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Abstract. The paper investigates the question of the existence of a classical solution to the initial value problem
with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation. The
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1. INTRODUCTION. PROBLEM STATEMENT

The interest in the study of functional-differential and, in particular, differential-difference equations and prob-
lems for them is due to two reasons. First, for such generalizations of differential equations somemethods “working
well” for classical equations are inapplicable, and also there appear qualitatively new effects in the solutions, that
have no place in classical cases. Secondly, such equations are encountered in a variety of applications (mechan-
ics of a deformable solid body, processes of vortex formation and formation of complex coherent spots, modeling
of crystal lattice vibrations, nonlinear optics, neural networks, etc.), including those that cannot be described by
classical models of mathematical physics. Significant results in the study of problems for functional- differential
equations of various classes were obtained by A. L. Skubachevskii [1, 2], V. V. Vlasov [3, 4], A. B. Muravnik [5],
A. V. Razgulin [6], L. E. Rossovskii [7], V. Zh. Sakbaev [8] and other authors.

We will call according to [1] a differential-difference equation containing both differential operators and shift
operators.

To date, problems for elliptic (both in bounded and unbounded domains) and parabolic differential-difference
equations have been studied in detail. Hyperbolic differential-difference equations have been studied to a much
lesser extent. In [9, 10], two-dimensional hyperbolic equations with a shift operator in the senior derivative acting
on a spatial variable are considered for the first time. The purpose of this paper is to construct explicitly, using the
known operational scheme [11], the solution of the model initial problem in the strip for such an equation.

Let us denote byD = {(x, t) : x ∈ R, 0 < t < T} the area of the coordinate planeOxt, where T > 0 is a given
real number, letD = {(x, t) : x ∈ R, 0 ≤ t ≤ T}.

We need to find the function u(x, t) ∈ C1(D) ∩ C2(D), satisfying the equation

∂2u(x, t)

∂t2
= a2

∂2u(x− h, t)

∂x2
, (x, t) ∈ D, (1)

where a > 0, h ̸= 0 are given real numbers, and the initial condition

u(x, 0) = 0, x ∈ R. (2)
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1) f(ξ) is positively defined and continuous on the set [0,+∞);

2) for any number ϵ > 0 there are the following equations

lim
ξ→+∞

f(ξ)eatξ sin(hξ/2)ξϵ = 0, lim
ξ→+∞

f(ξ)e−atξ sin(hξ/2)ξϵ = 0; (6)

3) the integrals converge at any value of t ∈ [0, T ]

∫ +∞

0

f(ξ)eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)e−atξ sin(hξ/2)dξ; (7)

4) the integrals converge at any value of t ∈ (0, T ]

∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)ξe−atξ sinh ξ/2dξ. (8)

An example of such a function satisfying conditions 1)–4) is, for example, the function f(ξ) = ξβe(−CTξ),
where β ≥ 0 and C > a > 0 are any real constants.

Remark 2. The fulfillment of the equations (6) entails [13, p. 102] the convergence of the integral integrals
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)

ξ
e−atξ sin(hξ/2)dξ. (9)

3. KEY FINDINGS

Lemma. If conditions 1)–4) are satisfied, the function

G(x, t) :=

∫ +∞

0

[
f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) +
f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)

]
dξ (10)

satisfies equation (1) in the classical sense.
Proof. The integrand in (10) is continuous on the set [0,+∞) as a composition of continuous functions (there

is no singularity at the point ξ = 0 due to the limit relation sinα/α → 0 at α → 0).
Let’s investigate the convergence of the integral

∫ +∞

0

F (x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) dξ. (11)

In view of condition 1) ∣∣∣∣
∫ +∞

0

F (x, t; ξ)dξ

∣∣∣∣ ⩽
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

then by virtue of the fulfillment of condition 2) and, as a consequence, of Remark 2, the integral (11) converges.
Let us now check that function (11) satisfies equation (1). For this purpose, we differentiate (11) formally under

the sign of the integral over the variables t and x up to the second order:
∫ +∞

0

Fx(x, t; ξ)dξ =

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ; (12)
∫ +∞

0

Fxx(x, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ,

then ∫ +∞

0

Fxx(x− h, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (13)

Definition. We will call the classical solution of the problem (1), (2) a function u(x, t), continuous and
continuously differentiable on the variables x and t in the setD; twice continuously differentiable on x and t inD;
satisfying at each point of the region D the relation (1); such that for each point x0 ∈ R the limit of the function
u(x0, t) at t → +0 exists and is equal to zero.

2. CONSTRUCTING A SOLUTION TO THE PROBLEM

To find the solution of the problem (1), (2) according to the operational scheme [11] we apply, to equation (1)
and initial condition (2) (formally), the Fourier transform on the variable x, acting according to the rule

û(ξ, t) := Fx[u(x, t)] =

∫ +∞

−∞
u(x, t)eiξxdx.

As a result, we obtain the problem in Fourier images

d2û(ξ, t)

dt2
+ a2ξ2eihξû(ξ, t) = 0, (3)

û(ξ, 0) = 0, ξ ∈ R. (4)
The characteristic roots of the equation corresponding to equation (3) are determined by the formula

k1,2 = ±iaξe(ihξ/2),

then the general solution of equation (3) has the form

û(ξ, t) = C1(ξ) cos(aξe(ihξ/2)t) + C2(ξ) sin(aξe(ihξ/2)t),

where C1(ξ) and C2(ξ) are arbitrary constants depending on the parameter ξ ∈ R. Substituting this function into
the initial condition (4), we obtain C1(ξ) = 0. Since problem (3), (4) is a problem with incomplete initial data, let
us assume that

C2(ξ) = (aξe(ihξ/2))−1

and write down the final form of its solution:

û(ξ, t) =
sin(aξe(ihξ/2)t)

aξe(ihξ/2)
, ξ ∈ R.

Applying now the inverse Fourier transform to the found function (formally), we obtain by analogy with [12]
the following relations:

F−1
ξ [û(ξ, t)] =

1

2π

∫ +∞

−∞
û(ξ, t)e−ixξdξ =

=
1

2πa

∫ +∞

−∞

sin(aξte(ihξ/2))
ξe(ihξ/2)

e−ixξdξ =

=
1

2πa

[∫ +∞

0

sin(aξe(−ihξ/2)t)

ξ
ei(x+h/2)ξdξ +

+

∫ +∞

0

sin(aξe(ihξ/2)t)
ξ

e−i(x+h/2)ξdξ

]
=

=
1

2πa

∫ +∞

0

[
sin((at cos(hξ/2) + x+ h/2)ξ)

ξe(−atξ sin(hξ/2)) +

+
sin((at cos(hξ/2)− x− h/2)ξ)

ξe(atξ sin(hξ/2))

]
dξ. (5)

Remark 1. If we put h = 0 in (5), then we obtain θ(at − |x|)/(2a) – the fundamental solution of the wave
operator ∂2/∂t2 − a2∂2/∂x2, where θ is the Heaviside function.

Since the obtained improper integral in (5) diverges, we introduce, according to [11], the regularizer f(ξ) for
expression (5) – a function satisfying the conditions:
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1) f(ξ) is positively defined and continuous on the set [0,+∞);

2) for any number ϵ > 0 there are the following equations

lim
ξ→+∞

f(ξ)eatξ sin(hξ/2)ξϵ = 0, lim
ξ→+∞

f(ξ)e−atξ sin(hξ/2)ξϵ = 0; (6)

3) the integrals converge at any value of t ∈ [0, T ]

∫ +∞

0

f(ξ)eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)e−atξ sin(hξ/2)dξ; (7)

4) the integrals converge at any value of t ∈ (0, T ]

∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)ξe−atξ sinh ξ/2dξ. (8)

An example of such a function satisfying conditions 1)–4) is, for example, the function f(ξ) = ξβe(−CTξ),
where β ≥ 0 and C > a > 0 are any real constants.

Remark 2. The fulfillment of the equations (6) entails [13, p. 102] the convergence of the integral integrals
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

∫ +∞

0

f(ξ)

ξ
e−atξ sin(hξ/2)dξ. (9)

3. KEY FINDINGS

Lemma. If conditions 1)–4) are satisfied, the function

G(x, t) :=

∫ +∞

0

[
f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) +
f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)

]
dξ (10)

satisfies equation (1) in the classical sense.
Proof. The integrand in (10) is continuous on the set [0,+∞) as a composition of continuous functions (there

is no singularity at the point ξ = 0 due to the limit relation sinα/α → 0 at α → 0).
Let’s investigate the convergence of the integral

∫ +∞

0

F (x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2) + x+ h/2)ξ)

ξe−atξ sin(hξ/2) dξ. (11)

In view of condition 1) ∣∣∣∣
∫ +∞

0

F (x, t; ξ)dξ

∣∣∣∣ ⩽
∫ +∞

0

f(ξ)

ξ
eatξ sin(hξ/2)dξ,

then by virtue of the fulfillment of condition 2) and, as a consequence, of Remark 2, the integral (11) converges.
Let us now check that function (11) satisfies equation (1). For this purpose, we differentiate (11) formally under

the sign of the integral over the variables t and x up to the second order:
∫ +∞

0

Fx(x, t; ξ)dξ =

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ; (12)
∫ +∞

0

Fxx(x, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x+ h/2)ξ)eatξ sin(hξ/2)dξ,

then ∫ +∞

0

Fxx(x− h, t; ξ)dξ = −
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (13)
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and that function (16) satisfies equation (1), differentiating directly (16) under the sign of integral on variables x
and t up to the second order inclusive and substituting the found derivativesHtt(x, t; ξ) andHxx(x − h, t; ξ) into
(1). In this case, by virtue of conditions 3) and 4), the integralsHx(x, t; ξ) andHxx(x, t; ξ) converge uniformly on
the variable x at any segment [x1, x2] ⊂ R and the integralsHt(x, t; ξ) and Htt(x, t; ξ) converge uniformly at any
segment [t1, t2] of the sets [0, T ] and (0, T ], respectively.

Thus, it is shown that function (10) exists at every point of the domain D and satisfies equation (1) in the
classical sense. The lemma is proved.

On the basis of the lemma the following is true.
Theorem. If conditions 1)–4) are satisfied, the function

u(x, t) =
1

2πa

∫ +∞

−∞
G(x− τ, t)u0(τ)dτ, (17)

where G(x, t) is defined by equality (10), u0(x) is any integrable function on the whole number line, satisfies equation
(1) in the classical sense and the limit relation

lim
t→+0

u(x0, t) = 0

for any value of x0 ∈ R.
Proof. Function (17) has the form

u(x, t) =
1

2πa

∫ +∞

−∞
u0(τ)

∫ +∞

0

[
sin((at cos(hξ/2) + x− τ + h/2)ξ)

ξe−atξ sin(hξ/2) +

+
sin((at cos(hξ/2)− x+ τ − h/2)ξ)

ξeatξ sin(hξ/2)

]
dξdτ.

Since u0(x) ∈ L1(R), it is sufficient to show that |G(x−, t)| ⩽ const, that is true, due to condition 2) and
Remark 2, for the existence of the function (17) in the domain D. In view of the proved lemma, function (17) is
a classical solution of equation (1). Note also that, by virtue of the same lemma, the function (17) belongs to the
classC1(D)∩C2(D) (the integrand in (17) is continuous), the integrals ux(x, t) and uxx(x, t) converge uniformly
on the variable x at any finite segment [x1, x2] ⊂ R, the integrals ut(x, t) and utt(x, t) converge uniformly on t at
any finite segment [t1, t2] of the sets [0, T ] and (0, T ], respectively (the integral ut(x, t) converges on the boundary
t = 0).

Let x0 ∈ R. In (17) we substitute the variable by the formula (x0 − τ)/t = η and get

u(x0, t) =
t

2πa

∫ +∞

−∞
G(tη, t)u0(x0 − tη)dη,

whence at t → +0 follows the evaluation of |u(x0, t)| < ε for any arbitrarily small number ε > 0. The theorem is
proved.
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Next,
∫ +∞

0

Ft(x, t; ξ)dξ = a

∫ +∞

0

f(ξ)
[
cos(hξ/2) cos((at cos(hξ/2) + x+ h/2)ξ) +

+ sin(hξ/2) sin((at cos(hξ/2) + x+ h/2)ξ)
]
eatξ sin(hξ/2)dξ =

= a

∫ +∞

0

f(ξ) cos((at cos(hξ/2) + x)ξ)eatξ sin(hξ/2)dξ; (14)
∫ +∞

0

Ftt(x, t; ξ)dξ = −a2
∫ +∞

0

f(ξ)ξ
[
cos(hξ/2) sin((at cos(hξ/2) + x)ξ) −

− sin(hξ/2) cos((at cos(hξ/2) + x)ξ)
]
eatξ sin(hξ/2)dξ =

= −a2
∫ +∞

0

f(ξ)ξ sin((at cos(hξ/2) + x− h/2)ξ)eatξ sin(hξ/2)dξ. (15)

Substituting the found derivatives (13) and (15) into the relation (1), we are convinced of its validity.
Let us examine the integral (12) for uniform convergence. We have

∫ +∞

0

|Fx(x, t; ξ)|dξ ≤
∫ +∞

0

f(ξ)e(atξ sin(hξ/2))dξ.

Since the integral in the right-hand side of the inequality converges due to condition 3), and the integrand in it
does not depend on the variable x, then by virtue of the Weierstrass sign the integral (12) converges uniformly on
the variable x at any finite interval [x1, x2] ⊂ R.

Similarly, from the estimation
∫ +∞

0

|Fxx(x− h, t; ξ)|dξ ≤
∫ +∞

0

f(ξ)ξeatξ sin(hξ/2)dξ,

condition 4) and the independence of the integrand from x in the right-hand side of the last inequality results in
the uniform convergence of the integral (13) on the variable x on any interval [x1, x2] ⊂ R. This means that the
differentiation under the sign of the integral in (11) on the variable x up to and including the second order was
legitimate.

Let us now evaluate the integral (14):

+∞∫

0

|Ft(x, t; ξ)| dξ ≤ a

+∞∫

0

f(ξ)eatξ sin (hξ/2) dξ ≤




a
+∞∫
0

f(ξ)eat2ξ sin (hξ/2) dξ, sin (hξ/2) ≥ 0,

a
+∞∫
0

f(ξ)eat1ξ sin (hξ/2) dξ, sin (hξ/2) < 0.

The integrals in the right-hand side of the relations converge according to condition 3), and the integrand expres-
sions in them do not depend on t, hence, the integral (14) converges uniformly on any interval [t1, t2] ⊂ [0, T ].

From the assessment

+∞∫

0

|Ftt(x, t; ξ)| dξ ≤





a2
+∞∫
0

f(ξ)ξeat2ξ sin (hξ/2) dξ, sin (hξ/2) ≥ 0,

a2
+∞∫
0

f(ξ)ξeat1ξ sin (hξ/2) dξ, sin (hξ/2) < 0

and condition 4) it follows that the integral (15) converges uniformly on any segment [t1, t2] ⊂ (0, T ]. Thus, the
differentiation (15) under the sign of the integral over the variable t up to and including the second order is valid.

Similarly it can be shown, in view of conditions 1) and 2), that the non-singular integral converges
∫ +∞

0

H(x, t; ξ)dξ :=

∫ +∞

0

f(ξ) sin((at cos(hξ/2)− x− h/2)ξ)

ξeatξ sin(hξ/2)
dξ (16)
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and that function (16) satisfies equation (1), differentiating directly (16) under the sign of integral on variables x
and t up to the second order inclusive and substituting the found derivativesHtt(x, t; ξ) andHxx(x − h, t; ξ) into
(1). In this case, by virtue of conditions 3) and 4), the integralsHx(x, t; ξ) andHxx(x, t; ξ) converge uniformly on
the variable x at any segment [x1, x2] ⊂ R and the integralsHt(x, t; ξ) and Htt(x, t; ξ) converge uniformly at any
segment [t1, t2] of the sets [0, T ] and (0, T ], respectively.

Thus, it is shown that function (10) exists at every point of the domain D and satisfies equation (1) in the
classical sense. The lemma is proved.

On the basis of the lemma the following is true.
Theorem. If conditions 1)–4) are satisfied, the function

u(x, t) =
1

2πa

∫ +∞

−∞
G(x− τ, t)u0(τ)dτ, (17)

where G(x, t) is defined by equality (10), u0(x) is any integrable function on the whole number line, satisfies equation
(1) in the classical sense and the limit relation

lim
t→+0

u(x0, t) = 0

for any value of x0 ∈ R.
Proof. Function (17) has the form

u(x, t) =
1

2πa

∫ +∞

−∞
u0(τ)

∫ +∞

0

[
sin((at cos(hξ/2) + x− τ + h/2)ξ)

ξe−atξ sin(hξ/2) +

+
sin((at cos(hξ/2)− x+ τ − h/2)ξ)

ξeatξ sin(hξ/2)

]
dξdτ.

Since u0(x) ∈ L1(R), it is sufficient to show that |G(x−, t)| ⩽ const, that is true, due to condition 2) and
Remark 2, for the existence of the function (17) in the domain D. In view of the proved lemma, function (17) is
a classical solution of equation (1). Note also that, by virtue of the same lemma, the function (17) belongs to the
classC1(D)∩C2(D) (the integrand in (17) is continuous), the integrals ux(x, t) and uxx(x, t) converge uniformly
on the variable x at any finite segment [x1, x2] ⊂ R, the integrals ut(x, t) and utt(x, t) converge uniformly on t at
any finite segment [t1, t2] of the sets [0, T ] and (0, T ], respectively (the integral ut(x, t) converges on the boundary
t = 0).

Let x0 ∈ R. In (17) we substitute the variable by the formula (x0 − τ)/t = η and get

u(x0, t) =
t

2πa

∫ +∞

−∞
G(tη, t)u0(x0 − tη)dη,

whence at t → +0 follows the evaluation of |u(x0, t)| < ε for any arbitrarily small number ε > 0. The theorem is
proved.
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