Fononnye spektry i reshetochnaya teploprovodnost' vysokoeffektivnogo termoelektrika SnSe

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Селенид олова обладает рекордными значениями термоэлектрической эффективности, что во многом обусловлено его низкой решеточной теплопроводностью, возникающей вследствие сильного решеточного ангармонизма. В данной работе на основе молекулярно-динамических симуляций осуществлен анализ влияния температуры и объема на плотности фононных состояний низкотемпературной фазы SnSe с пространственной группой симметрии Pnma. Продемонстрирована стабилизация фазы с кристаллической структурой Cmcm при высоких температурах. Из численного решения линеаризованного транспортного уравнения Больцмана получена аномально низкая решеточная теплопроводность SnSe, которая согласуется с экспериментальными данными в широком интервале температур.

参考

  1. Z.-G. Chen, X. Shi, L. Zhao, and J. Zou, Prog. Mater. Sci. 97, 283 (2018).
  2. L. Xie, D. Hea and J. He, Mater. Horiz. 8, 1847 (2021).
  3. D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, and X. Chang, Mater. Today Energy 20, 100665 (2021).
  4. Y. Wang, B. Qin, and L. Zhao, Appl. Phys. Lett. 119, 044103 (2021).
  5. N.V. Morozova, I.V. Korobeynikov, N. Miyajima, and S.V. Ovsyannikov, Adv. Sci. 9, 2103720 (2022).
  6. P. Zhang, D. Jin, M. Qin, Z. Zhang, Y. Liu, Z. Wang, Z. Lu, R. Xiong, and J. Shi, Phys. Rev. Appl. 21, 024043 (2024).
  7. C.W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Nature Phys. 11, 1063 (2015).
  8. R. Drautz, Phys. Rev. B 99, 014104 (2019).
  9. Y. Lysogorskiy, C.v.d. Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Hammerschmidt, M. Mrovec, A. Thompson, G. Csanyi, C. Ortner, and R. Drautz, npj Comput. Mater. 7, 97 (2021).
  10. А.Н. Филанович,Ю.В. Лысогорский, А.А. Повзнер, Физика и техника полупроводников 55, 1149 (2021).
  11. A. Carreras, A. Togo, and I. Tanaka, Comput. Phys. Commun. 221, 221 (2017).
  12. A. McGaughey and J. Larkin, Annu. Rev. Heat Transf. 17, 49 (2014).
  13. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995).
  14. W.G. Hoover, Phys. Rev. A 31, 1695 (1985).
  15. S. Chen, K. F. Cai, and W. Zhao, Physica B: Condens. Matter 407, 4154 (2012).
  16. A. Togo, L. Chaput, T. Tadano, and I. Tanaka, J. Phys. Condens. Matter 35, 353001 (2023).
  17. A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).
  18. T. Chattopadhyay, J. Pannetier, and H.G. von Schnering, J. Phys. Chem. Solids 47, 879 (1986).
  19. J. S, Kang, H. Wu, M. Li, and Y. Hu, Nano Lett. 19, 4941 (2019).
  20. L.-D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

版权所有 © Российская академия наук, 2024

##common.cookie##