Однофотонное фемтосекундное лазерное возбуждение фотолюминесценции Н3- и Н4-центров природного алмаза для измерения их концентраций

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Спектры фотолюминесценции доминирующих Н3-, Н4-центров в природном алмазе, предварительно охарактеризованном методами оптической и инфракрасной спектрофотометрии, возбуждались фемтосекундными лазерными импульсами с длиной волны накачки 470 нм и варьируемой интенсивностью. Насыщение интенсивности фотолюминесценции Н3-, Н4-центров, нормированной на интенсивность лазерного излучения, связывалось с насыщением возбуждаемого резонансного перехода, что позволило впервые оценить величины сечения поглощения Н3-, Н4-центров, сопоставленные с известными литературными значениями и значениями, измеренными по кинетике фотолюминесценции, а также общую концентрацию Н3-, Н4-центров. С учетом известного коэффициента поглощения образца на длине волны 470 нм и ранее установленного соотношения вкладов Н3-, Н4-центров были впервые оценены их индивидуальные концентрации.

Об авторах

С. И Кудряшов

Физический институт им. П.Н.Лебедева РАН

Email: kudryashovsi@lebedev.ru
Москва, Россия

П. А Данилов

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

В. Г. Винс

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Д. А Помазкин

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

П. П Пахольчук

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

М. Л Скориков

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

И. В Сметанин

Физический институт им. П.Н.Лебедева РАН

Москва, Россия

Ф. В Дуонг

Institute of Physics, Vietnamese academy of science and technology

Hanoi, Vietnam

Ф. Х Минг

Institute of Physics, Vietnamese academy of science and technology

Hanoi, Vietnam

Список литературы

  1. И. С. Григорьев, Е. З. Мейлихов (ред.), Физические величины, Энергоатомиздат, М. (1991).
  2. A. M. Zaitsev, Optical properties of diamond: a data handbook, Springer Science & Business Media (2013).
  3. L. T. S. Lin, M. A. Prelas, and G. Popovici,Laser modes in diamond. Wide Band Gap Electronic Materials 1, 187 (1995).
  4. V. P. Mironov, E. A. Protasova, E. I. Lipatov, E. F. Martynovich, Generation of laser radiation by color centers in diamond crystals, AIP Conference Proceedings, Published by AIP Publishing 2392, 030001-1?030001-8 (2021).
  5. S. C. Rand and L. G. DeShazer, Opt. Lett. 10(10), 481 (1985).
  6. S. Rand, Synthetic Diamond for Color Center Lasers, in Advanced Solid State Lasers, Optica Publishing Group (1986), p. FA9.
  7. S. D. Subedi, V. V. Fedorov, J. Peppers, D. V. Martyshkin, S. B. Mirov, L. Shao, and M. Loncar, Opt. Mater. Express 9(5), 2076 (2019).
  8. A. Savvin, A. Dormidonov, E. Smetanina, V. Mitrokhin, E. Lipatov, D. Genin, S. Potanin, A. Yelisseyev, and V. Vins, Nat. Commun. 12(1), 7118 (2021).
  9. P. G. Klemens, Phys. Rev. B 11, 3206 (1975).
  10. В. О. Компанец, В. Н. Лохман, Д. Г. Пойдашев, С. В. Чекалин, Е. А. Рябов, ЖЭТФ 149(4), 723 (2016).
  11. Н. В. Карлов, Лекции по квантовой электронике, Наука, M. (1988), т. 52.
  12. G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, Phys. Rev. B 46(20), 13157 (1992).
  13. G. Davies (editor), Properties and Growth of Diamond, INSPEC, London (1994).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах