Polarons and Charge Transfer in FeCr2O4 Chromite Treated by the DFT + U Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electronic structure of chromite (FeCr2O4 spinel) is described and the orbital ordering, band gap, and charge transfer are analyzed consistently in the framework of density functional theory taking into account strong electron correlations (DFT + U method). It is shown that the top of the chromite valence band in this model is formed by the ordered t2g orbitals of iron atoms located at tetrahedral sites, and the formation of hole polarons occurs involving just these orbitals. The nonadiabatic activation barrier determining the hole polaron transport is considered. The results of calculations of the band gap and activation energy are compared to the available experimental data.

Sobre autores

N. Fominykh

Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia

Email: fominykh.na@phystech.edu

V. Stegaylov

Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia; HSE University, 101000, Moscow, Russia

Autor responsável pela correspondência
Email: stegailov.vv@phystech.edu

Bibliografia

  1. A. O. Sboychakov, A. L. Rakhmanov, and K. I. Kugel, J. Phys. Condens. Matter 22(41), 415601 (2010).
  2. Е. И. Шнейдер, И. А. Макаров, М. В. Зотова, and С. Г. Овчинников, ЖЭТФ 153(5), 820 (2018).
  3. E. I. Shneyder, S. V. Nikolaev, M. V. Zotova, R. A. Kaldin, and S. G. Ovchinnikov, Phys. Rev. B 101(23), 235114 (2020).
  4. Е. Д. Чернов, А. В. Лукоянов, В. И. Анисимов, ЖЭТФ 159(4), 644 (2021).
  5. П. А. Агзамова, С. В. Стрельцов, Физика твердого тела 64(1), 144 (2022).
  6. I. V. Leonov, JETP Letters 116, 884 (2022).
  7. P. V. B. Pinho, A. Chartier, D. Menut, A. Barbier, M. O. J. Y. Hunault, Ph. Ohresser, C. Marcelot, B. Warot-Fonrose, F. Miserque, and J.-B. Moussy, Applied Surface Science 615, 156354 (2023).
  8. N. A. Fominykh, V. P. Nikolskiy, and V. V. Stegailov, Comput. Mater. Sci. 220, 112061 (2023).
  9. D. A. Kolotinskii, V. S. Nikolaev, V. V. Stegailov, and A. V. Timofeev, Corros. Sci. 211, 110829 (2023).
  10. H.-T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93(15), 156403 (2004).
  11. J.-E. Lorenzo, C. Mazzoli, N. Jaouen, C. Detlefs, D. Mannix, S. Grenier, Y. Joly, and C. Marin, Phys. Rev. Lett. 101(22), 226401 (2008).
  12. M. S. Senn, I. Loa, J. P. Wright, and J. P. Att eld, Phys. Rev. B 85(12), 125119 (2012).
  13. H. Liu and C. D. Valentin, J. Phys. Chem. C 121(46), 25736 (2017).
  14. E. Baldini, C. A. Belvin, M. Rodriguez-Vega, I. O. Ozel, D. Legut, A. Kozlowski, A. M. Ole's, K. Parlinski, P. Piekarz, J. Lorenzana, G. A. Fiete, and N. Gedik, Nature Phys. 16(5), 541 (2020).
  15. A. D. Rowan, C. H. Patterson, and L. V. Gasparov, Phys. Rev. 79(20), 205103 (2009).
  16. J. Noh, O. I. Osman, S. G. Aziz, P. Winget, and J.-L. Br'edas, Chem. Mater. 27(17), 5856 (2015).
  17. М. И. Шутикова, В. В. Стегайлов, ЖЭТФ 160(2), 249 (2021).
  18. M. I. Shutikova and V. V. Stegailov, J. Phys. Condens. Matter 34(47), 475701 (2022).
  19. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44(3), 943 (1991).
  20. T. L. Sudesh, L. Wijesinghe, and D. J. Blackwood, J. Phys. Conf. Ser. 28, 74 (2006).
