Casimir–Lifshitz Friction Force and Kinetics of Radiative Heat Transfer between Metal Plates in Relative Motion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Casimir–Lifshitz friction force and the heating rates of two metal plates with a narrow vacuum gap between them during nonrelativistic motion of one of them are calculated within the framework of fluctuation electrodynamics taking into account the temperature change in material properties. It is shown that identical plates with the same initial temperature have the same heating rate, determined by the power of the friction force, and the possibility of measuring the friction force from the heating kinetics of nonmagnetic metal plates with temperatures of 1–10 K is substantiated.

Sobre autores

G. Dedkov

Kabardino-Balkarian State University, 360004, Nalchik, Russia

Autor responsável pela correspondência
Email: gv_dedkov@mail.ru

Bibliografia

  1. H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. B 51, 793 (1948).
  2. E. M. Lifshitz, ZhETF 29, 94 (1955)
  3. Sov. Phys. JETP 2, 73 (1956).
  4. E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).
  5. V. V. Dodonov, A. B. Klimov, and V. I. Man'ko, Phys. Lett. A 142, 511 (1989).
  6. J. Schwinger, Proc. Nat. Acad. Sci. USA 89, 4091 (1992).
  7. V. Dodonov, Physics 2, 67 (2020).
  8. V. M. Mostepanenko, Universe 7, 84 (2021).
  9. D. Reiche, F.Intravaia, and K. Busch, APL Photonics 7, 030902 (2022).
  10. A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
  11. J. S. Høye, I. Brevik, and K. A. Milton, Symmetry 8, 29 (2016).
  12. J. B. Pendry, J. Phys. C.: Condens. Matter 9, 10301 (1997).
  13. B. C. Stipe, T. D. Stowe, T. W. Kenny, and D.Rugar, Phys. Rev. Lett. 87, 096901 (2001).
  14. А. И. Волокитин, Письма в ЖЭТФ 104(7), 534 (2016).
  15. А. И. Волокитин, Письма в ЖЭТФ 110(6), 379 (2019).
  16. K. Viotti, M. B. Farias, P. I. Villar, and F. C. Lombardo, Phys. Rev. D 99, 105005 (2019).
  17. M. B. Farias, F. C. Lombardo, A. A. Soba, P. I. Villar, and R. S. Decca, Nature PJ Quant. Information 6, 25 (2020).
  18. F. C. Lombardo, R. S. Decca, L. Viotti, and P. I. Villar, Adv. Quant. Tech. 4, 2000155 (2021).
  19. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and D. Lukin, Science 316(5829), 1312 (2007).
  20. Г. В. Дедков, Письма в ЖЭТФ 114(11), 779 (2021).
  21. G. V. Dedkov, Universe 7, 427 (2021).
  22. G. V. Dedkov, Appl. Phys. Lett. 121, 231603 (2022).
  23. В. Г. Полевой, ЖЭТФ 98, 1990 (1990).
  24. G. V. Dedkov and A. A. Kyasov, Chin. Phys. 56, 3002 (2018).
  25. Физические величины. Справочник под ред. И. С. Григорьева, Е. З. Мейлихова, Энергоатомиздат, М. (1991).
  26. Handbook of Physics, ed. by E. U. Condon and H. Odishaw, McGrow Hill, N.Y. (1967).
  27. J. Baptiste, in The Physics Factbook, ed. by G. Elert (2004); https://hypertextbook.com/facts/2004/JennelleBaptiste.shtml
  28. S.-A. Biehs, A. Kittel, and P. Ben-Abdallah, Z. Naturforsch. 75, 802 (2020).
  29. M. G. Viloria, Y. Guo, S. Merabia, P. Ben-Abdallah, and R. Messina, arXiv: 2212.03073.
  30. J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016).
  31. K. Sasihithlu, J. B. Pendry, and R. W. Craster, Z. Naturforsch. 72, 181 (2017).
  32. S. Kuehn, R. F. Loring, and J. A. Marohn, Phys. Rev. Lett. 96, 156103 (2006).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies