Влияние методов травления на диэлектрические потери кубитов-трансмонов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сверхпроводниковые кубиты – одна из наиболее перспективных платформ для реализации отказоустойчивого квантового процессора. Существенной проблемой этих кубитов являются дефекты на поверхностях сверхпроводников и на подложке, приводящие к декогеренции и временным флуктуациям характеристик кубита. Количество и характер дефектов зависят от материала подложки и кубитов и качества их обработки. В данной работе были экспериментально исследованы трансмоны, изготовленные по одному технологическому чертежу с использованием двух методик травления алюминия: жидкостного в растворе слабых кислот и сухого плазмохимического в хлорсодержащей смеси. Времена релаксации и когерентности кубитов, изготовленных методом сухого травления, более чем в 2 раза превосходят аналогичные характеристики кубитов, изготовленных с использованием жидкостного травления. Исследование временных флуктуаций времен релаксации и частот кубитов показал значительно меньшее влияние двухуровневых дефектов на кубиты сухого травления, чем на кубиты жидкостного травления. Анализ временных изменений характеристик кубитов позволяет определить доминирующие механизмы их диэлектрических потерь.

Об авторах

Т. А Чудакова

Национальный исследовательский технологический университет МИСИС; Российский квантовый центр; Московский физико-технический институт

Email: sidelnikova.ta@phystech.edu
Москва, Россия; Москва, Россия; Долгопрудный, Россия

Г. С Мажорин

Национальный исследовательский технологический университет МИСИС; Российский квантовый центр; Московский физико-технический институт

Москва, Россия; Москва, Россия; Долгопрудный, Россия

И. В Трофимов

Институт нанотехнологий микроэлектроники РАН

Москва, Россия

Н. Ю Руденко

Национальный исследовательский технологический университет МИСИС

Москва, Россия

А. М Мумляков

Институт нанотехнологий микроэлектроники РАН

Москва, Россия

А. С Казьмина

Национальный исследовательский технологический университет МИСИС; Российский квантовый центр; Московский физико-технический институт

Москва, Россия; Москва, Россия; Долгопрудный, Россия

Е. Ю Егорова

Национальный исследовательский технологический университет МИСИС; Российский квантовый центр; Московский физико-технический институт

Москва, Россия; Москва, Россия; Долгопрудный, Россия

П. А Гладилович

Национальный исследовательский технологический университет МИСИС

Москва, Россия

М. В Чичков

Национальный исследовательский технологический университет МИСИС

Москва, Россия

Н. А Малеева

Национальный исследовательский технологический университет МИСИС

Москва, Россия

М. А Тархов

Институт нанотехнологий микроэлектроники РАН

Москва, Россия

В. И Чичков

Национальный исследовательский технологический университет МИСИС

Москва, Россия

Список литературы

  1. A. Somoroff, Q. Ficheux, A.R. Mencia, H. Xiong, R. Kuzmin, and V.E. Manucharyan, Phys. Rev. Lett. 130, 267001 (2023).
  2. Z. Li, P. Liu, P. Zhao, Z. Mi, H. Xu, X. Liang, T. Su, W. Sun, G. Xue, J.-N. Zhang,W. Liu, Y. Jin, and H. Yu, npj Quantum Inf. 9, 111 (2023).
  3. I.N. Moskalenko, I.A. Simakov, N.N. Abramov, A.A. Grigorev, D.O. Moskalev, A.A. Pishchimova, N. S. Smirnov, E.V. Zikiy, I.A. Rodionov, and I. S. Besedin, npj Quantum Inf. 8, 130 (2022).
  4. L. Ding, M. Hays, Y. Sung et al. (Collaboration), Phys. Rev. X 13, 031035 (2023).
  5. F. Arute, K. Arya, and R. Babbush, Nature 574, 505 (2019).
  6. J.D. Franson, M.M. Donegan, M. J. Fitch, B.C. Jacobs, and T.B. Pittman, Phys. Rev. Lett. 89, 137901 (2002).
  7. R. Acharya, I. Aleiner, R. Allen et al. (Collaboration), Nature 614, 676 (2023).
  8. S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C.K. Andersen, M. M¨uller, A. Blais, C. Eichler, and A. Wallraff, Nature 605, 669 (2022).
  9. F. Arute, K. Arya, R. Babbush, et al. (Collaboration), Nature 369, 1084 (2020).
  10. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow, and J.M. Gambetta, Nature 369, 1084 (2020).
  11. C. Muller, J.H. Cole, and J. Lisenfeld, Rep. Prog. Phys. 82, 124501 (2019).
  12. A. Premkumar, C. Weiland, S. Hwang, et al. (Collaboration), Commun. Mater. 2, 72 (2021).
  13. R. McDermott, IEEE Trans. Appl. Supercond. 19, 2 (2009).
  14. J.H. B´ejanin, C.T. Earnest, A. S. Sharafeldin, and M. Mariantoni, IEEE Trans. Appl. Supercond. 19, 2 (2009).
  15. D.P. Pappas, M.R. Vissers, D. S. Wisbey, J. S. Kline, and J. Gao, IEEE Trans. Appl. Supercond. 21, 871 (2011).
  16. P.V. Klimov, J. Kelly, Z. Chen et al. (Collaboration), Phys. Rev. Lett. 121, 090502 (2018).
  17. D. Niepce, J. Burnett, M.G. Latorre, and J. Bylander, Supercond. Sci. Technol. 33, 025013 (2020).
  18. J. Burnett, L. Faoro, and T. Lindstr¨om, Supercond. Sci. Technol. 29, 044008 (2016).
  19. M¨uller, Clemens, J.H. Cole, and J. Lisenfeld, Rep. Prog. Phys. 82, 124501 (2019).
  20. J. Wenner, R. Barends, R.C. Bialczak et al. (Collaboration), Appl. Phys. Lett. 99, 113513 (2011).
  21. J.H. B´ejanin, C.T. Earnest, A. S. Sharafeldin, and M. Mariantoni, Phys. Rev. B 104, 094106 (2021).
  22. C. M¨uller, J. Lisenfeld, A. Shnirman, and S. Poletto, Phys. Rev. B 92, 035442 (2015).
  23. C. Wang, C. Axline, Y.Y. Gao, T. Brecht, L. Frunzio, M.H. Devoret, R. J. Schoelkopf, Appl. Phys. Lett. 107, 16 (2015).
  24. N. S. Smirnov, E.A. Krivko, A.A. Solovyova, A. I. Ivanov, and I.A. Rodionov, Sci. Rep. 14, 7326 (2024).
  25. C. M¨uller, A. Shnirman, and Y. Makhlin, Phys. Rev. B 80, 134517 (2009).
  26. R.W. Simmonds, M. S. Allman, F. Altomare, K. Cicak, K.D. Osborn, J.A. Park, M. Sillanp¨a¨a, A. Sirois, J.A. Strong, and J.D. Whittaker, Quantum Information Processing 8, 117 (2009).
  27. A. Shnirman, G. Sch¨on, I. Martin, and Y. Makhlin, Phys. Rev. Lett. 94, 127002 (2005).
  28. P. Dutta and P.M. Horn, Rev. Mod. Phys. 53, 497 (1981).
  29. J. Lisenfeld, C. Muller, J.H. Cole, P.A. Bushev, A. Lukashenko, A. Shnirman, and A.V. Ustinov, Phys. Rev. Lett. 105, 230504 (2010).
  30. J. Burnett, L. Faoro, I. Wisby, V. L. Gurtovoi, A.V. Chernykh, G.M. Mikhailov, V.A. Tulin, R. Shaikhaidarov, V. Antonov, P. J. Meeson, A.Ya. Tzalenchuk, and T. Lindstr¨om, Nat. Commun. 5, 4119 (2014).
  31. E. Paladino, Y.M. Galperin, G. Falci, and B. L. Altshuler, Rev. Mod. Phys. 86, 361 (2013).
  32. S. Eun, S.H. Park, K. Seo, K. Choi, and S. Hah, J. Phys. D: Appl. Phys. 56, 505306 (2023).
  33. J. Lisenfeld, G. J. Grabovskij, C. Muller, J.H. Cole, G. Weiss, and A.V. Ustinov, Nat. Commun. 6, 6182 (2015).
  34. I.A. Simakov, G. S. Mazhorin, I.N. Moskalenko, S. S. Seidov, and I. S. Besedin, Phys. Rev. Appl. 21, 044035 (2024).
  35. I.A. Simakov, G. S. Mazhorin, I.N. Moskalenko, N.N. Abramov, A.A. Grigorev, D.O. Moskalev, An.A. Pishchimova, N. S. Smirnov, E.V. Zikiy, I.A. Rodionov, and I. S. Besedin, PRX Quantum 4, 040321 (2023).
  36. C.T. Earnest, J.H. B´ejanin, T.G. McConkey, E.A. Peters, A. Korinek, H. Yuan, and M. Mariantoni, Supercond. Sci. Technol 31, 125013 (2018).
  37. S. Probst, F.B. Song, P.A. Bushev, A.V. Ustinov, and M. Weides, Rev. Sci. Instrum. 86, 024706 (2015).
  38. E.V. Zikiy, A. I. Ivanov, N. S. Smirnov, D.O. Moskalev, V. I. Polozov, A.R. Matanin, E. I. Malevannaya, V.V. Echeistov, T.G. Konstantinova, and I.A. Rodionov, Sci. Rep. 13, 15536 (2023).
  39. F. Lecocq, I. Pop, Zhihui Peng, I. Matei, T. Crozes, T. Fournier, C. Naud, W. Guichard, and O. Buisson, Nanotechnology 22, 315302 (2011).
  40. M.H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
  41. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W.D. Oliver, Appl. Phys. Rev. 6, 021318 (2019).
  42. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, and J. Bylander, npj Quantum Inf. 5, 9 (2019).
  43. P. J. de Visser, J. J.A. Baselmans, P. Diener, S. J.C. Yates, A. Endo, and T.M. Klapwijk, Phys. Rev. Lett. 106, 167004 (2011)
  44. D. Rist`e, C.C. Bultink, M. J. Tiggelman, R.N. Schouten, K.W. Lehnert, and L. DiCarlo, Nat. Commun. 4, 1913 (2013).
  45. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, and C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005).
  46. S. Schl¨or ,J. Lisenfeld, C. M¨uller, A. Bilmes, A. Schneider, D.P. Pappas, A.V. Ustinov, and M. Weides, Phys. Rev. Lett. 123, 190502 (2019).
  47. F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D.G. Cory, Y. Nakamura, T. P. Orlando, and W.D. Oliver, Nat. Commun. 4, 2337 (2013).
  48. L.V. Abdurakhimov, I. Mahboob, H. Toida, K. Kakuyanagi, Y. Matsuzaki, and Shiro Saito, Phys. Rev. B 102, 100502 (2020).
  49. Y. Sung, A. Veps¨al¨ainen, J. Braum¨uller et. al. (Collaboration), Nat. Commun. 12, 967 (2021).
  50. S. Matityahu, J. Lisenfeld, A. Bilmes, A. Shnirman, G. Weiss, A.V. Ustinov, and M. Schechter, Phys. Rev. 95, 241409 (2017).
  51. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.-S. Tsai, andW.D. Oliver, Nature Phys. 7, 565 (2011).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах