= КРАТКИЕ СООБЩЕНИЯ =

УДК 517.98

ОБ ОЦЕНКАХ В УРАВНЕНИИ С ПАРАМЕТРОМ И РАЗРЫВНЫМ ОПЕРАТОРОМ

© 2024 г. Д. К. Потапов

Санкт-Петербургский государственный университет e-mail: d.potapov@spbu.ru

Поступила в редакцию 19.12.2023 г., после доработки 05.06.2024 г.; принята к публикации 02.07.2024 г.

Установлены оценки параметра и нормы разрывного нелинейного оператора для уравнения, рассматриваемого в вещественном рефлексивном банаховом пространстве. Данные оценки уточняют полученные ранее аналогичные оценки в задачах с параметром для уравнений эллиптического типа и обыкновенных дифференциальных уравнений с разрывными правыми частями.

Ключевые слова: разрывный оператор, параметр, оценки

DOI: 10.31857/S0374064124100129, EDN: JSNTUL

1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Уравнения с параметром и некоторыми разрывными операторами исследованы в работах [1–3]. В данной статье будем рассматривать нелинейное уравнение с параметром и разрывным оператором в общей операторной постановке.

Пусть E — вещественное рефлексивное банахово пространство, E^* — сопряжённое с E пространство, $A\colon E\to E^*$ — линейный самосопряжённый оператор, $T\colon E\to E^*$ — разрывное, компактное или антимонотонное отображение, ограниченное на E.

В работах [4-6] изучена проблема существования решений уравнения

$$Au = \lambda Tu \tag{1}$$

в зависимости от параметра $\lambda > 0$. В [7] получена оценка сверху величины бифуркационного параметра, а в [8] рассмотрен вопрос об оценках нормы оператора A для такого уравнения с разрывным оператором T. В данной статье, являющейся продолжением этих исследований, конкретизируются оценки параметра λ и нормы оператора A в уравнении (1).

2. ОПРЕДЕЛЕНИЯ

Через (z,x) будем обозначать значение функционала $z\in E^*$ на элементе $x\in E$. Приведём необходимые определения.

Определение 1. Линейный оператор $A \colon E \to E^*$ называется *самосопряжённым*, если (Ax,h) = (Ah,x) для любых $x,h \in E$.

Определение 2. Оператор $A \colon E \to E^*$ называется *коэрцитивным*, если

$$(Au, u) \geqslant \alpha(||u||)||u||$$

для любого $u \in E$, где $\alpha : \mathbb{R}_+ \to \mathbb{R}$ — непрерывная на \mathbb{R}_+ функция и $\lim_{t \to +\infty} \alpha(t) = +\infty$.

Определение 3. Оператор $A: E \to E^*$ называется положительно определённым, если существует постоянная $\alpha > 0$ такая, что неравенство $(Au, u) \geqslant \alpha ||u||^2$ верно для любого $u \in E$.

Определение 4. Отображение $T \colon E \to E^*$ называется *компактным* на E, если оно ограниченные множества из E переводит в предкомпактные в E^* .

Определение 5. Отображение $T: E \to E^*$ называется монотонным на E, если

$$(Tx-Ty,x-y)\geqslant 0$$

для любых $x, y \in E$.

Определение 6. Отображение $T \colon E \to E^*$ называется *антимонотонным*, если отображение -T монотонно.

Определение 7. Отображение $T: E \to E^*$ называется *квазипотенциальным*, если существует функционал $f: E \to \mathbb{R}$, для которого верно равенство

$$f(x+h) - f(x) = \int_{0}^{1} (T(x+th), h) dt$$

для любых $x, h \in E$, при этом f называют *квазипотенциалом* оператора T.

Определение 8. Отображение $T \colon E \to E^*$ называется *ограниченным* на E, если существует постоянная $\beta > 0$ такая, что $\|Tx\| \leqslant \beta$ для любого $x \in E$.

Определение 9. Элемент $x \in E$ называется точкой разрыва оператора $T \colon E \to E^*$, если найдётся значение $h \in E$, для которого либо $\lim_{t\to 0} (T(x+th),h)$ не существует, либо $\lim_{t\to 0} (T(x+th),h) \neq (Tx,h)$.

Определение 10. Элемент $x \in E$ называется *регулярной точкой* для оператора $T: E \to E^*$, если для некоторого $h \in E$ справедливо неравенство

$$\overline{\lim}_{t \to +0} (T(x+th), h) < 0.$$

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Теорема 1. Пусть выполняются следующие условия:

- 1) A линейный самосопряжённый оператор, действующий из вещественного рефлексивного банахова пространства E в сопряжённое пространство E^* ;
- 2) отображение T компактное или антимонотонное, квазипотенциальное (с квазипотенциалом f) и ограниченное на E с константой $\beta > 0$, f(0) = 0 и для некоторого $u_0 \in E$ значение $f(u_0) > 0$:
 - 3) уравнение (1) имеет ненулевое решение.

Тогда для параметра λ и нормы оператора A справедливы оценки

$$\lambda > \frac{1}{2\beta} \inf_{u \in U} \frac{(Au, u)}{\|u\|},$$

$$\frac{1}{2\beta} \|Tu\| \inf_{u \in U} \frac{(Au, u)}{\|u\|} < \|Au\| \leqslant \lambda\beta,$$

 $e \partial e \ U = \{u \in E : f(u) > 0\}.$

Доказательство. Рассмотрим множество $U = \{u \in E : f(u) > 0\}$. В силу условия 2) теоремы существует значение $u_0 \in E$, для которого $f(u_0) > 0$. Поэтому данное множество непусто.

Пусть $v \in U$. Тогда $g(\lambda) = (Av, v)/2 - \lambda f(v)$ — линейная убывающая функция на \mathbb{R}_+ , обращающаяся в нуль при $\lambda(v) = (Av, v)/(2f(v))$. Положим $\lambda_0 = \lambda(v)$, $f^{\lambda}(v) = (Av, v)/2 - \lambda f(v)$. Следовательно, для любого $\lambda > \lambda_0$ значение $f^{\lambda}(v) < 0$.

Из квазипотенциальности и ограниченности отображения T получаем

$$f(v) = \int_{0}^{1} (T(tv), v) dt \leq \beta ||v||,$$

где β — положительная константа из неравенства $||Tu|| \leq \beta$, справедливого для любого $u \in E$. Поэтому

$$\lambda > \frac{(Av, v)}{2f(v)} \geqslant \frac{(Av, v)}{2\beta \|v\|}.$$

Поскольку последние неравенства справедливы для произвольного $v \in U$, то

$$\lambda > \frac{1}{2\beta} \inf_{u \in U} \frac{(Au, u)}{\|u\|}.$$

Из уравнения (1) в силу ограниченности отображения T имеем

$$||Au|| = \lambda ||Tu|| \le \lambda \beta.$$

С другой стороны,

$$||Au|| = \lambda ||Tu|| > \frac{1}{2\beta} ||Tu|| \inf_{u \in U} \frac{(Au, u)}{||u||}.$$

Теорема доказана.

Приведём условия, при которых выполняется условие 3) теоремы 1. Пусть пространство E представляет собой прямую сумму замкнутых подпространств $E_1 = \ker A$ и E_2 , причём существует постоянная $\alpha > 0$ такая, что $(Au, u) \geqslant \alpha ||u||^2$ для любого $u \in E_2$; если $E_1 \neq \{0\}$, то

$$\lim_{u \in E_1, \|u\| \to +\infty} f(u) = -\infty;$$

для компактного отображения Т выполняется неравенство

$$\lim_{t \to +0} (T(u+th) - Tu, h) \geqslant 0$$

для всех $u,h \in E$, а для антимонотонного отображения T любая точка разрыва оператора T при $\lambda > \lambda_0 > 0$ регулярная для $Au - \lambda Tu$. Тогда для любого $\lambda > \lambda_0$ уравнение (1) имеет ненулевое решение (см. теорему 2 из [4] и следствие 1 из [5]).

Кроме того, справедлива

Теорема 2. Если A – положительно определённый оператор на всём пространстве E, то оператор $A - \lambda T$ коэрцитивный при любом $\lambda > 0$, а если $E_1 \neq \{0\}$, то оператор $A - \lambda T$ некоэрцитивный.

Доказательство. Из положительной определённости оператора A с константой $\alpha > 0$ и ограниченности отображения T с постоянной $\beta > 0$ имеем

$$(Au,u)-\lambda(Tu,u)\geqslant \alpha\|u\|^2-\lambda\beta\|u\|=(\alpha\|u\|-\lambda\beta)\|u\|=\alpha(\|u\|)\|u\|\quad\text{для любого }u\in E,$$

где $\lim_{t\to +\infty}\alpha(t)=\lim_{t\to +\infty}(\alpha t-\lambda\beta)=+\infty$, т.е. оператор $A-\lambda T$ коэрцитивный на всём пространстве E.

