Radiatsionnye poteri deytronov, tritonov i al'fa-chastits na ionakh vol'frama v plazme tokamakov-reaktorov ITER i EU–DEMO

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Integral radiative losses of deuterons, tritons, and alpha particles on impurity tungsten ions have been calculated for the first time within the statistical theory of the atom for the designed operational regimes of the ITER and EU-DEMO tokamak reactors. It was previously shown within the statistical theory of the atom that specific radiative losses of this new ion channel are comparable with specific electron radiative losses, which also include losses due to bremsstrahlung, radiative and dielectron recombination. Integral radiative losses have been calculated within the numerical model of fusion power isolines, which was previously proposed to study the operational space and design regimes of tokamak reactors. Spatial distributions of the tungsten density with various degrees of peaking in the center of a plasma column have been considered to study the influence of the accumulation of the impurity on integral radiative losses. It has been found that the studied new channel adds about 20 and 30% to the total integral radiative losses on tungsten in the ITER and E-U‑DEMO tokamak reactors, respectively. Consequently, this channel of radiative losses should be taken into account to examine in more detail the working scenarios of these devices.

Sobre autores

A. Mavrin

National Research Center Kurchatov Institute

Email: mavrin_aa@nrcki.ru
123182, Moscow, Russia

A. Demura

National Research Center Kurchatov Institute

Email: mavrin_aa@nrcki.ru
123182, Moscow, Russia

D. Leont'ev

National Research Center Kurchatov Institute

Email: mavrin_aa@nrcki.ru
123182, Moscow, Russia

V. Lisitsa

National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: mavrin_aa@nrcki.ru
123182, Moscow, Russia; 141701, Dolgoprudnyi, Moscow region, Russia; 115409, Moscow, Russia

Bibliografia

  1. M. Merola, D. Loesser, A. Martin et al. (Collaboration), Fusion Eng. Des. 85, 2312 (2010); https://doi.org/10.1016/j.fusengdes.2010.09.013.
  2. T. Hirai, F. Escourbiac, S. Carpentier-Chouchana et al. (Collaboration), Fusion Eng. Des. 88, 1798 (2013); https://doi.org/10.1016/j.fusengdes.2013.05.010.
  3. R. Wenninger, R. Albanese, R. Ambrosino et al. (Collaboration), Nucl. Fusion 57, 046002 (2017); https://doi.org/10.1088/1741-4326/aa4fb4.
  4. J. H. You, G. Mazzone, E. Visca et al. (Collaboration), Fusion Eng. and Des. 175, 113010 (2022); https://doi.org/10.1016/j.fusengdes.2022.113010.
  5. V. I. Gervids, A. G. Zhidkov, V. S. Marchenko, and S. I. Yakovlenko, Kinetics of radiation multiply charged ions in a fusion plasma, Reviews of Plasma Physics, Consultants Bureau: N.Y., USA (1987), v. 12.
  6. V. A. Abramov, V. G. Gontis, and V. S. Lisitsa, Sov. J. Plasma Phys. 10, 235 (1984).
  7. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conf. Proc. 926, 206 (2007); https://doi.org/10.1063/1.2768853.
  8. N. R. Badnell, AUTOSTRUCTURE, Astrophysics Source Code Library, record ascl: 1612.014; https://www.ascl.net/1612.014.
  9. A. Kramida, Atoms 7, 64 (2019); https://doi.org/10.3390/atoms7030064.
  10. P. Gomb'as, Die Statistische Theorie des Atoms und ihre Anwendungen, Springer-Verlag, Vienna, Austria (1949).
  11. W. Brandt and S. Lundqvist, Phys. Rev. 139, A612 (1965); https://doi.org/10.1103/PhysRev.139.A612.
  12. A. V. Demura, D. S. Leont'iev, V. S. Lisitsa, and V. A. Shurygin, JETP 125, 663 (2017); https://doi.org/10.1134/S1063776117090138.
  13. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, J. Phys. B: At. Mol. Opt. Phys. 48, 055701 (2015); https://doi.org/10.1088/0953-4075/48/5/055701.
  14. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, JETP Lett. 98, 786 (2014); https://doi.org/10.1134/S0021364013250097.
  15. A. V. Demura, D. S. Leont'ev, V. S. Lisitsa, and V. A. Shurygin, JETP Lett. 106, 429 (2017); https://doi.org/10.1134/s0021364017190067.
  16. A. V. Demura, D. S. Leontyev, and V. S. Lisitsa, Probl. At. Sci. Technol. Ser. Thermonucl. Fusion 45(1), 42 (2022).
  17. E. Fermi and Z. Physik 29, 315 (1924); https://doi.org/10.1007/BF03184853.
  18. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed., Butterworth-Heinemann, Oxford, UK (1975), v. 2.
  19. V. V. Ivanov, A. B. Kukushkin, and V. I. Kogan, Soviet J. Plasma Phys. 15, 892 (1989).
  20. S. V. Putvinskii, Alpha particles in tokamaks, Reviews of Plasma Physics, Springer, N.Y., USA (1993).
  21. A. A. Mavrin, and A. V. Demura, Atoms 9, 87 (2021); https://doi.org/10.3390/atoms9040087.
  22. H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992); https://doi.org/10.1088/0029-5515/32/4/I07.
  23. T. Pu�tterich, R. Neu, R. Dux, A. D. Whiteford, M. G. O'Mullane, H. P. Summers, and the ASDEX Upgrade Team, Nucl. Fusion 50, 025012 (2010); https://doi.org/10.1088/0029-5515/50/2/025012.
  24. A. A. Mavrin, Plasma Phys. Control. Fusion 62, 105023 (2020); https://doi.org/10.1088/1361-6587/abab5d.
  25. A. A. Mavrin, Radiat. E. Def. Solids 173, 388 (2018); https://doi.org/10.1080/10420150.2018.1462361.
  26. T. Pu�tterich, R. Dux, R. Neu et al. (Collaboration), Plasma Phys. Control. Fusion 55, 124036 (2013); https://doi.org/10.1088/0741-3335/55/12/124036.
  27. C. Angioni, P. Mantica, T. Pu�tterich et al. (Collaboration), Nucl. Fusion 54, 083028 (2014); https://doi.org/10.1088/0029-5515/54/8/083028.
  28. A. Huber, S. Brezinsek, V. Huber et al. (Collaboration), Nucl. Mater. Energy 25, 100859 (2020); https://doi.org/10.1016/j.nme.2020.100859.
  29. S. H. Kim, T. A. Casper, and J. A. Snipes, Nucl. Fusion 58, 056013 (2018); https://doi.org/10.1088/1741-4326/aab034.
  30. S. H. Kim, A. R. Polevoi, A. Loarte, S. Yu. Medvedev, and G. T. A. Huijsmans, Nucl. Fusion 61, 076004 (2021); https://doi.org/10.1088/1741-4326/abf43e.
  31. R. Wenninger, R. Kembleton, C. Bachmann et al. (Collaboration), Nucl. Fusion 57, 016011 (2017); https://doi.org/10.1088/0029-5515/57/1/016011.
  32. J. Wesson, Tokamaks, 3rd ed., Clarendon Press, Oxford, UK (2004).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies