Особенности нейтрализации быстрых протонов в углеводородном пеллетном облаке

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для измерения высокоэнергетичной части функции распределения ионов по энергии в горячей плазме с помощью PCX (Pellet Charge eXchange) диагностики необходимо знать зависимость от энергии E доли быстрых ионов F0(E) нейтрализующихся при пересечении пеллетного облака. С использованием экспериментальных и расчетных данных об испарении полистироловых макрочастиц в гелиотроне LHD проведен расчет F0(E) для протонов в углеводородном облаке в диапазоне энергий 50–1000 кэВ и при питч-углах ≥ 70◦. При энергиях в диапазоне 50–200 кэВ необходимым становится учет ослабления потока нейтрализовавшихся протонов при многократных пересечениях облака. Потери энергии протонами вдоль траектории ограничивают снизу возможный диапазон PCX измерений E > 100 кэВ. Необходимость контроля ионизационного состава и структуры облака ограничивает локализацию области обзораь детектора нейтральных атомов в пределах ± 30 мм от положения макрочастицы вдоль магнитного поля. Это обуславливает необходимость совмещения оси инжекции с осью наблюдения NPA (Neutral Particle Analyser) для оптимальной геометрии PCX измерений при использовании полистироловых макрочастиц.

Об авторах

О. А. Бахарева

Санкт-Петербургский политехнический университет Петра Великого

Email: o.bakhareva@spbstu.ru
С.-Петербург, Россия

В. Ю Сергеев

Санкт-Петербургский политехнический университет Петра Великого

С.-Петербург, Россия

И. А. Шаров

Санкт-Петербургский политехнический университет Петра Великого

С.-Петербург, Россия

Список литературы

  1. R. K. Fisher, J. S. Leffler, A. M. Howald, and P. B. Parks, Fusion Technol. 13, 536 (1988).
  2. S. S. Medley, D. K. Mansfield, A. L. Roquemore, R.K. Fisher, H. H. Duong, J. M. McChesney, P. B. Parks, M. P.Petrov, A. V. Khudoleev, and N. N. Gorelenkov, Rev. Sci. Instrum. 67, 3122 (1996).
  3. P. R. Goncharov, T. Ozaki, S. Sudo, N. Tamura, and D. V. Kalinina, Tespel Group, LHD Experimental Group, E. A. Veshchev and V. Yu. Sergeev, Fusion Sci.Technol. 50, 222 (2006).
  4. J. M. McChesney, P. B. Parks, R. K. Fisher, and R. E. Olson, Phys.Plasmas 4, 381 (1997).
  5. P. R. Goncharov, T. Saida, N. Tamura, T. Ozaki, M. Sasao, M. Isobe, S. Sudo, K. V. Khlopenkov, and LHD Experimental Groups I/II, A. V. Krasilnikov, V. Yu. Sergeev, Rev. Sci. Instrum. 67, 1869 (2003).
  6. P. R. Goncharov, T. Ozaki, S. Sudo, N. Tamura, I. Yu. Tolstikhina, and V. Yu. Sergeev, Rev. Sci. Instrum. 79, 10F312-1 (2008).
  7. I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, N. Tamura, B. V. Kuteev, and S. Sudo, Rev. Sci. Instrum. 86, 043505 (2015).
  8. I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, B. V. Kuteev, N. Tamura, and S. Sudo, Tech. Phys. Lett. 44, 384 (2018).
  9. I. A. Sharov, V. Yu. Sergeev, I. V. Miroshnikov, N. Tamura, and S. Sudo, Plasma Phys. Control. Fusion 63, 065002 (2021).
  10. N. Tamura, V. Y. Sergeev, D. V. Kalinina, I. V. Miroshnikov, K. Sato, I. A. Sharov, O. A. Bakhareva, D. M. Ivanova, V. M. Timokhin, S. Sudo, and B. V. Kuteev, Rev. Sci. Instrum. 79, 10F541 (2008).
  11. A. Matsuyama, F. Koechl, B. Pegourie, R. Sakamoto, G. Motojima, and H. Yamada, Nucl. Fusion 52(12), 123017 (2012).
  12. O. A. Bakhareva, V. Y. Sergeev, and I. A. Sharov, JETP Lett. 117, 207 (2023).
  13. O. A. Bakhareva, V. Y. Sergeev, and I. A. Sharov, JETP Lett. 118, 730 (2023).
  14. Н. Мотт, Г. Месси, Теория атомных столкновений, Мир, М. (1969).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах