Obnaruzhenie “medlennogo” sveta v spektrakh fototoka v sloyakh kvantovykh tochek Ge/Si, sopryazhennykh s fotonnym kristallom

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Исследованы спектральные характеристики фототока в ближней инфракрасной области в вертикальных Ge/Si pin фотодиодах с квантовыми точками Ge, встроенными в двумерный фотонный кристалл. Из зависимостей фототока от угла падения света определены дисперсионные соотношения для блоховских фотонных мод, взаимодействие с которыми приводит к резонансному увеличению чувствительности фотодиодов. На дисперсионных характеристиках обнаружены участки, характеризующиеся групповой скоростью фотонов, стремящейся к нулю. Установлено, что максимальное усиление фототока, достигающее значений ∼ 60 относительно фотодиода без фотонного кристалла, является результатом взаимодействия квантовых точек с “медленными” блоховскими модами.

作者简介

A. Yakimov

Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН

Email: yakimov@isp.nsc.ru

V. Kirienko

Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН

A. Dvurechenskiy

Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН;Новосибирский государственный университет

D. Utkin

Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН;Новосибирский государственный университет

参考

  1. А. И. Аржанов, А. О. Севостьянов, К. А. Магарян, К. Р. Каримуллин, А. В. Наумов, Фотоника 15, 622 (2021).
  2. А. И. Аржанов, А. О. Севостьянов, К. А. Магарян, К. Р. Каримуллин, А. В. Наумов, Фотоника 16, 96 (2022).
  3. S. Tong, J. L. Liu, J. Wan, and K. L. Wang, Appl. Phys. Lett. 80, 1189 (2002).
  4. A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, and Y. Shiraki, Appl. Phys. Lett. 83, 1258 (2003).
  5. A. Elfving, G. V. Hansson, and W.-X. Ni, Physica E 16, 528 (2003).
  6. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Mater. Res. Express 3, 105032 (2016).
  7. K. Brunner, Rep. Prog. Phys. 65, 27 (2002).
  8. O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000).
  9. D. Gru¨tzmacher, T. Fromherz, C. Dais, J. Stangl, E. Mu¨ller, Y. Ekinci, H. Solak, H. Sigg, R. Lechner, E. Wintersberger, S. Birner, V. Holy', and G. Bauer, Nano Lett. 7, 3150 (2007).
  10. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, A. V. Dvurechenskii, and D. E. Utkin, J. Appl. Phys. 128, 143101 (2020).
  11. А. И. Якимов, А. А. Блошкин, В. В. Кириенко, А. В. Двуреченский, Д. Е. Уткин, Письма в ЖЭТФ 113, 501 (2021).
  12. J. L. Donnelly, B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and M. de Sterke, Opt. Express 22, A1343 (2014).
  13. Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. Ponizovskaya Devine, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, Nat. Photonics 11, 301 (2017).
  14. H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, Photonics Res. 6, 734 (2018).
  15. S. Ghandiparsi, A. F. Elrefaie, A. S. Mayet, T. Landolsi, C. Bartolo-Perez, H. Cansizoglu, Y. Gao, H. H. Mamtaz, H. R. Golgir, E. Ponizovskaya Devine, T. Yamada, S. Y. Wang, and M. S. Islam, J. Light. Technol. 37, 5748 (2019).
  16. H. Zhou, S. Xu, Y. Lin, Y. C. Huang, B. Son, Q. Chen, X. Guo, K. H. Lee, S. C. K. Gon, X. Gong, and C. S. Tan, Opt. Express 28, 10280 (2020).
  17. H. Cansizoglu, E. Ponizovskaya Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S. Y. Wang, and M. S. Islam, IEEE Trans. Electron Devices 65, 372 (2018).
  18. T. Yamada, E. Ponizovskaya Devine, S. Ghandiparsi, C. Bartolo-Perez, A. S. Mayet, H. Cansizoglu, Y. Gao, A. Ahamed, S. Y. Wang, and M. S. Islam, Nanotechnology 32, 365201 (2001).
  19. C. Bartolo-Perez, S. Chandiparsi, A. S. Mayet, H. Cansizoglu, Y. Gao, W. Qarony, A. Ahamed, S. Y. Wang, S. R. Cherry, M. S. Islam, and G. Arino-Estrada, Opt. Express 29, 19024 (2021).
  20. Yu. V. Dvuzhilova, I. S. Dvuzhilov, and M. B. Belonenko, Bull.Russ. Acad. Sci.: Phys. 85, 1354 (2021).
  21. П. С. Емельянцев, Н. И. Пышков, С. Е. Свяховский, Письма в ЖЭТФ 117, 826 (2023).
  22. A. I. Yakimov, V. V. Kirienko, D. E. Utkin, and A. V. Dvurechenskii, Nanomaterials 12, 2993 (2022).
  23. D. Duch'e, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, Appl. Phys. Lett. 92, 193310 (2008).
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the ow of light, Princeton University Press, Princeton (2008).
  25. T. Baba, Nat. Photonics 2, 465 (2008).
  26. И. А. Колмычек, И. В. Малышева, В. Б. Новиков, А. И. Майдыковский, А. П. Леонтьев, К. С. Напольский, Т. В. Мурзина, Письма в ЖЭТФ 114, 727 (2021).
  27. А. И. Якимов, А. В. Двуреченский, А. И. Никифоров, С. В. Чайковский, С. А. Тийс, ФТП 37, 1383 (2003).
  28. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Appl. Phys. Lett. 112, 171107 (2018).
  29. K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, Nat.Commun. 8, 628 (2017).
  30. H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, Appl. Phys. Lett. 101, 161103 (2012).
  31. Ю. М. Серов, А. И. Галимов, А. А. Торопов, Известия Российской академии наук. Серия физическая 87, 885 (2023).

版权所有 © Российская академия наук, 2023

##common.cookie##