В случае когда $E_1 \neq \{0\}$ для $0 \neq u \in E_1$ и $0 \neq t \in \mathbb{R}$, имеем

$$\frac{(A(tu),tu)-\lambda(T(tu),tu)}{|t|\,\|u\|}=\frac{-\lambda(T(tu),tu)}{|t|\,\|u\|}\leqslant \frac{\lambda(T(tu),tu)}{|t|\,\|u\|}\leqslant \frac{\lambda\beta\|tu\|}{|t|\,\|u\|}=\lambda\beta,$$

т.е. оператор $A - \lambda T$ некоэрцитивный. Теорема доказана.

4. ПРИЛОЖЕНИЯ

Если A – положительно определённый оператор, то будут справедливы соответствующие теоремы для эллиптических и обыкновенных дифференциальных уравнений в коэрцитивном случае.

Действительно, выполнение условий теоремы 1 для эллиптических краевых задач с параметром и разрывными по фазовой переменной нелинейностями проверяется аналогично тому, как это сделано в [4, 5]. Поэтому для параметра и дифференциального оператора в задачах на собственные значения для уравнений эллиптического типа с разрывными нелинейностями имеют место аналогичные оценки [9], уточняющие оценки из [10–14].

Применив теорему 1 к краевой задаче для обыкновенного дифференциального уравнения второго порядка с параметром и разрывной правой частью, получим оценки параметра и дифференциального оператора, согласующиеся с оценками из [15].

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект 23-21-00069).

КОНФЛИКТ ИНТЕРЕСОВ

Автор данной работы заявляет, что у него нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rakotoson, J.M. Generalized eigenvalue problems for totally discontinuous operators / J.M. Rakotoson // Disc. Contin. Dyn. Syst. -2010. V. 28, N 1. P. 343–373.
- 2. Chrayteh, H. Eigenvalue problems with fully discontinuous operators and critical exponents / H. Chrayteh, J.M. Rakotoson // Nonlin. Anal. 2010. V. 73, № 7. P. 2036–2055.
- 3. Chrayteh, H. Qualitative properties of eigenvectors related to multivalued operators and some existence results / H. Chrayteh // J. Optim. Theory Appl. 2012. V. 155, \aleph 2. P. 507–533.
- 4. Павленко, В.Н. О существовании луча собственных значений для уравнений с разрывными операторами / В.Н. Павленко, Д.К. Потапов // Сиб. мат. журн. 2001. Т. 42, № 4. С. 911—919.
- Потапов, Д.К. О существовании луча собственных значений для уравнений эллиптического типа с разрывными нелинейностями в критическом случае / Д.К. Потапов // Вестн. Санкт-Петербург. ун-та. Сер. 10. Прикл. математика. Информатика. Процессы управления. — 2004. — № 4. — С. 125–132.
- 6. Потапов, Д.К. О числе решений в задачах со спектральным параметром для уравнений с разрывными операторами / Д.К. Потапов // Уфимск. мат. журн. 2013. Т. 5, № 2. С. 56—62
- 7. Потапов, Д.К. Оценка бифуркационного параметра в спектральных задачах для уравнений с разрывными операторами / Д.К. Потапов // Уфимск. мат. журн. 2011. Т. 3, № 1. С. 43–46.
- 8. Потапов, Д.К. Оценивание норм оператора в задачах на собственные значения для уравнений с разрывными операторами / Д.К. Потапов // Изв. Саратовск. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2011. Т. 11, вып. 4. С. 41–45.
- 9. Потапов, Д.К. Об эллиптических уравнениях со спектральным параметром и разрывной нелинейностью / Д.К. Потапов // Журн. СФУ. Сер. Матем. и физ. 2012. Т. 5, вып. 3. С. 417–421.
- 10. Bonanno, G. Some remarks on a three critical points theorem / G. Bonanno // Nonlin. Anal. 2003. V. 54, N_2 4. P. 651–665.
- 11. Bonanno, G. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities / G. Bonanno, P. Candito // J. Differ. Equat. -2008. V. 244, N 12. P. 3031–3059.

- 12. Потапов, Д.К. Об одной оценке сверху величины бифуркационного параметра в задачах на собственные значения для уравнений эллиптического типа с разрывными нелинейностями / Д.К. Потапов // Дифференц. уравнения. 2008. Т. 44, № 5. С. 715–716.
- 13. Потапов, Д.К. О структуре множества собственных значений для уравнений эллиптического типа высокого порядка с разрывными нелинейностями / Д.К. Потапов // Дифференц. уравнения. 2010. Т. 46, № 1. С. 150–152.
- 14. Потапов, Д.К. Оценки дифференциального оператора в задачах со спектральным параметром для уравнений эллиптического типа с разрывными нелинейностями / Д.К. Потапов // Вестн. Самарск. гос. техн. ун-та. Сер. Физ.-мат. науки. 2010. № 5 (21). С. 268–271.
- 15. Потапов, Д.К. Существование решений, оценки дифференциального оператора и "разделяющее" множество в краевой задаче для дифференциального уравнения второго порядка с разрывной нелинейностью / Д.К. Потапов // Дифференц. уравнения. 2015. Т. 51, № 7. С. 970–974.

ON ESTIMATIONS IN AN EQUATION WITH A PARAMETER AND A DISCONTINUOUS OPERATOR

© 2024 / D. K. Potapov

Saint Petersburg State University, Russia e-mail: d.potapov@spbu.ru

In a real reflexive Banach space, an equation with a parameter and a discontinuous nonlinear operator is considered. Both parameter estimations and operator norms are found for the equation. These estimations validate and define concretely the similar estimations obtained earlier in problems with a parameter for elliptic and ordinary differential equations with discontinuous right-hand sides.

Keywords: discontinuous operator, parameter, estimations

FUNDING

This work was carried out with financial support from the Russian Science Foundation (project no. 23-21-00069).

REFERENCES

- 1. Rakotoson, J.M., Generalized eigenvalue problems for totally discontinuous operators, *Disc. Contin. Dyn. Syst.*, 2010, vol. 28, no. 1, pp. 343–373.
- 2. Chrayteh, H. and Rakotoson, J.M., Eigenvalue problems with fully discontinuous operators and critical exponents, *Nonlin. Anal.*, 2010, vol. 73, no. 7, pp. 2036–2055.
- 3. Chrayteh, H., Qualitative properties of eigenvectors related to multivalued operators and some existence results, J. Optim. Theory Appl., 2012, vol. 155, no. 2, pp. 507–533.
- 4. Pavlenko, V.N. and Potapov, D.K., Existence of a ray of eigenvalues for equations with discontinuous operators, Siberian Math. J., 2001, vol. 42, no. 4, pp. 766–773.
- 5. Potapov, D.K., On an existence of a ray of eigenvalues for equations of elliptic type with discontinuous nonlinearities in a critical case, *Vestn. Saint-Petersburg Univ. Ser. 10. Prikl. Mat. Inf. Protsessy Upr.*, 2004, no. 4, pp. 125–132.
- 6. Potapov, D.K., On a number of solutions in problems with spectral parameter for equations with discontinuous operators, *Ufa Math. J.*, 2013, vol. 5, no. 2, pp. 56–62.
- 7. Potapov, D.K., Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators, *Ufa Math. J.*, 2011, vol. 3, no. 1, pp. 42–44.
- 8. Potapov, D.K., Estimation of operator norms in eigenvalue problems for equations with discontinuous operators, *Izv. Saratovskogo Univ. Novaya ser. Ser. Mat. Mekh. Inf.*, 2011, vol. 11, no. 4, pp. 41–45.
- 9. Potapov, D.K., On elliptic equations with spectral parameter and discontinuous nonlinearity, J. Sib. Fed. Univ. Math. & Phys., 2012, vol. 5, no. 3, pp. 417–421.
- 10. Bonanno, G., Some remarks on a three critical points theorem, Nonlin. Anal., 2003, vol. 54, no. 4, pp. 651–665.

- 11. Bonanno, G. and Candito, P., Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, *J. Differ. Equat.*, 2008, vol. 244, no. 12, pp. 3031–3059.
- 12. Potapov, D.K., On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities, *Differ. Equat.*, 2008, vol. 44, no. 5, pp. 737–739.
- 13. Potapov, D.K., On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities, *Differ. Equat.*, 2010, vol. 46, no. 1, pp. 155–157.
- 14. Potapov, D.K., Estimations of a differential operator in spectral parameter problems for elliptic equations with discontinuous nonlinearities, *Vestn. Samarskogo Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki*, 2010, no. 5 (21), pp. 268–271.
- 15. Potapov, D.K., Existence of solutions, estimates for the differential operator, and a "separating" set in a boundary value problem for a second-order differential equation with a discontinuous nonlinearity, *Differ. Equat.*, 2015, vol. 51, no. 7, pp. 967–972.