 𝑡∈ [0, 1),

𝐸𝑗(𝑡−1)𝑇1𝑗(1)−𝐷𝑗(𝑡−1)𝑇2𝑗(2), 𝑡∈ [1, 2),
...
𝐸𝑗(𝑡−𝑁+2)𝑇𝑁−1,𝑗(𝑁−2)−𝐷𝑗(𝑡−𝑁+2)𝑇𝑁−1,𝑗(𝑁−1), 𝑡∈ [𝑁−2, 𝑁−1),

𝐸𝑗(𝑡−𝑁+1)𝑇𝑁−1,𝑗(𝑁−1)−𝐷𝑗(𝑡−𝑁+1)𝑣𝑗 , 𝑡∈ [𝑁−1, 𝑁),

где 𝑇1𝑗(1), 𝑇2𝑗(2), . . . , 𝑇𝑁−1,𝑗(𝑁−1) — произвольные числа.
2. Предположим, что функция 𝑇𝑗(𝑡) является решением задачи (5), (6). Тогда соглас-

но (14) имеет место равенство

𝑇𝑛𝑗(𝑡)=𝐸𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛)−𝐷𝑗(𝑡−𝑛)𝑇𝑛𝑗(𝑛+1), 𝑡∈ [𝑛, 𝑛+1).

Отсюда при 𝑡 = 𝑛+1 с учётом 𝐷𝑗(1) = −1 имеем 𝐸𝑗(1)𝑇𝑛𝑗(𝑛) = 0 для всех 𝑛 = 0, 1, 2, . . .
Поэтому 𝑇𝑛𝑗(𝑛) = 0 для всех 𝑛= 0, 1, 2, . . . , так как 𝐸𝑗(1) ̸= 0, т.е. уравнение имеет только
тривиальное решение. Следовательно, если 𝑇𝑗(0)= 𝑣𝑗 =𝑇0𝑗(0) ̸=0, то задача (5), (6) не имеет
решения.
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Доказательство теоремы 3. Сначала докажем равномерную сходимость в любом замк-
нутом множестве Λ⊂ [0, 1]×R+ следующих рядов:

+∞∑︁
𝑗=1

𝑇𝑗(𝑡) sin(𝑗𝜋𝑥), (17)

+∞∑︁
𝑗=1

𝑇 ′
𝑗(𝑡) sin(𝑗𝜋𝑥), (18)

+∞∑︁
𝑗=1

𝜋2𝑗2𝑇𝑗(𝑡) sin(𝑗𝜋𝑥), (19)

где 𝑇𝑗(𝑡) — решение задачи (5), (6), и на [𝑛, 𝑛+1), 𝑛 = 0, 1, 2, . . . , функции 𝑇𝑗(𝑡), 𝑇 ′
𝑗(𝑡)

представляются, соответственно, в виде (7) и

𝑇 ′
𝑗(𝑡)=−

(︂
𝑎2+𝑏+𝑐

𝐸𝑗(1)

1+𝐷𝑗(1)

)︂
𝜋2𝑗2𝑒−𝑎2𝜋2𝑗2(𝑡−𝑛)

𝐸𝑛
𝑗 (1)

(1+𝐷𝑗(1))𝑛
𝑣𝑗 .

Согласно предположению имеет место равенство

𝑣𝑗 =−
2𝑣′′′𝑗
𝜋3𝑗3

, 𝑣′′′𝑗 =

1ˆ

0

𝑣′′′(𝑥) cos(𝑗𝜋𝑥) 𝑑𝑥, 𝑗=1, 2, . . .

Из непрерывности функции 𝑣′′′(𝑥) вытекает сходимость ряда
∑︀+∞

𝑗=1(𝑣
′′′
𝑗 )

2. Отсюда с учётом
неравенства Коши–Буняковского имеем⃒⃒⃒⃒

⃒
+∞∑︁
𝑗=1

𝑗2𝑣𝑗

⃒⃒⃒⃒
⃒= 2

𝜋3

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑣′′′𝑗
𝑗

⃒⃒⃒⃒
⃒<+∞. (20)

Поскольку 0⩽ 1−𝑒−𝑎2𝜋2𝑗2𝑡⩽ 1, то для всех 𝑡∈ [0,∞) и 𝑗 ∈N справедливы неравенства

|𝐸𝑗(𝑡)|⩽ 1+
|𝑏|
𝑎2
, |𝐷𝑗(𝑡)|<

|𝑐|
𝑎2
. (21)

Заметим, что lim𝑗→∞𝐷𝑗(1)= 𝑐/𝑎
2, поэтому при 𝐷𝑗(1) ̸=−1 и 𝑐 ̸=−𝑎2 существует число 𝜌> 0

такое, что
|1+𝐷𝑗(1)|⩾ 𝜌, 𝑗 ∈N. (22)

Пользуясь неравенствами (21) и (22), получим равномерные оценки для 𝑇𝑗(𝑡) и 𝑇 ′
𝑗(𝑡):

|𝑇𝑗(𝑡)|⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑛
|𝑣𝑗 |, 𝑡∈ [𝑛, 𝑛+1), (23)

|𝑇 ′
𝑗(𝑡)|⩽𝐶2

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑛
𝜋2𝑗2|𝑣𝑗 |, 𝑡∈ [𝑛, 𝑛+1), (24)

где

𝐶1=1+
|𝑏|
𝑎2

+
|𝑐|
𝑎2

1+ |𝑏|/𝑎2

𝜌
, 𝐶2= 𝑎2+ |𝑏|+ |𝑐|1+ |𝑏|/𝑎2

𝜌
.
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Пусть 𝑚=1+sup(𝑥,𝑡)∈Λ 𝑡. Тогда из (23) и (24) для всех (𝑥, 𝑡)∈Λ ряды (17)–(19) оцени-
ваются следующим образом:⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑇𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚+∞∑︁
𝑗=1

|𝑣𝑗 |,

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝑇 ′
𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶2

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚
𝜋2

+∞∑︁
𝑗=1

𝑗2|𝑣𝑗 |,

⃒⃒⃒⃒
⃒
+∞∑︁
𝑗=1

𝜋2𝑗2𝑇𝑗(𝑡)sin(𝑗𝜋𝑥)

⃒⃒⃒⃒
⃒⩽𝐶1

(︂
1+ |𝑏|/𝑎2

𝜌

)︂𝑚
𝜋2

+∞∑︁
𝑗=1

𝑗2|𝑣𝑗 |.

Отсюда и из (20) получаем равномерную сходимость рядов (17)–(19) в любом замкнутом
множестве Λ⊂ [0, 1]×R+.

Таким образом, функция 𝑢(𝑥, 𝑡)=
∑︀+∞

𝑗=1 𝑇𝑗(𝑡) sin(𝑗𝜋𝑥) является непрерывной на множестве
Ω= [0, 1]×R+ и частные производные 𝑢𝑡 =

∑︀+∞
𝑗=1 𝑇

′
𝑗(𝑡) sin(𝑗𝜋𝑥), 𝑢𝑥𝑥 =

∑︀+∞
𝑗=1 𝜋

2𝑗2𝑇𝑗(𝑡) sin(𝑗𝜋𝑥)
существуют и являются непрерывными на Ω с возможным исключением в точках (𝑥, [𝑡])∈Ω,
где односторонние производные существуют по второму аргументу.

Так как 𝐷𝑗(1) ̸= −1 для каждого 𝑗 ∈ N, то по теореме 1 задача (5), (6) имеет един-
ственное решение 𝑇𝑗(𝑡) для каждого 𝑗 ∈N. Следовательно, функция 𝑢(𝑥, 𝑡), определяемая
формулой (4), удовлетворяет равенствам (1)–(3) в Ω с возможным исключением в точках
(𝑥, [𝑡])∈Ω и является единственным решением задачи (1)–(3).

Доказательство теоремы 4. 1. Пусть 𝐷𝑗0(1) =−1 и 𝐸𝑗0(1) = 0 для некоторого 𝑗 = 𝑗0.
Тогда 𝐷𝑗(1)>−1 при 𝑗 < 𝑗0 и 𝐷𝑗(1)<−1 при 𝑗 > 𝑗0. Отсюда имеем

|1+𝐷𝑗(1)|⩾ 𝜌1

для некоторого числа 𝜌1> 0 и для всех 𝑗 ∈N∖{𝑗0}.
По теореме 1 задача (5), (6) разрешима для 𝑗 ̸= 𝑗0 и решение 𝑇𝑗(𝑡) при 𝑗 ̸= 𝑗0 имеет

вид (7). Поскольку 𝐷𝑗0(1) =−1 и 𝐸𝑗0(1) = 0, то по п. 1 теоремы 2 задача (5), (6) имеет
бесконечно много решений. Обозначим через 𝑇𝑗0(·) решение задачи (5), (6) для 𝑗= 𝑗0. Тогда
из (4) решение краевой задачи (1)–(3) имеет вид (12). Равномерная сходимость этого ряда к
непрерывной функции 𝑢(𝑥, 𝑡) в любом замкнутом множестве Λ⊂ [0, 1]×R+ и существование
непрерывных частных производных 𝑢𝑡 и 𝑢𝑥𝑥 на Ω с возможным исключением в точках
(𝑥, [𝑡])∈Ω, где односторонние производные существуют по второму аргументу, доказываются
аналогично как в доказательстве теоремы 3.

2. Если 𝐷𝑗0(1)=−1, 𝐸𝑗0(1) ̸=0 и 𝑣𝑗0 ̸=0, то по теореме 2 задача (5), (6) не имеет решения
при 𝑗= 𝑗0. Следовательно, согласно (4), краевая задача (1)–(3) не имеет решения.
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In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant argu-
ments is studied. By using the separation of variables method, the considered BVP is reduced to the
investigation of the existence conditions of solutions of initial value problems for differential equation
with piecewise constant arguments. Existence conditions of infinitely many solutions or emptiness for
considered differential equation are established and explicit formula for these solutions are obtained.
Several examples are given to illustrate the obtained results.
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