Каскад фазовых переходов под давлением в BaMn2P2 и BaMn2As2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В рамках DFT+U метода изучено изменение кристаллической структуры, электронных, термодинамических и магнитных свойств при приложении гидростатического давления от 0 до 140 ГПа в соединениях BaMn2P2 и BaMn2As2 – структурных аналогах сверхпроводников на основе железа. Фазовый переход второго рода от антиферромагнитного изолятора к антиферромагнитному металлу наблюдается при давлении 6.4 ГПа для BaMn2P2 и 8.3 ГПа для BaMn2As2. Возможно, при допировании BaMn2P2 и BaMn2As2 могут оказаться сверхпроводниками выше 6–8 ГПа с критической температурой, которая растет под давлением. Более того, дальнейшее увеличение давления приводит к серии магнитоструктурных фазовых переходов первого рода между различными антиферромагнитными фазами, после которых происходит переход в сосояние ферромагнитного металла и, наконец, немагнитного металла.

Об авторах

Н. С Павлов

Институт электрофизики Уральского отделения РАН; Физический институт им. П.Н.Лебедева РАН

Email: pavlov@iep.uran.ru
Екатеринбург, Россия; Москва, Россия

И. Р Шеин

Институт химии твердого тела Уральского отделения РАН

Екатеринбург, Россия

И. А Некрасов

Институт электрофизики Уральского отделения РАН; Физический институт им. П.Н.Лебедева РАН

Екатеринбург, Россия; Москва, Россия

Список литературы

  1. М. В. Садовский, Успехи физических наук 178, 1243 (2008).
  2. G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
  3. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).
  4. M. Neupane, Ch. Liu, S.-Y. Xu, Y.-J. Wang, N. Ni, J.M. Allred, L.A. Wray, N. Alidoust, H. Lin, R. S. Markiewicz, A. Bansil, R. J. Cava, and M. Z. Hasan, Phys. Rev. B 85, 094510 (2012).
  5. И. А. Некрасов, М. В. Садовский, Письма в ЖЭТФ 10, 687 (2014).
  6. T. L. Hung, C. H. Huang, L. Z. Deng, M. N. Ou, Y. Y. Chen, M. K. Wu, S. Y. Huyan, C. W. Chu, P. J. Chen, and T. K. Lee, Nat. Commun. 12, 5436 (2021).
  7. A. T. Satya, Awadhesh Mani, A. Arulraj, N. V. Chandra Shekar, K. Vinod, C. S. Sundar, and A. Bharathi, Phys. Rev. B 84, 180515 (2011).
  8. Y. Singh, A. Ellern, and D. C. Johnston, Phys. Rev. B 79, 094519 (2009).
  9. A. Pandey, V. K. Anand, and D. C. Johnston, Phys. Rev. B 84, 014405 (2011).
  10. A. Antal, T. Knoblauch, Y. Singh, P. Gegenwart, D. Wu, and M. Dressel, Phys. Rev. B 86, 014506 (2012).
  11. W. L. Zhang, P. Richard, A. van Roekeghem et al. (Collaboration), Phys. Rev. B 94, 155155 (2016).
  12. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  14. S.L. Dudarev, G. A. Botton, S.Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
  15. A. Otero-de-la Roza and V. Luana, Comput. Phys. Commun. 182, 1708 (2011).
  16. F. Birch, Phys. Rev. 71, 809 (1947).
  17. W. Hai-Ping, D. Kai-Ming, T. Wei-Shi, X. Chuan-Yun, H. Feng-Lan, and L. Qun-Xiang, Chinese Physics B 18, 5008 (2009).
  18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Письма в ЖЭТФ 91, 567 (2010).
  19. K. Kobayashi, J.-i. Yamaura, S. limura, S. Maki, H. Sagayama, R. Kumai, Y. Murakami, H. Takahashi, S. Matsuishi, and H. Hosono, Sci. Rep. 6, 39646 (2016).
  20. A. S Sefat, Rep. Prog. Phys. 74, 124502 (2011).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах