On the Formation of a Plasma Cloud at the Ablation of a Pellet in a High-Temperature Magnetized Toroidal Plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The investigation of cold secondary plasma clouds near pellets ablating in the hot plasma of magnetic confinement devices (tokamaks and stellarators) provides valuable information on the physical characteristics of a pellet cloud. In this work, the characteristic sizes of emitting clouds around fusible polystyrene pellets and refractory carbon pellets have been analyzed. The calculation of the ionization length of C+ ions in both carbon and hydrocarbon clouds has shown that the contribution of only hot electrons is insufficient to ensure the experimentally observed decay lengths of the CII line intensity. Taking into account the strong shielding of the electron flux of the background plasma in the hydrocarbon pellet cloud, the ionization of C+ ions in this cloud is determined predominantly by electrons of the cold plasma of the cloud. Shielding near a refractory carbon pellet is weak because its ablation rate is lower. The contributions from hot electrons of the surrounding plasma and cold electrons of the pellet cloud to the ionization of C+ ions are comparable in the case of carbon pellets.

作者简介

O. Bakhareva

Peter the Great St. Petersburg Polytechnic University

Email: o.bakhareva@spbstu.ru
195251, St. Petersburg, Russia

V. Sergeev

Peter the Great St. Petersburg Polytechnic University

Email: o.bakhareva@spbstu.ru
195251, St. Petersburg, Russia

I. Sharov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: o.bakhareva@spbstu.ru
195251, St. Petersburg, Russia

参考

  1. B. V. Kuteev, Tech. Phys. 44, 1058 (1999).
  2. B. P'egouri'e, Plasma Phys. Control. Fusion 49, R87 (2007).
  3. L. L. Lengyel, Nucl. Fusion 29, 325 (1989).
  4. P. R. Goncharov, T. Ozaki, S. Sudo, N. Tamura, TESPEL Group, LHD Experimental Group, E. A. Veshchev, V. Y. Sergeev, and A. V. Krasilnikov, Rev. Sci. Instrum. 77, 10F119 (2006).
  5. O. A. Bakhareva, V. Y. Sergeev, B. V. Kuteev, V. G. Skokov, V. M. Timokhin, R. Burhenn, and W7-AS Team, Plasma Phys. Reports 31, 282 (2005).
  6. K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
  7. D. K. Morozov, V. Gervids, I. Y. Senichenkov, I. Y. Veselova, V. Rozhansky, and R. Schneider, Nucl. Fusion 44, 252 (2004).
  8. I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, N. Tamura, B. V. Kuteev, and S. Sudo, Rev. Sci. Instrum. 86, 043505 (2015).
  9. I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, B. V. Kuteev, N. Tamura, and S. Sudo, Tech. Phys. Lett. 44, 384 (2018).
  10. I. A. Sharov, V. Yu. Sergeev, I. V. Miroshnikov, N. Tamura, and S. Sudo, Plasma Phys. Control. Fusion 63, 065002 (2021).
  11. Б. В. Кутеев, В. Ю. Сергеев, Л. Д. Цендин, Физика плазмы 10, 1172 (1984).
  12. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).
  13. V. Yu. Sergeev, O. A. Bakhareva, B. V. Kuteev, and M. Tendler, Fizika Plazmy 32(5), 398 (2006).
  14. B. V. Kuteev, Nucl. Fusion 35, 431 (1995).
  15. V. A. Rozhansky and I. Y. Senichenkov, Plasma Phys. Reports 31, 993 (2005).
  16. L. Ledl, R. Burhenn, L. Lengyel, F. Wagner, V. Y. Sergeev, V. M. Timokhin, B. V. Kuteev, V. G. Skokov, and S. M. Egorov, Nucl. Fusion 44, 600 (2004).
  17. V. Rozhansky, Phys. Plasmas 20, 101614 (2013).

版权所有 © Российская академия наук, 2023

##common.cookie##