Связь фрагильности металлических стекол с энтропией смешения и избыточной энтропией по отношению к материнскому кристаллу

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Определена избыточная энтропия ΔS по отношению к материнскому кристаллу для 18-ти металлических стекол, отличающихся по энтропии смешения ΔSmix. На этой основе в рамках модели Адама-Гиббса определена термодинамическая фрагильность mΔΔS. Показано, что mΔS растет с ΔSmix, но снижается с ростом ΔS, отражающей степень структурной неупорядоченности стекла. Сделан вывод о том, что так называемые “высокоэнтропийные стекла” (т.е. имеющие высокие ΔSmix) на самом деле являются наиболее упорядоченными и наименее склонными к релаксации свойств.

Об авторах

Р. А Кончаков

Воронежский государственный педагогический университет

Email: konchakov.roman@gmail.com
Воронеж, Россия

А. С Макаров

Воронежский государственный педагогический университет

Воронеж, Россия

Г. В Афонин

Воронежский государственный педагогический университет

Воронеж, Россия

Ц. Ч Цзиао

Northwestern Polytechnical University

Xi’an, China

Н. П Кобелев

Институт физики твердого тела РАН

Черноголовка, Россия

В. А Хоник

Воронежский государственный педагогический университет

Воронеж, Россия

Список литературы

  1. C.A. Angell, Science 267, 1924 (1995).
  2. S.V. Nemilov, J. Non-Cryst. Solids 353, 4613 (2007).
  3. C.A. Angell, MRS Bulletin 33, 544 (2008).
  4. K. Kawakami, T. Harada, Y. Yoshihashi, E. Yonemochi, K. Terada, and H. Moriyama, JPC B 119(14), 4873 (2015).
  5. H. Tanaka, J. Non-Cryst. Solids, 351, 678 (2005).
  6. V.N. Novikov and A.P. Sokolov, Nature 431, 961 (2004).
  7. T. Watanabe, Y. Benino, and T. Komatsu, J. Non-Cryst, Solids 286, 141 (2001).
  8. H. Kato, T. Wada, M. Hasegawa, J. Saida, A. Inoue, and H. S. Chen, Scr. Mater. 54, 2023 (2006).
  9. E. S. Park, J.H. Na, and D.H. Kim, Appl. Phys. Lett. 91, 031907 (2007).
  10. V.N. Novikov, Phys. Rev. E 106, 024611 (2022).
  11. S. Wei, Z. Evenson, I. Gallino, and R. Busch, Intermetallics 55, 138 (2014).
  12. A. S. Makarov, J.C. Qiao, N.P. Kobelev, A. S. Aronin, and V.A. Khonik, J. Phys.: Condens. Matter 33, 275701 (2021).
  13. А.С. Макаров, Е.В. Гончарова, Ц.Ч. Цзиао, Н.П. Кобелев, В.А. Хоник, Письма в ЖЭТФ 113 751 (2021).
  14. L.-M. Martinez and C.A. Angell, Nature 410, 663 (2001).
  15. S. Sastry, Nature 409, 164 (2001).
  16. Y. Zhang, High-Entropy materials. A Brief Introduction, Springer Nature Singapore Pte Ltd. (2019).
  17. Y. Chen, Z.-W. Dai, and J.-Z. Jiang, J. Alloys Compd. 866, 158852 (2021).
  18. H. Ding, H. Luan, H. Bu, H. Xu, and K. Yao, Materials 15, 1669 (2022).
  19. H. Luan, K. Li, L. Shi, W. Zhao, H. Bu, P. Gong, and K.-F. Yao, J. Mater. Sci. Technol. 161, 50 (2023).
  20. A. S. Makarov, G.V. Afonin, R.A. Konchakov, V.A. Khonik, J.C. Qiao, A.N. Vasiliev, and N.P. Kobelev, Scr. Mater. 239, 15783 (2024).
  21. Y.Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
  22. W.H. Wang, Prog. Mater. Sci. 57, 487 (2012).
  23. N.A. Mauro, M. Blodgett, M. L. Johnson, A. J. Vogt, and K.F. Kelton, Nat. Commun. 5, 4616 (2014).
  24. L.-M. Wang, V. Velikov, and C.A. Angell, J. Chem. Phys. 117, 10184 (2002).
  25. S.A. Kube, S. Sohn, R. Ojeda-Mota, T. Evers, W. Polsky, N. Liu, K. Ryan, S. Rinehart, Y. Sun, and J. Schroers, Nat. Commun. 13, 3708 (2022).
  26. Н.П. Кобелев, В.А. Хоник, УФН 193, 717 (2023).
  27. А.С. Макаров, М.А. Кретова, Г.В. Афонин, Ц.Ч. Цзиао, А.М. Глезер, Н.П. Кобелев, В.А. Хоник, Письма в ЖЭТФ 115, 110 (2022).
  28. G. Adam and J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).
  29. J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
  30. H.L. Smith, C.W. Li, A. Hoff, G.R. Garrett, D. S. Kim, F.C. Yang, M. S. Lucas, T. Swan-Wood, J.Y.Y. Lin, M. B. Stone, D. L. Abernathy, M.D. Demetriou, and B. Fultz, Nat. Phys. 13, 900 (2017).
  31. R. Alvarez-Donado and A. Antonelli, Phys. Rev. Research 2, 013202 (2020).
  32. N. Neuber, O. Gross, M. Frey, B. Bochtler, A. Kuball, S. Hechler, I. Gallino, and R. Busch, Acta Mater. 220, 117300 (2021).
  33. Y. Kawamura, T. Nakamura, H. Kato, H. Mano, and A. Inoue, Mater. Sci. Eng. A 304–306, 674 (2001).
  34. T. Wang, L. Hu, Y. Liu, and X. Hui, Mater. Sci. Eng. A 744, 316 (2019).
  35. T. Yamasaki, S. Maeda, Y. Yokoyama, D. Okai, T. Fukami, H.M. Kimura, and A. Inoue, Mater. Trans. 46, 2746 (2005).
  36. Y. Tong, J.C. Qiao, J.M. Pelletier, and Y. Yao, J. Alloys Compd. 820, 153119 (2020).
  37. S. Li, R. J. Wang, M.X. Pan, D.Q. Zhao, and W.H. Wang, J. Non-Cryst. Solids 354, 1080 (2008).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах