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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Интерес к исследованию функционально-дифференциальных и, в частности, дифференци-
ально-разностных уравнений и задач для них обусловлен двумя причинами. Во-первых, для
таких обобщений дифференциальных уравнений оказываются неприменимыми некоторые
методы, “хорошо работающие” для классических уравнений, а также возникают качественно
новые эффекты в решениях, не имеющие места в классических случаях. Во-вторых, такие
уравнения встречаются в разнообразных приложениях (механика деформируемого твёрдого
тела, процессы вихреобразования и формирования сложных когерентных пятен, модели-
рование колебаний кристаллической решетки, нелинейная оптика, нейронные сети и др.),
включая те, которые невозможно описать классическими моделями математической физи-
ки. Существенные результаты в исследовании задач для функционально-дифференциальных
уравнений различных классов были получены А.Л. Скубачевским [1, 2], В.В. Власовым [3, 4],
А.Б. Муравником [5], А.В. Разгулиным [6], Л.Е. Россовским [7], В.Ж. Сакбаевым [8] и дру-
гими авторами.

Будем называть согласно [1] дифференциально-разностным уравнение, содержащее как
дифференциальные операторы, так и операторы сдвига.

К настоящему времени подробно изучены задачи для эллиптических (как в ограни-
ченных, так и в неограниченных областях) и параболических дифференциально-разностных
уравнений. В значительно меньшей степени исследованы гиперболические дифференциально-
разностные уравнения. В работах [9, 10] впервые рассмотрены двумерные гиперболические
уравнения с оператором сдвига в старшей производной, действующим по пространствен-
ной переменной. Цель настоящей статьи — построить в явном виде с помощью извест-
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ной операционной схемы [11] решение модельной начальной задачи в полосе для такого
уравнения.

Обозначим через 𝐷= {(𝑥, 𝑡) : 𝑥∈R, 0< 𝑡<𝑇} область координатной плоскости 𝑂𝑥𝑡, где
𝑇 > 0 — заданное действительное число, пусть 𝐷= {(𝑥, 𝑡) : 𝑥∈R, 0⩽ 𝑡⩽𝑇}.

Требуется найти функцию 𝑢(𝑥, 𝑡)∈𝐶1(𝐷)∩𝐶2(𝐷), удовлетворяющую уравнению

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑎2

𝜕2𝑢(𝑥−ℎ, 𝑡)
𝜕𝑥2

, (𝑥, 𝑡)∈𝐷, (1)

где 𝑎> 0, ℎ ̸=0 — заданные действительные числа, и начальному условию

𝑢(𝑥, 0)=0, 𝑥∈R. (2)

Определение. Классическим решением задачи (1), (2) будем называть функцию 𝑢(𝑥, 𝑡),
непрерывную и непрерывно дифференцируемую по переменным 𝑥 и 𝑡 в множестве 𝐷; дважды
непрерывно дифференцируемую по 𝑥 и 𝑡 в 𝐷; удовлетворяющую в каждой точке области 𝐷
соотношению (1); такую, что для каждой точки 𝑥0 ∈R предел функции 𝑢(𝑥0, 𝑡) при 𝑡→+0
существует и равен нулю.

2. ПОСТРОЕНИЕ РЕШЕНИЯ ЗАДАЧИ

Для нахождения решения задачи (1), (2) согласно операционной схеме [11] применим к
уравнению (1) и начальному условию (2) (формально) преобразование Фурье по переменной
𝑥, действующее по правилу

̂︀𝑢(𝜉, 𝑡) :=𝐹𝑥[𝑢(𝑥, 𝑡)] =

+∞ˆ

−∞

𝑢(𝑥, 𝑡)𝑒𝑖𝜉𝑥 𝑑𝑥.

В результате получим задачу в образах Фурье

𝑑2̂︀𝑢(𝜉, 𝑡)
𝑑𝑡2

+𝑎2𝜉2𝑒𝑖ℎ𝜉̂︀𝑢(𝜉, 𝑡)= 0, (3)

̂︀𝑢(𝜉, 0)=0, 𝜉 ∈R. (4)

Характеристические корни уравнения, соответствующего уравнению (3), определяются
по формуле

𝑘1,2=±𝑖 𝑎𝜉𝑒𝑖ℎ𝜉/2,

тогда общее решение уравнения (3) имеет вид

̂︀𝑢(𝜉, 𝑡)=𝐶1(𝜉) cos(𝑎𝜉𝑒
𝑖ℎ𝜉/2𝑡)+𝐶2(𝜉) sin(𝑎𝜉𝑒

𝑖ℎ𝜉/2𝑡),

где 𝐶1(𝜉) и 𝐶2(𝜉) — произвольные постоянные, зависящие от параметра 𝜉 ∈R. Подставив
данную функцию в начальное условие (4), получим 𝐶1(𝜉) = 0. Так как задача (3), (4) —
задача с неполными начальными данными, положим

𝐶2(𝜉)= (𝑎𝜉𝑒𝑖ℎ𝜉/2)−1

и запишем окончательный вид её решения:

̂︀𝑢(𝜉, 𝑡)= sin(𝑎𝜉𝑒𝑖ℎ𝜉/2𝑡)

𝑎𝜉𝑒𝑖ℎ𝜉/2
, 𝜉 ∈R.
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Применив теперь к найденной функции (формально) обратное преобразование Фурье,
получим по аналогии с [12] следующие соотношения:

𝐹−1
𝜉 [̂︀𝑢(𝜉, 𝑡)] = 1

2𝜋

+∞ˆ

−∞

̂︀𝑢(𝜉, 𝑡)𝑒−𝑖𝑥𝜉 𝑑𝜉=
1

2𝜋𝑎

+∞ˆ

−∞

sin(𝑎𝜉𝑡𝑒𝑖ℎ𝜉/2)

𝜉𝑒𝑖ℎ𝜉/2
𝑒−𝑖𝑥𝜉 𝑑𝜉=

=
1

2𝜋𝑎

[︃ +∞ˆ

0

sin (𝑎𝜉𝑒−𝑖ℎ𝜉/2𝑡)

𝜉
𝑒𝑖(𝑥+ℎ/2)𝜉 𝑑𝜉+

+∞ˆ

0

sin (𝑎𝜉𝑒𝑖ℎ𝜉/2𝑡)

𝜉
𝑒−𝑖(𝑥+ℎ/2)𝜉 𝑑𝜉

]︃
=

=
1

2𝜋𝑎

+∞ˆ

0

[︂
sin ((𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉)

𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)
+
sin ((𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉)

𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉. (5)

Замечание 1. Если положим в (5) ℎ=0, то получим 𝜃(𝑎𝑡−|𝑥|)/(2𝑎) — фундаментальное
решение волнового оператора 𝜕2/𝜕𝑡2−𝑎2𝜕2/𝜕𝑥2, где 𝜃 — функция Хевисайда.

Так как полученный несобственный интеграл в (5) расходится, введём согласно [11]
регуляризатор 𝑓(𝜉) для выражения (5) — функцию, удовлетворяющую условиям:

1) 𝑓(𝜉) положительно определена и непрерывна на множестве [0,+∞);
2) для любого числа 𝜀> 0 имеют место равенства

lim
𝜉→+∞

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)𝜉𝜀=0, lim
𝜉→+∞

𝑓(𝜉)𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)𝜉𝜀=0; (6)

3) при любом значении 𝑡∈ [0, 𝑇 ] сходятся интегралы

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (7)

4) при любом значении 𝑡∈ (0, 𝑇 ] сходятся интегралы

+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (8)

Примером такой функции, удовлетворяющей условиям 1)–4), является, например, функ-
ция 𝑓(𝜉)= 𝜉𝛽𝑒−𝐶𝑇𝜉, где 𝛽⩾ 0 и 𝐶 >𝑎> 0 — любые вещественные константы.

Замечание 2. Выполнение равенств (6) влечёт за собой [13, с. 102] сходимость несоб-
ственных интегралов

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (9)

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Лемма. При выполнении условий 1)–4) функция

𝐺(𝑥, 𝑡) :=

+∞ˆ

0

[︂
𝑓(𝜉) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

+
𝑓(𝜉) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉 (10)

удовлетворяет уравнению (1) в классическом смысле.
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Доказательство. Подынтегральная функция в (10) непрерывна на множестве [0,+∞)
как композиция непрерывных функций (в точке 𝜉=0 особенности нет в силу предельного
соотношения sin𝛼/𝛼→ 0 при 𝛼→ 0).

Исследуем на сходимость интеграл

+∞ˆ

0

𝐹 (𝑥, 𝑡; 𝜉) 𝑑𝜉 :=

+∞ˆ

0

𝑓(𝜉) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

𝑑𝜉. (11)

Так как с учётом условия 1)⃒⃒⃒⃒
⃒
+∞ˆ

0

𝐹 (𝑥, 𝑡; 𝜉) 𝑑𝜉

⃒⃒⃒⃒
⃒⩽

+∞ˆ

0

𝑓(𝜉)

𝜉
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

то в силу выполнения условия 2) и, как следствие, замечания 2 интеграл (11) сходится.
Проверим теперь, что функция (11) удовлетворяет уравнению (1). Для этого продиффе-

ренцируем (11) формально под знаком интеграла по переменным 𝑡 и 𝑥 до второго порядка:

+∞ˆ

0

𝐹𝑥(𝑥, 𝑡; 𝜉) 𝑑𝜉=

+∞ˆ

0

𝑓(𝜉) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (12)

+∞ˆ

0

𝐹𝑥𝑥(𝑥, 𝑡; 𝜉) 𝑑𝜉=−
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

тогда

+∞ˆ

0

𝐹𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉) 𝑑𝜉=−
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (13)

Далее,

+∞ˆ

0

𝐹𝑡(𝑥, 𝑡; 𝜉) 𝑑𝜉= 𝑎

+∞ˆ

0

𝑓(𝜉)
[︁
cos (ℎ𝜉/2) cos

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀
+

+sin (ℎ𝜉/2) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥+ℎ/2)𝜉

)︀]︁
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉=

= 𝑎

+∞ˆ

0

𝑓(𝜉) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉; (14)

+∞ˆ

0

𝐹𝑡𝑡(𝑥, 𝑡; 𝜉) 𝑑𝜉=−𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉
[︁
cos (ℎ𝜉/2) sin

(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀
−

− sin (ℎ𝜉/2) cos
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥)𝜉

)︀]︁
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉=

=−𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉 sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−ℎ/2)𝜉

)︀
𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉. (15)
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Подставляя найденные производные (13) и (15) в соотношение (1), убеждаемся в его
справедливости.

Исследуем на равномерную сходимость интеграл (12). Имеем

+∞ˆ

0

|𝐹𝑥(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽
+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉.

Так как интеграл в правой части неравенства сходится ввиду условия 3), а подынтегральное
выражение в нём не зависит от переменной 𝑥, то в силу признака Вейерштрасса интеграл (12)
сходится равномерно по переменной 𝑥 на любом конечном промежутке [𝑥1, 𝑥2]⊂R.

Аналогично из оценки

+∞ˆ

0

|𝐹𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉)| 𝑑𝜉⩽
+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉,

условия 4) и независимости подынтегральной функции от 𝑥 в правой части последнего
неравенства вытекает равномерная сходимость интеграла (13) по переменной 𝑥 на любом
отрезке [𝑥1, 𝑥2]⊂R. Это значит, что дифференцирование под знаком интеграла в (11) по
переменной 𝑥 до второго порядка включительно было законным.

Оценим теперь интеграл (14):

+∞ˆ

0

|𝐹𝑡(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽ 𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2) 𝑑𝜉⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡2𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)⩾ 0,

𝑎

+∞ˆ

0

𝑓(𝜉)𝑒𝑎𝑡1𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)< 0.

Интегралы в правой части соотношений сходятся согласно условию 3), а подынтегральные
выражения в них не зависят от 𝑡, следовательно, интеграл (14) сходится равномерно на
любом промежутке [𝑡1, 𝑡2]⊂ [0, 𝑇 ].

Из оценки

+∞ˆ

0

|𝐹𝑡𝑡(𝑥, 𝑡; 𝜉)| 𝑑𝜉⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑎2

+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡2𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)⩾ 0,

𝑎2
+∞ˆ

0

𝑓(𝜉)𝜉𝑒𝑎𝑡1𝜉 sin (ℎ𝜉/2) 𝑑𝜉, sin (ℎ𝜉/2)< 0

и условия 4) вытекает, что интеграл (15) сходится равномерно на любом отрезке [𝑡1, 𝑡2]⊂(0, 𝑇 ].
Таким образом, справедливо дифференцирование (15) под знаком интеграла по переменной 𝑡
до второго порядка включительно.

Аналогично можно показать, ввиду условий 1) и 2), что сходится несобственный интеграл

+∞ˆ

0

𝐻(𝑥, 𝑡; 𝜉) 𝑑𝜉 :=

+∞ˆ

0

𝑓(𝜉) sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

𝑑𝜉 (16)

и что функция (16) удовлетворяет уравнению (1), дифференцируя непосредственно (16) под
знаком интеграла по переменным 𝑥 и 𝑡 до второго порядка включительно и подставляя
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найденные производные 𝐻𝑡𝑡(𝑥, 𝑡; 𝜉) и 𝐻𝑥𝑥(𝑥−ℎ, 𝑡; 𝜉) в (1). При этом в силу условий 3) и 4)
интегралы 𝐻𝑥(𝑥, 𝑡; 𝜉) и 𝐻𝑥𝑥(𝑥, 𝑡; 𝜉) сходятся равномерно по переменной 𝑥 на любом отрезке
[𝑥1, 𝑥2]⊂R и интегралы 𝐻𝑡(𝑥, 𝑡; 𝜉) и 𝐻𝑡𝑡(𝑥, 𝑡; 𝜉) равномерно сходятся на любом отрезке [𝑡1, 𝑡2]
множества [0, 𝑇 ] и (0, 𝑇 ] соответственно.

Таким образом, показано, что функция (10) существует в каждой точке области 𝐷 и
удовлетворяет уравнению (1) в классическом смысле. Лемма доказана.

На основании леммы справедлива следующая
Теорема. При выполнении условий 1)–4) функция

𝑢(𝑥, 𝑡)=
1

2𝜋𝑎

+∞ˆ

−∞

𝐺(𝑥−𝜏, 𝑡)𝑢0(𝜏) 𝑑𝜏, (17)

где 𝐺(𝑥, 𝑡) определяется равенством (10), 𝑢0(𝑥) — любая интегрируемая на всей число-
вой прямой функция, удовлетворяет уравнению (1) в классическом смысле и предельному
соотношению

lim
𝑡→+0

𝑢(𝑥0, 𝑡)= 0

для любого значения 𝑥0 ∈R.
Доказательство. Функция (17) имеет вид

𝑢(𝑥, 𝑡)=
1

2𝜋𝑎

+∞ˆ

−∞

𝑢0(𝜏)

+∞ˆ

0

[︂
sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)+𝑥−𝜏+ℎ/2)𝜉

)︀
𝜉𝑒−𝑎𝑡𝜉 sin (ℎ𝜉/2)

+

+
sin
(︀
(𝑎𝑡 cos (ℎ𝜉/2)−𝑥+𝜏−ℎ/2)𝜉

)︀
𝜉𝑒𝑎𝑡𝜉 sin (ℎ𝜉/2)

]︂
𝑑𝜉 𝑑𝜏.

Так как 𝑢0(𝑥)∈𝐿1(R), то для существования в области 𝐷 функции (17) достаточно пока-
зать, что |𝐺(𝑥−𝜏, 𝑡)|⩽ const, что верно в силу условия 2) и замечания 2. Ввиду доказанной
леммы функция (17) является классическим решением уравнения (1). Отметим также, что
в силу этой же леммы функция (17) принадлежит классу 𝐶1(𝐷)∩𝐶2(𝐷) (подынтеграль-
ная функция в (17) непрерывна), интегралы 𝑢𝑥(𝑥, 𝑡) и 𝑢𝑥𝑥(𝑥, 𝑡) сходятся равномерно по
переменной 𝑥 на любом конечном отрезке [𝑥1, 𝑥2]⊂R, интегралы 𝑢𝑡(𝑥, 𝑡) и 𝑢𝑡𝑡(𝑥, 𝑡) сходятся
равномерно по 𝑡 на любом конечном отрезке [𝑡1, 𝑡2] из множеств [0, 𝑇 ] и (0, 𝑇 ] соответственно
(интеграл 𝑢𝑡(𝑥, 𝑡) сходится на границе 𝑡=0).

Пусть 𝑥0 ∈R. В (17) сделаем замену переменной по формуле (𝑥0−𝜏)/𝑡= 𝜂 и получим

𝑢(𝑥0, 𝑡)=
𝑡

2𝜋𝑎

+∞ˆ

−∞

𝐺(𝑡𝜂, 𝑡)𝑢0(𝑥0− 𝑡𝜂)𝑑𝜂,

откуда при 𝑡→+0 следует оценка |𝑢(𝑥0, 𝑡)|<𝜀 для любого сколь угодно малого числа 𝜀> 0.
Теорема доказана.
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MODEL PROBLEM IN A STRIP
FOR THE HYPERBOLIC DIFFERENTIAL-DIFFERENCE EQUATION

© 2025 / N. V. Zaitseva

Lomonosov Moscow State University, Russia
e-mail: zaitseva@cs.msu.ru

The paper investigates the question of the existence of a classical solution to the initial value problem
with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation.
The equation contains a superposition of a differential operator and a translation operator with respect
to a spatial variable that varies along the entire real axis. Using the Gelfand–Shilov operational scheme,
a solution to the problem was obtained in explicit form.

Keywords: hyperbolic equation, differential-difference equation, translation operator, initial problem,
operational scheme, Fourier transform
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