Teoriya kompozitnykh ramseevskikh posledovatel'nostey radiochastotnykh impul'sov vne ramok rezonansnogo priblizheniya

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Мы развиваем теорию композитных рамсеевских последовательностей радиочастотных импульсов, взаимодействующих с зеемановской структурой на долгоживущем энергетическом уровне атома (иона), вне рамок резонансного приближения. Такие последовательности предложено использовать в экспериментах по обнаружению нарушения локальной Лоренц-инвариантности [R. Shaniv, R.Ozeri, M. S. Safronova, S.G.Porsev, V.A.Dzuba, V.V.Flambaum, and H.H¨affner, Phys. Rev. Lett. 120, 103202 (2018)]. Основываясь на Фурье-анализе, нами показано, что учет нерезонансных вкладов приводит к радикальному изменению динамики квантовой системы (по отношению к резонансному приближению) в случае, когда число рамсеевских импульсов превышает несколько десятков. В результате, эффективность использования таких последовательностей радиочастотных импульсов для тестирования локальной Лоренц-инвариантности до конца не определена и требует дополнительных исследований.

Bibliografia

  1. P. Horava, Phys. Rev. D 79, 084008 (2009).
  2. M. Pospelov and Y. Shang, Phys. Rev. D 85, 105001 (2012).
  3. G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini, Class. Quantum Gravity 33, 225014 (2016).
  4. T. Pruttivarasin, M. Ramm, S. G. Porsev, 1.1. Tupitsyn, M.S. Safronova, M. A. Hohensee, and H. Haffner, Nature 517, 592 (2015).
  5. V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Häffner, Nature Phys. 12, 465 (2016).
  6. M.S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and Ch.W. Clark, Rev. Mod. Phys. 90, 025008 (2018).
  7. E. Megidish, J. Broz, N. Greene, and H Haffner, Phys. Rev. Lett. 122, 123605 (2019).
  8. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M.S. Safronova, and S. G. Porsev, Nature 567, 204 (2019).
  9. R. Shaniv, R. Ozeri, M. S. Safronova, S. G. Porsev, V. A. Dzuba, V. V. Flambaum, and H. Haäffner, Phys. Rev. Lett. 120, 103202 (2018).
  10. L.S. Dreissen, Ch.-H. Yeh, H.A. Furst, K. C. Grensemann, and T. E. Mehlstaäubler, Nat. Commun. 13, 7314 (2022).
  11. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
  12. K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501 (2005).
  13. K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310 (2007).
  14. K. Khodjasteh, J. Sastrawan, D. Hayes, T. J. Green, M. J. Biercuk, and L. Viola, Nat. Commun. 4, 2045 (2013).
  15. D. A. Lidar and T. A. Brun, Quantum Error Correction, Cambridge University Press, Cambridge, England (2013).
  16. G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Phys. Rev. Lett. 118, 133202 (2017).
  17. C.-H. Yeh, K. C. Grensemann, L. S. Dreissen, H.A. FUrst, and T. E. Mehlstaubler, New J. Phys. 25, 093054 (2023).
  18. F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
  19. T. Zanon-Willette, E. de Clercq, and E. Arimondo, Phys. Rev. Lett. 109, 223003 (2012).

Declaração de direitos autorais © Российская академия наук, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies