DIFFERENTIAL EQUATIONS, 2025, Vol. 61, No. 1, pp. 11—17

PARTIAL DIFFERENTIAL EQUATIONS

INSTABILITY AND STABILIZATION OF SOLUTIONS OF A
STOCHASTIC MODEL OF VISCOELASTIC FLUID DYNAMICS

© 2025 O. G. Kitaeva*

South Ural State University, Chelyabinsk, Russia
*e-mail: kitaevaog@susu.ru

Recieved May 22, 2024
Revised May 22, 2024
Accepted October 31, 2024

Abstract. The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic
liquid are investigated. It is shown that for certain values of the parameters included in the equations of the
system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is
solved based on the feedback principle.
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1. INTRODUCTION. PROBLEM STATEMENT

Let D C R™ be a bounded region with boundary 9D of class C>°. Let’s consider the following model of
viscoelastic incompressible fliud flow in D x R:

A= VHu, = vV3u —Vp, Vu=0; (1)
u(z,t) =0, (x,t)€dD xR; wu(z,0)=ug, x€D,

where u(z,t) = (u1(z,t), us(z,t),...,uy(x,t)) and p are the velocity and pressure vectors, respectively. System
(1) is a linearization of the system

(A = VHu, = vV2u — (uV)u — Vp, Vu =0,

obtained by A.P. Oskolkov [1] to describe the flow of viscous liquids possessing elasticity property. Redefining Vp
by p, we write the system (1) in the following form

A= VHuy = vV3u—p, V(V)u=0. ()

Here, the parameter \ characterizes elastic properties, and v characterizes viscous properties. In [2], it was
shown that the parameter A can take negative values. In [3], a physical model of fluid flow with negative viscosity
was constructed, so we will assume further that v € R.

It has been experimentally shown that the flow of polymer solutions and melts has the property of instability
(see the review [4] and the bibliography therein). This instability can have a significant impact on the material
processing technologies and the quality of final products. One of the causes of this instability is inlet pulsations
(“inlet instability”). Note that polymer solution and melts are viscoelastic fluids. We will investigate the instability
and stability of the flow of an incompressible viscoelastic fluid described by system (2) with stochastic initial data.
As an initial condition, we choose a random variable

n(0) = o, 3)
and we will consider the system (2) as a stochastic equation of the Sobolev type
L = Mn. 4)
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The solution of the stochastic equation is a stochastic process that is not differentiable at any point. Therefore,
as the derivative of the stochastic process 1 we will consider the Nelson—Glicklich derivative 7 [5]. At present, a
large number of works devoted to the study of stochastic equations of Sobolev type are known. Let us note some of
them. The solvability of the Cauchy problem for equation (4) is studied in [6] (in the case of a relatively bounded
operator), [7] (in the case of a relatively sectorial operator) and [8] (in the case of a relatively radial operator). In
[9], stochastic linear equations of Sobolev type of high order are considered; in [10, 11], the “initial-finite” problem
for equation (4) is investigated; in [12], the stability of equation (4) is studied. In [13—15], numerical experiments
on finding stable and unstable solutions of stochastic nonclassical equations that can be represented in the form (4)
were carried out.

The deterministic system (2) has been studied in various aspects. The study of its solvability was started in [1]
under the condition that the parameters \, v € R.. In [16], the question of existence of solutions was solved using
the phase space method at A € R\{0} and v € R_; the existence of an exponential dichotomy of solutions was
shown. In [17], the initial-final problem for a linear system of Oskolkov equations was studied.

The purpose of this paper is to study the instability and stability of solutions of the stochastic system (2) in the
case when the parameters A, v € R\{0}, and to solve the problem of stabilization of unstable solutions. In Section
2, we give abstract results on the existence of solutions of equation (4) and their stability. In Section 3, the system
(2) in spaces of random K-values is considered, and the solvability of the stochastic system (2) is shown. In Section
4, the existence of stable and unstable invariant spaces is proved, the problem of stabilization of unstable solutions
by the feedback principle is solved.

2. INVARIANT SPACES OF THE STOCHASTIC EQUATION OF SOBOLEV TYPE

By L, we denote the space of random variables £ with zero mathematical expectation and finite variance, and by
CL; we denote the space of continuous stochastic processes 7. We fixn € CLs and ¢ € J, where J is some interval,
and through N,” we denote the o-algebra generated by n and E/ = E(-|N"). Let us define the Nelson—Glicklich
derivative of the stochastic process n at the point ¢ € J as the limit

ﬁ(.w)l{ lim E?<77(t+Atw)n(tw))+ lim E?<n(t,~)n(tﬁtw))],

2 | At—+0 At At—+0 At

if it converges in the uniform metric on R. By C'L, we denote the space of stochastic processes whose Nelson—
Glicklich derivatives are a.s. (almost surely) continuous on J up to order [ inclusive.

Let 4l and § be real separable Hilbert spaces, and let {¢x} and {v;} denote bases in &l and §, respectively.
Choose a sequence of random variables {£;,} C Lo ({Cx} C Lo), such that ||§x||r, < const (||Ck|lL, < const). The
elements of the space UgL, (FkLy) of (4l-valued (§F-valued)) random K-variables are vectors & = Y7 | Ai&rr
(¢ = Y"n2, MCrtbr), where the sequence K = {\;} C Ry satisfies Y ;- | A2 < +oo. The following holds:

Lemma 1 [18]. The operator A € L(L;F) (linear and continuous) if and only if the operator A € L(UgKs; FxLo).

Let the operators L € £(UgLy; FxkLy), M € Cl(UgLy; FxLy). Denote by

pH (M) ={peC: (uL — M)~ € L(F W)}

the L-resolvent set, and by o' (M) = C \ pL(M) the L-spectrum of the operator M. If the operator M is (L, o)-
bounded, i.e., its L-spectrum is bounded, then there exist projectors

1 1
P [l =My Ldpe L), Q=5 [ LuL =2 dp € £(FiLa). (1)

Y Y

Here, the contour v C C bounds a region containing o= (M).

The projectors (5) split the spaces Ug Lo = U} Ly & Uk Ly and FxLy = FyL, & FLa, where
UgL, (UxLy) = ker P (im P), F§Ly (FkL2) = ker @ (im Q). Let L;, (Mj,) denote the restriction of the operator
L (M) to ULy, k = 0,1. The operators Ly, (M) € L(UfLy,FiLy), k = 0, 1; there exist operators M, ' €
L(FYLy, UgLy), L7* € L£(FiLy, UxLy). Consider the operators H = Ly M, and S = L' M;. If the operator
M is (L, p)-bounded and H = Q, p = 0 or H? # Q, HP*! = Q, then it is called an (L, p)-bounded operator.

We call a stochastic K-process n € C*(J;UgLs) is called a solution of equation (4) if a.s. all its trajectories
satisfy equation (4) at all t € 7. A solution n = n(t) of equation (4) a solution of the Cauchy problem (3), (4) if
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equality (3) holds for some random L-variable 79 € UpLs. The set P C ULy is called the stochastic phase space
of equation (4) if a.s. any trajectory of the solution = 7(¢) lies in P pointwise, i.e., n(t) € Pforallt € J, and for
a.e. 19 € P there exists a solution to the problem (3), (4).

Theorem 1 [7]. Let the operator M be (L, p)-bounded, p € {0} UN. Then the group

1

Ut = _——
271

/Rﬁ(M)e“t du
5

is the holomorphic resolving group of equation (4); the subspace UxLy is the phase space of equation(4).
Definition. An invariant subspace 115(*) c P is called the stable (unstable) invariant space of equation (4) if the
condition

17 (1) oyt < Nem =0 ") (5) g,

holds for s > ¢ (t > s), *) = n*(W(¢) € I', and some N, a € R,. If the phase space splits into a direct sum
P = I' @ I2, then the solutions = 7(t) of equation (4) have an exponential dichotomy.
Let the operator M be (L, p)-bounded, p € {0} U N and the relative spectrum has the form

ot(M) = o7 (M) @ oy (M), (6)
where
ocl(M)y={uco(M):Reu<0}#2, ol(M)={pco(M):Rep>0}+a2.
Then there are projectors
1 L
Py = i / R;(M)du € L(UgLz),
Vi)

where the contour v;(,.) lies in the left (right) half-plane of the complex plane and bounds a part of the L-spectrum
of the operator M o, (M). Let us denote by 16W) = im Py,..

Let the operator M be (L, p)-bounded and condition (6) be satisfied, then UgLy = I¢ & I“. Equation (4) will
be considered as a system

Hi)’ =1, (7
Len® = Myn®, ®)
Lo = Myn®. )

Remark 1. The operator M is (L, p)-bounded, so the operator H is nilpotent of degree p. Then the solution
of equation (7) n° = 0 and the stochastic process n = n°® + n* is a solution of equation (4), where n°* and n*
are solutions of equations (8) and (9), respectively. Thus, the question of stability and instability of solutions of
equation (4) is reduced to the study of stability and instability of solutions of ® and n*.

Theorem 2. Let the operator M be (L, p)-bounded, p € {0} UN and condition (6) be satisfied, then the solutions
n = n(t) of equation (4) have an exponential dichotomy.

Proof. The solving groups of equations (8) and (9) have the form

1 1
Ul = — /(MLS — M) 'Leettdpy, U= _-— /(uLu — M) Lye!t dp.
211 271
ol

Tr

Let’s denote v = — max,,c,z(5s) Re pand 3 = min ¢,z (ar) Re pu. Then
10/ | 2oty < e / [(Ls — M)~ Ll £ qugrs) |dul < Nee™, (10)
"
1UF N e qugtay < €™ / (L = M) ™" Ly || £(ugLo) ldul < Npe. (11

Ir

DIFFERENTIAL EQUATIONS Vol. 61 No. 12025

13



14 KITAEVA

Let s > ¢. Then the solution 7° of equation (8) can be written as n°(t) = U, f*tns(s). By virtue of (10) we have
the relations

||77$(t)||UKL2 = ”UlSitns(S)HUKLz < Nle_a(s_t)Hns(s)HUKLz'
Further, let ¢ > s. Then the solution % of equation (9) is: n“(t) = Ut=*n%(s). By virtue of (11) we have

17Ol s = 1T 0" () lvse Lo < Noe® 0" (8) v o = Nee P 10%(5) U L, -

The theorem is proved.
Corollary 1. By the conditions of Theorem 2, any trajectory of the solution n**) = 1°(") () of equation (8) (equation
(9)) a.c. lies in the stable (unstable) invariant space I°(") pointwise, i.e., n°("”) (t) € I*") at all t € R.

Remark 2. IfasL(u)(M) = 2,10 P = {0}.

3. STOCHASTIC SYSTEMTYPE

We will consider the system (2) in the spaces of random K-values. For this purpose we denote by
H2 = (W2(D))", H' = (W2(D))", L2 = (Ly(D))™. The closure {uz. € C>: Vu = 0} of the lineal .2 is denoted
by H,, and there exists a splitting L2 = H, @ H,, where H,; is an orthogonal complement to H,,, and II: L? — H,
is an otroprojector corresponding to this complement. The contraction of the projector IT onto H2 NH! c L% isa
continuous operator IT: H2 NH! — H2NH!. Let us represent the space H2 NH' = H2 & H2, where ker IT = H2,
imIl = H2. Let us denote ¥ = I —1II. Letus put ¢ = H2 x H2 x H, and § = H, x H, x H,.. The element u € &
has the form v = (ug, Ur, p).

Lemma 2 [2]. Theformula A = (—V2)": H2NH! — 12 defines a linear continuous operator with positive discrete

spectrum o (A), condensing to the point +0o, and the mapping A Hi n Hi () is bijective.

The formula B: u — —V (Vu) defines a linear continuous surjective operator B: H2NH' — H2, withker B = H2.

The spaces W3 (D), Lo(D) are separable Hilbert spaces, so the spaces 4, § are separable Hilbert spaces as their
finite products. Let us construct the spaces UgL, and FgL,. The operators L, M € £(UgKz; FxLs) are defined as

S(AL+ A) 0) 0 VXA O O
L= 0 A +A4) 0|, M= O —uIA -1
0 0 0 0) B O

Then the stochastic system of equations (2) can be viewed as a stochastic linear equation (4). The following is true

Lemma 3. Operators L, M € L(UgKsy; FxLo).

Proof. Clearly, the operators L, M € L(;F), with im L = H2 x HZ x {0}, ker L = {0} x {0} x HZ, so by
virtue of lemma 1, L, M € L(UgKz; FxLs).

Lemma 4. Forany A € R\ 0(A), v € R the operator M is (L, 1)-limited.

Proof. In [2] it is shown that the operator M is (L, 1)-bounded if the operators L, M : {1 — §, so by virtue of
Ilemma 1, the statement of this lemma follows.

Theorem 3. Forany A € R\ o(A), v € R and for any random variable ny € UgLy there exists a solution to
problem (3), (4) which is of the form n(t) = Ulng, t € J.

Proof. By virtue of lemmas 3 and 4,, the stochastic system of equations (2) satisfies all the requirements of
Theorem 1. The phase space has the form

UlL, — UkLs, if A 7é v fork € N;
K2 — .
UGUKLQS <’>90k>50k =0, lf)\:Vk,

where v, is the spectrum of the operator A: H2 — H?2, that is the contraction of the operator A onto H2. The
resolving group can be represented as

vv
> eof 2o © o
t Vk#)\
U= O O O
O O O
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4. EXPONENTIAL DICHOTOMIES AND STABILIZATION OF SOLUTIONS OF A
STOCHASTIC SYSTEM OF EQUATIONS

The relative spectrum has the form o*(M) = { (U: ’fA) } Note that the spectrum o(A) = {v;} is positive
discrete finite and condensed to the point +oc (Solonnikov—Vorovich—Yudovich theorem). The following holds
Theorem 4. Forany A € R\c(A), A > vy and v € R\{0}, solutions n = n(t) of the stochastic system of equations
(2) have an exponential dichotomy.
Proof. Let A € R\c(A)and \ > vy, theno’ (M) = oF (M)Uck (M), where ot (M) = {u € oL (M) : vj, < \},

ok (M) = {u € oL (M) : v, > \}. This spectral decomposition is accompanied by invariant spaces

I'={neUkls: (-,01)pr =0, v <A}, IP={neUgls: (-, pp)pr =0, vp > A}.

The space I' is finite-dimensional, dimI' = max{k: v < A}, , and the space I? is infinite-dimensional,
codimI? = dimI' 4 dimker L.
Ifr > 0@ < 0), then U1L(2) (M) lies in the left half-plane and 02L(1)(M ) lies in the right half-plane of the

complex plane. By virtue of Theorem 2, I'(®) is a stable invariant space, I>(!) is an unstable invariant space, and
the solutions of the stochastic system of equations (2) have exponential dichotomy. The theorem is proved.

Corollary 2. If )\ < vy and v < 0, then the phase space of the stochastic system of equations (2) coincides with the
stable invariant space. If A < vy and v > 0, then the phase space of the stochastic system of equations (2) coincides
with the unstable invariant space.

Let us proceed to the problem of stabilization of unstable solutions. For this purpose, we will consider equation
(4) in the form of the system (7)—(9). For definiteness, let us assume v > 0 and A > v;. It follows from Theorem
4 that I* = I' and I* = I2. The space I® is a stable invariant space, so for the solutions 7; = 7;(t) of equation (8)
the following is true

lim ||771(f) HUKLZ =0.

t—+oo

By virtue of Remark 1, consider the following stabilization problem. It is required to find such a stochastic
process Y, so that for the solutions of Eq.

Lyt = Moy + X (12)
the following condition was satisfied
Jm e () o, = 0. o)

We will find y using the inverse of x = Bn,., where B is some linear bounded operator. Equation (12) will take
the form
Lyny = M, + B, = (M, + B)n,.

Let’s find m = max uy, € o (M){u} and the number n of the obtained maximum value. Let’s put

B=—-v(e+u,)l,

where ¢ can be chosen as small as desired. Then the relative spectrum

a%w@+m:{“%_w””“}

A — Vi
lies in the left half-plane, of the complex plane and by virtue of Theorem 2, equality (13) is satisfied for the solution
of . = ny ().
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CONCLUSION

It is planned to continue studies on stability and instability of solutions for stochastic semilinear equations of
Sobolev type with a relatively spectral operator. It is planned to carry out numerical experiments on finding stable
and unstable solutions of the stochastic system (2) and stabilization of unstable solutions.

The author expresses her sincere gratitude to Prof. G. A. Sviridyuk for his interest in the work and useful
discussions.
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