Designing the Structure of a One-Dimensional Photonic Crystal with a Given Spectrum of the Reflection Coefficient

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for solving the inverse problem of designing the structure of a one-dimensional photonic crystal is proposed and experimentally implemented. It is known that a one-dimensional photonic crystal with a spatial sinusoidal modulation of the refractive index, has a narrow photonic bandgap at a frequency related to the spatial frequency of this sinusoid. A reverse engineering method is proposed for one-dimensional photonic crystals with an arbitrary given reflection spectrum by expanding this spectrum into elementary photonic band gaps and then summing them. The application of this method to fabricate examples of photonic crystals with simple shapes of spectral reflection curves is demonstrated.

作者简介

P. Emel'yantsev

Faculty of Physics, Moscow State University, 119991, Moscow, Russia

Email: emelyantsev97@mail.ru

N. Pyshkov

Faculty of Physics, Moscow State University, 119991, Moscow, Russia

Email: kolyagod12@gmail.com

S. Svyakhovskiy

Faculty of Physics, Moscow State University, 119991, Moscow, Russia

编辑信件的主要联系方式.
Email: sse@shg.ru

参考

  1. E. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  3. M. Ashurov, A. Baranchikov, and S. Klimonsky, Phys. Chem. Chem. Phys. 22(17), 9630 (2020).
  4. S. Noda, M. Fujita, and T. Asano, Nat. Photonics 1(8), 449 (2007).
  5. J. Martorell, R. Vilaseca, and R. Corbalan, Appl. Phys. Lett. 70(6), 702 (1997).
  6. M. Martemyanov, E. Kim, T. Dolgova, A. Fedyanin, O. Aktsipetrov, and G. Marowsky, Phys. Rev. B 70(7), 073311 (2004).
  7. M. Minkov, I. A. D. Williamson, L. C. Andreani, D. Gerace, B. Lou, A. Y. Song, T. W. Hughes, and S. Fan, ACS Photonics 7(7), 1729 (2020).
  8. J. Jensen and O. Sigmund, Laser Photonics Rev. 5, 308 (2011).
  9. C. Lalau-Keraly, S. Bhargava, O. Miller, and E. Yablonovitch, Opt. Express 21, 21693 (2013).
  10. W. Chen, K. Diest, C.-Y. Kao, D. E. Marthaler, L. A. Sweatlock, and S. Osher, Gradient Based Optimization Methods for Metamaterial Design, Springer Netherlands, Dordrecht (2013), с. 175.
  11. L. Fahey, F. Amirkulova, and A. Norris, J. Acoust. Soc. Am. 146(4), 2830 (2019).
  12. J. Geremia, J. Williams, and H. Mabuchi, Phys. Rev. E Statistical, nonlinear, and soft matter physics 66, 066606 (2003).
  13. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge (2004).
  14. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, and T. M. Babinec, Nat. Photonics 9(6), 374 (2015).
  15. Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).
  16. Y. Lecun and Y. Bengio, The handbook of Brain Theory and Neural Networks 1, 255 (1995).
  17. A. Jain, J. Mao, and K. Mohiuddin, Computer 29(3), 31 (1996).
  18. P. Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World, Basic Books, N.Y. (2015).
  19. L. Deng, Y. Xu, and Y. Liu, Photonics Nanostructures: Fundam. Appl. 52, 101073 (2022).
  20. A. Nikulin, I. Zisman, M. Eich, A. Y. Petrov, and A. Itin, Photonics Nanostructures: Fundam. Appl. 52, 101076 (2022).
  21. Z. Liu, D. Zhu, L. Raju, and W. Cai, Adv. Sci. 8(5), 2002923 (2021).
  22. P. R. Wiecha, A. Arbouet, C. Girard, and O. L. Muskens, Photon. Res. 9(5), B182 (2021).
  23. B. Duan, B. Wu, J.-h. Chen, H. Chen, and D.-Q. Yang, Frontiers in Materials 8, 1 (2022).
  24. J. Sanchez-Dehesa, A. Hakansson, and L. Sanchis, Proceedings of SPIE - The International Society for Optical Engineering, Bellingham, WA (2004), v. 5450, p. 200.
  25. A. Luce, A. Mahdavi, F. Marquardt, and H. Wankerl, JOSA A 39(6), 1007 (2022).
  26. Т. Крылова, Интерференционные покрытия, Машиностроение, Л. (1976).
  27. P. Baumeister, Appl. Opt. 25(16), 2644 (1986).
  28. S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys. 112(1), 013106 (2012).

版权所有 © Российская академия наук, 2023

##common.cookie##