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Abstract. The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic
liquid are investigated. It is shown that for certain values of the parameters included in the equations of the
system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is
solved based on the feedback principle.
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1. INTRODUCTION. PROBLEM STATEMENT

Let D ⊂ Rn be a bounded region with boundary ∂D of class C∞. Let’s consider the following model of
viscoelastic incompressible fliud flow inD × R:

(λ−∇2)ut = ν∇2u−∇p, ∇u = 0; (1)

u(x, t) = 0, (x, t) ∈ ∂D × R; u(x, 0) = u0, x ∈ D,

where u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)) and p are the velocity and pressure vectors, respectively. System
(1) is a linearization of the system

(λ−∇2)ut = ν∇2u− (u∇)u−∇p, ∇u = 0,

obtained by A.P. Oskolkov [1] to describe the flow of viscous liquids possessing elasticity property. Redefining∇p
by p, we write the system (1) in the following form

(λ−∇2)ut = ν∇2u− p, ∇(∇)u = 0. (2)

Here, the parameter λ characterizes elastic properties, and ν characterizes viscous properties. In [2], it was
shown that the parameter λ can take negative values. In [3], a physical model of fluid flow with negative viscosity
was constructed, so we will assume further that ν ∈ R.

It has been experimentally shown that the flow of polymer solutions and melts has the property of instability
(see the review [4] and the bibliography therein). This instability can have a significant impact on the material
processing technologies and the quality of final products. One of the causes of this instability is inlet pulsations
(“inlet instability”). Note that polymer solution and melts are viscoelastic fluids. We will investigate the instability
and stability of the flow of an incompressible viscoelastic fluid described by system (2) with stochastic initial data.
As an initial condition, we choose a random variable

η(0) = η0, (3)

and we will consider the system (2) as a stochastic equation of the Sobolev type

Lη̊ = Mη. (4)
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The solution of the stochastic equation is a stochastic process that is not differentiable at any point. Therefore,
as the derivative of the stochastic process η we will consider the Nelson–Glicklich derivative η̊ [5]. At present, a
large number of works devoted to the study of stochastic equations of Sobolev type are known. Let us note some of
them. The solvability of the Cauchy problem for equation (4) is studied in [6] (in the case of a relatively bounded
operator), [7] (in the case of a relatively sectorial operator) and [8] (in the case of a relatively radial operator). In
[9], stochastic linear equations of Sobolev type of high order are considered; in [10, 11], the “initial-finite” problem
for equation (4) is investigated; in [12], the stability of equation (4) is studied. In [13–15], numerical experiments
on finding stable and unstable solutions of stochastic nonclassical equations that can be represented in the form (4)
were carried out.

The deterministic system (2) has been studied in various aspects. The study of its solvability was started in [1]
under the condition that the parameters λ, ν ∈ R+. In [16], the question of existence of solutions was solved using
the phase space method at λ ∈ R\{0} and ν ∈ R+; the existence of an exponential dichotomy of solutions was
shown. In [17], the initial-final problem for a linear system of Oskolkov equations was studied.

The purpose of this paper is to study the instability and stability of solutions of the stochastic system (2) in the
case when the parameters λ, ν ∈ R\{0}, and to solve the problem of stabilization of unstable solutions. In Section
2, we give abstract results on the existence of solutions of equation (4) and their stability. In Section 3, the system
(2) in spaces of randomK-values is considered, and the solvability of the stochastic system (2) is shown. In Section
4, the existence of stable and unstable invariant spaces is proved, the problem of stabilization of unstable solutions
by the feedback principle is solved.

2. INVARIANT SPACES OF THE STOCHASTIC EQUATION OF SOBOLEV TYPE

ByL2 we denote the space of random variables ξ with zeromathematical expectation and finite variance, and by
CL2 we denote the space of continuous stochastic processes η. We fix η ∈ CL2 and t ∈ I, where I is some interval,
and through N η

t we denote the σ-algebra generated by η and Eη
t = E(·|N η

t ). Let us define the Nelson–Glicklich
derivative of the stochastic process η at the point t ∈ I as the limit

η̊( · , ω) = 1

2

[
lim

∆t→+0
Eη
t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→+0
Eη
t

(
η(t, ·)− η(t−∆t, ·)

∆t

)]
,

if it converges in the uniform metric on R. By ClL2 we denote the space of stochastic processes whose Nelson–
Glicklich derivatives are a.s. (almost surely) continuous on I up to order l inclusive.

Let U and F be real separable Hilbert spaces, and let {φk} and {ψk} denote bases in U and F, respectively.
Choose a sequence of random variables {ξk} ⊂ L2 ({ζk} ⊂ L2), such that ∥ξk∥L2 ≤ const (∥ζk∥L2 ≤ const). The
elements of the space UKL2 (FKL2) of (U-valued (F-valued)) random K-variables are vectors ξ =

∑∞
k=1 λkξkφk

(ζ =
∑∞

k=1 λkζkψk), where the sequence K = {λk} ⊂ R+ satisfies
∑∞

k=1 λ
2
k < +∞. The following holds:

Lemma 1 [18]. The operator A ∈ L(U;F) (linear and continuous) if and only if the operator A ∈ L(UKK2;FKL2).
Let the operators L ∈ L(UKL2;FKL2),M ∈ Cl(UKL2;FKL2). Denote by

ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)}

the L-resolvent set, and by σL(M) = C \ ρL(M) the L-spectrum of the operator M . If the operator M is (L, σ)-
bounded, i.e., its L-spectrum is bounded, then there exist projectors

P =
1

2πi

∫

γ

(µL−M)−1Ldµ ∈ L(UKL2), Q =
1

2πi

∫

γ

L(µL−M)−1 dµ ∈ L(FKL2). (1)

Here, the contour γ ⊂ C bounds a region containing σL(M).
The projectors (5) split the spaces UK L2 = U0

K L2 ⊕ U1
K L2 and FKL2 = F0

KL2 ⊕ F1
KL2, where

U0
KL2 (U1

KL2) = kerP (imP ), F0
KL2 (F1

KL2) = kerQ (imQ). Let Lk (Mk) denote the restriction of the operator
L (M) to Uk

KL2, k = 0, 1. The operators Lk(Mk) ∈ L(Uk
KL2,Fk

KL2), k = 0, 1; there exist operators M−1
0 ∈

L(F0
KL2,U0

KL2), L−1
1 ∈ L(F1

KL2,U1
KL2). Consider the operators H = L−1

0 M0 and S = L−1
1 M1. If the operator

M is (L, p)-bounded andH ≡ O, p = 0 orHp ̸= O,Hp+1 ≡ O, then it is called an (L, p)-bounded operator.
We call a stochastic K-process η ∈ C1(J ;UKL2) is called a solution of equation (4) if a.s. all its trajectories

satisfy equation (4) at all t ∈ J . A solution η = η(t) of equation (4) a solution of the Cauchy problem (3), (4) if
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equality (3) holds for some random L-variable η0 ∈ ULL2. The set P ⊂ ULL2 is called the stochastic phase space
of equation (4) if a.s. any trajectory of the solution η = η(t) lies in P pointwise, i.e., η(t) ∈ P for all t ∈ J , and for
a.e. η0 ∈ P there exists a solution to the problem (3), (4).

Theorem 1 [7]. Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N. Then the group

U t =
1

2πi

∫

γ

RL
µ (M)eµt dµ

is the holomorphic resolving group of equation (4); the subspace U1
KL2 is the phase space of equation(4).

Definition. An invariant subspace 1Is(u) ⊂ P is called the stable (unstable) invariant space of equation (4) if the
condition

∥ηs(u)(t)∥UKL2
≤ Ne−ν(s−t)∥ηs(u)(s)∥UKL2

holds for s ≥ t (t ≥ s), ηs(u) = ηs(u)(t) ∈ I1, and some N,α ∈ R+. If the phase space splits into a direct sum
P = I1 ⊕ I2, then the solutions η = η(t) of equation (4) have an exponential dichotomy.

Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N and the relative spectrum has the form

σL(M) = σL
s (M)⊕ σL

u (M), (6)

where
σL
s (M) = {µ ∈ σL(M) : Reµ < 0} ̸= ∅, σL

u (M) = {µ ∈ σL(M) : Reµ > 0} ̸= ∅.

Then there are projectors

Pl(r) =
1

2πi

∫

γl(r)

RL
µ (M) dµ ∈ L(UKL2),

where the contour γl(r) lies in the left (right) half-plane of the complex plane and bounds a part of the L-spectrum
of the operatorM σL

s(u)(M). Let us denote by I(s(u)) = imPl(r).
Let the operatorM be (L, p)-bounded and condition (6) be satisfied, then U1

KL2 = Is ⊕ Iu. Equation (4) will
be considered as a system

Hη̊0 = η0, (7)
Lsη̊

s = Msη
s, (8)

Luη̊
u = Muη

u. (9)

Remark 1. The operator M is (L, p)-bounded, so the operator H is nilpotent of degree p. Then the solution
of equation (7) η0 = 0 and the stochastic process η = ηs + ηu is a solution of equation (4), where ηs and ηu

are solutions of equations (8) and (9), respectively. Thus, the question of stability and instability of solutions of
equation (4) is reduced to the study of stability and instability of solutions of ηs and ηu.

Theorem 2. Let the operatorM be (L, p)-bounded, p ∈ {0} ∪ N and condition (6) be satisfied, then the solutions
η = η(t) of equation (4) have an exponential dichotomy.

Proof. The solving groups of equations (8) and (9) have the form

U t
l =

1

2πi

∫

γl

(µLs −Ms)
−1Lse

µt dµ, U t
r =

1

2πi

∫

γr

(µLu −Mu)
−1Lue

µt dµ.

Let’s denote α = −maxµ∈σL
l (M)Reµ and β = minµ∈σL

r (M)Reµ. Then

∥U t
l ∥L(UKL2) ≤ e−αt

∫

γl

∥(µLs −Ms)
−1Ls∥L(UKL2) |dµ| ≤ Nle

−αt, (10)

∥U t
r∥L(UKL2) ≤ eβt

∫

γr

∥(µLr −Mr)
−1Lr∥L(UKL2) |dµ| ≤ Nre

βt. (11)
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Let s ≥ t. Then the solution ηs of equation (8) can be written as ηs(t) = Us−t
l ηs(s). By virtue of (10) we have

the relations
∥ηs(t)∥UKL2

= ∥Us−t
l ηs(s)∥UKL2

≤ Nle
−α(s−t)∥ηs(s)∥UKL2

.

Further, let t ≥ s. Then the solution ηu of equation (9) is: ηu(t) = U t−s
r ηu(s). By virtue of (11) we have

∥ηu(t)∥UKL2
= ∥U t−s

r ηu(s)∥UKL2
≤ Nre

β(t−s)∥ηu(s)∥UKL2
= Nre

−β(s−t)∥ηs(s)∥UKL2
.

The theorem is proved.
Corollary 1. By the conditions of Theorem 2, any trajectory of the solution ηs(u) = ηs(u)(t) of equation (8) (equation

(9)) a.c. lies in the stable (unstable) invariant space Is(u) pointwise, i.e., ηs(u)(t) ∈ Is(u) at all t ∈ R.
Remark 2. If σL

s(u)(M) = ∅, то Is(u) = {0}.

3. STOCHASTIC SYSTEMTYPE

We will consider the system (2) in the spaces of random K-values. For this purpose we denote by
H2 = (W 2

2 (D))n, H̊1 = (W̊ 2
2 (D))n, L2 = (L2(D))n. The closure {u ∈ C∞ : ∇u = 0} of the lineal L2 is denoted

byHσ, and there exists a splittingL2 = Hσ⊕Hπ, whereHπ is an orthogonal complement toHσ, andΠ: L2 → Hπ

is an otroprojector corresponding to this complement. The contraction of the projectorΠ ontoH2 ∩ H̊1 ⊂ L2 is a
continuous operatorΠ: H2 ∩ H̊1 → H2 ∩ H̊1. Let us represent the spaceH2 ∩ H̊1 = H2

σ ⊕H2
π, where kerΠ = H2

σ,
imΠ = H2

π. Let us denoteΣ = I−Π. Let us put U = H2
σ ×H2

π ×Hπ and F = Hσ ×Hπ ×Hπ. The element u ∈ U
has the form u = (uσ, uπ, p).

Lemma 2 [2]. The formulaA = (−∇2)n : H2∩H̊1 → L2 defines a linear continuous operator with positive discrete
spectrum σ(A), condensing to the point +∞, and the mapping A : H2

σ(π) → H2
σ(π) is bĳective.

The formulaB : u → −∇(∇u) defines a linear continuous surjective operatorB : H2∩H̊1 → H2
π,with kerB = H2

σ.

The spacesW 2
2 (D), L2(D) are separable Hilbert spaces, so the spaces U, F are separable Hilbert spaces as their

finite products. Let us construct the spacesUKL2 and FKL2. The operators L,M ∈ L(UKK2;FKL2) are defined as

L =



Σ(λI+A) O O

O Π(λI+A) O
O O O


, M =



−νΣA O O

O −νΠA −Π
O ΠB O


.

Then the stochastic system of equations (2) can be viewed as a stochastic linear equation (4). The following is true
Lemma 3. Operators L,M ∈ L(UKK2;FKL2).
Proof. Clearly, the operators L,M ∈ L(U;F), with imL = H2

σ × H2
π × {0}, kerL = {0} × {0} × H2

π, so by
virtue of lemma 1, L,M ∈ L(UKK2;FKL2).

Lemma 4. For any λ ∈ R \ σ(A), ν ∈ R the operator M is (L, 1)-limited.
Proof. In [2] it is shown that the operatorM is (L, 1)-bounded if the operators L,M : U → F, so by virtue of

lemma 1, the statement of this lemma follows.
Theorem 3. For any λ ∈ R \ σ(A), ν ∈ R and for any random variable η0 ∈ U1

KL2 there exists a solution to
problem (3), (4) which is of the form η(t) = U tη0, t ∈ J .

Proof. By virtue of lemmas 3 and 4„ the stochastic system of equations (2) satisfies all the requirements of
Theorem 1. The phase space has the form

U1
KL2 =

{
UKL2, if λ ̸= νk for k ∈ N;
η ∈ UKL2 : ⟨ · , φk⟩φk = 0, if λ = νk,

where νk is the spectrum of the operator Ã : H2
π → H2

π, that is the contraction of the operator A onto H2
π. The

resolving group can be represented as

U t =




∑
νk ̸=λ

exp
{

ννk
νk − λ

}
⟨·, φk⟩φk O O

O O O
O O O


.
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4. EXPONENTIAL DICHOTOMIES AND STABILIZATION OF SOLUTIONS OF A
STOCHASTIC SYSTEMOF EQUATIONS

The relative spectrum has the form σL(M) =
{

ννk

(νk−λ)

}
. Note that the spectrum σ(Ã) = {νk} is positive

discrete finite and condensed to the point+∞ (Solonnikov–Vorovich–Yudovich theorem). The following holds
Theorem 4. For any λ ∈ R\σ(A), λ > ν1 and ν ∈ R\{0}, solutions η = η(t) of the stochastic system of equations

(2) have an exponential dichotomy.
Proof. Letλ ∈ R\σ(A) andλ > ν1, thenσL(M) = σL

1 (M)∪σL
2 (M), whereσL

1 (M) = {µ ∈ σL(M) : νk < λ},
σL
2 (M) = {µ ∈ σL(M) : νk > λ}. This spectral decomposition is accompanied by invariant spaces

I1 = {η ∈ U1
KL2 : ⟨ · , φk⟩φk = 0, νk < λ}, I2 = {η ∈ U1

KL2 : ⟨ · , φk⟩φk = 0, νk > λ}.

The space I1 is finite-dimensional, dim I1 = max{k : νk < λ}, , and the space I2 is infinite-dimensional,
codim I2 = dim I1 + dimkerL.

If ν > 0 (ν < 0), then σL
1(2)(M) lies in the left half-plane and σL

2(1)(M) lies in the right half-plane of the
complex plane. By virtue of Theorem 2, I1(2) is a stable invariant space, I2(1) is an unstable invariant space, and
the solutions of the stochastic system of equations (2) have exponential dichotomy. The theorem is proved.

Corollary 2. If λ < ν1 and ν < 0, then the phase space of the stochastic system of equations (2) coincides with the
stable invariant space. If λ < ν1 and ν > 0, then the phase space of the stochastic system of equations (2) coincides
with the unstable invariant space.

Let us proceed to the problem of stabilization of unstable solutions. For this purpose, we will consider equation
(4) in the form of the system (7)–(9). For definiteness, let us assume ν > 0 and λ > ν1. It follows from Theorem
4 that Is = I1 and Iu = I2. The space Is is a stable invariant space, so for the solutions ηl = ηl(t) of equation (8)
the following is true

lim
t→+∞

∥ηl(t)∥UKL2
= 0.

By virtue of Remark 1, consider the following stabilization problem. It is required to find such a stochastic
process χ, so that for the solutions of Eq.

Lrη̊r = Mrηr + χ (12)

the following condition was satisfied

lim
t→+∞

∥ηr(t)∥UKL2
= 0. (13)

We will find χ using the inverse of χ = Bηr, whereB is some linear bounded operator. Equation (12) will take
the form

Lrηr = Mrηr +Bηr = (Mr +B)ηr.

Let’s findm = maxµk ∈ σL
2 (M){µk} and the number n of the obtained maximum value. Let’s put

B = −ν(ε+ νn)I,

where ε can be chosen as small as desired. Then the relative spectrum

σLu(Mu +B) =

{
ννk − ν(ε+ νn)

λ− νk

}

lies in the left half-plane, of the complex plane and by virtue of Theorem 2, equality (13) is satisfied for the solution
of ηr = ηr(t).
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It is planned to continue studies on stability and instability of solutions for stochastic semilinear equations of
Sobolev type with a relatively spectral operator. It is planned to carry out numerical experiments on finding stable
and unstable solutions of the stochastic system (2) and stabilization of unstable solutions.

The author expresses her sincere gratitude to Prof. G. A. Sviridyuk for his interest in the work and useful
discussions.
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