  21. A. Boudjemaa, R. Bouarab, S. Saadi, A. Bouguelia, and M. Trari, Appl. Energy 86(7-8), 1080 (2009).
  22. Th. Ramachandran and F. Hamed, Mater. Res. Bull. 95, 104 (2017).
  23. J. A. Grisales Cer'eon, D. A. Land'ınez T'ellez, and J. Roa-Rojas, J. Electron. Mater. 51(2), 822 (2022).
  24. D. Santos-Carballal, A. Roldan, R. Grau-Crespo, and N. H. de Leeuw, Phys. Rev. B 91(19), 195106 (2015).
  25. C. Benhalima, S. Amari, L. Beldi, and B. Bouhafs, Spin 9, 1950014 (2019).
  26. Li Sun, J. Alloys Compd. 875, 160065 (2021).
  27. D. A. Andersson and Ch. R. Stanek, Phys. Chem. Chem. Phys. 15(37), 15550 (2013).
  28. Ch. Li, P. Li, L. Li, D. Wang, X. Gao, and X. J. Gao, RSC Adv. 11(35), 21851 (2021).
  29. D. Ihle and B. Lorenz, Journal of Physics C: Solid State Physics 19(26), 5239 (1986).
  30. B. Gillot, J. F. Ferriot, and A. Rousset, J. Phys. Chem. Solids 37(9), 857 (1976).
  31. J. Nell and B. J. Wood, Am. Mineral. 76(3-4), 405 (1991).
  32. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
  33. G. Kresse and J. Furthmu¨ller, Phys. Rev. B 54(16), 11169 (1996).
  34. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57(3), 1505 (1998).
  35. V. Stegailov, G. Smirnov, and V. Vecher, Concurrency and Computation: Practice and Experience 31(19), e5136 (2019).
  36. Koichi Momma and Fujio Izumi, J. Appl. Crystallogr. 44(6), 1272 (2011).
  37. H. J. Levinstein, M. Robbins, and C. Capio, Mater. Res. Bull. 7(1), 27 (1972).
  38. N. Iordanova, M. Dupuis, and K. M. Rosso, J. Chem. Phys. 122(14), 144305 (2005).
  39. N. Iordanova, M. Dupuis, and K. M. Rosso, J. Chem. Phys. 123(7), 074710 (2005).
  40. Th. Maxisch, F. Zhou, and G. Ceder, Phys. Rev. B 73(10), 104301 (2006).
  41. N. A. Deskins and M. Dupuis, Phys. Rev. B 75(19), 195212 (2007).
  42. F. N. Skomurski, S. Kerisit, and K. M. Rosso, Geochim. Cosmochim. Acta 74(15), 4234 (2010).
  43. J. J. Plata, A. M. Marquez, and J. F. Sanz, J. Phys. Chem. C 117(28), 14502 (2013).
  44. Ch. W. M. Castleton, A. Lee, and J. Kullgren, J. Phys. Chem. C 123(9), 5164 (2019).
  45. D. Emin and T. Holstein, Ann. Physics 53(3), 439 (1969).
  46. T. Holstein, Ann. Physics 281(1-2), 725 (2000).
  47. I. G. Austin and N. Fr. Mott, Adv. Phys. 18(71), 41 (1969).
  48. R. A. Marcus and N. Sutin, Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 811(3), 265 (1985).
  49. R. A. Marcus, Rev. Mod. Phys. 65(3), 599 (1993).
  50. Y. Natanzon, A. Azulay, and Y. Amouyal, Israel Journal of Chemistry 60(8-9), 768 (2020).
  51. N. A. Deskins, P. M. Rao, and M. Dupuis, Charge carrier management in semiconductors: modeling charge transport and recombination, in Springer Handbook of Inorganic Photochemistry, Springer, Cham (2022), p. 365.
  52. T. J. Smart, T. A. Pham, Y. Ping, and T. Ogitsu, Physical Review Materials 3(10), 102401 (2019).
  53. Ch. S. Ahart, K. M. Rosso, and J. Blumberger, J. Am. Chem. Soc. 144(10), 4623 (2022).
  54. A. Yildiz, S. B. Lisesivdin, M. Kasap, and D. Mardare, Physica B: Condensed Matter 404(8-11), 1423 (2009).
  55. M. E. Saleta, D. P. Valdes, L. Mogni, D. Tobia, S. J. A. Figueroa, J. C. Mauricio, E. Lima Jr, G. Zampieri, and R. D. S'anchez, J. Phys. Chem. A 125(17), 9371 (2021).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies