Optomechanical Heating and Cooling via Tip-Enhanced Raman Scattering in Epsilon-Near-Zero Medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Media with the dielectric permittivity 
 close to zero (epsilon-near-zero or ENZ) maintain conditions for enhanced light-matter interactions. In this paper, we propose to use these media to enhance the optomechanical coupling of vibrational excitations of the medium with the optical near-field of the nanoantenna. It is shown that the ENZ medium significantly increases the optically induced decay rate of a vibration, which can be used for cooling (when the incident light frequency is less than the ENZ frequency) or heating (when the incident light frequency is greater than the ENZ frequency). Due to the proximity of the refractive index to zero as well, oscillations of the polarization of the medium are coherent, which further enhances the optomechanical effects. Analytical expressions are obtained for the optical shift of the resonance and the induced decay rate.

Sobre autores

A. Gazizov

Institute of Physics, Kazan Federal University, 420008, Kazan, Russia; Institute of Applied Research, Tatarstan Academy of Sciences, 420111, Kazan, Russia

Email: almargazizov@kpfu.ru

M. Salakhov

Institute of Physics, Kazan Federal University, 420008, Kazan, Russia; Institute of Applied Research, Tatarstan Academy of Sciences, 420111, Kazan, Russia

Email: almargazizov@kpfu.ru

S. Kharintsev

Institute of Physics, Kazan Federal University, 420008, Kazan, Russia; Institute of Applied Research, Tatarstan Academy of Sciences, 420111, Kazan, Russia

Autor responsável pela correspondência
Email: almargazizov@kpfu.ru

Bibliografia

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photonics 1, 438 (2009).
  2. G. Ba ou, F. Cichos, and R. Quidant, Nat. Mater. 19, 946 (2020).
  3. D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, Rep. Prog. Phys. 79, 096401 (2016).
  4. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, Phys. Lett. A 305, 111 (2002).
  5. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, Nature 478, 89 (2011).
  6. D.Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004).
  7. E. Gil-Santos, J. J.Ruz, O. Malvar, I. Favero, A. Lemaˆitre, P. M. Kosaka, S. Garc'ia-L'opez, M. Calleja, and J. Tamayo, Nat. Nanotechnol. 15, 469 (2020).
  8. А. В. Цуканов, И. Ю. Катеев, Квантовая электроника 50, 291 (2020)
  9. Quantum Electron. 50, 291 (2020).
  10. P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, Nat. Nanotechnol. 11, 164 (2016).
  11. Y. Zhang, R. Esteban, R. A. Boto, M. Urbieta, X. Arrieta, C. Shan, S. Li, J. J. Baumberg, and J. Aizpurua, Nanoscale 13, 1938 (2021).
  12. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).
  13. J. Zhang, Q. Zhang, X. Wang, L. C. Kwek, and Q. Xiong, Nature Photon. 10, 600 (2016).
  14. Y.-C. Chen and G. Bahl, Optica 2, 893 (2015).
  15. K. Kneipp and H. Kneipp, Faraday Discuss. 132, 27 (2006).
  16. R. C. Maher, P. G. Etchegoin, E. C. Le Ru, and L. F. Cohen, J. Phys. Chem. B 110, 11757 (2006).
  17. Y. Hong and B. M. Reinhard, J. Opt. 21, 113001 (2019).
  18. M. Scalora, J. Trull, D. de Ceglia, M. A. Vincenti, N. Akozbek, Z. Coppens, L. Rodr'iguez-Sun'e, and C. Cojocaru, Phys. Rev. A 101, 053828 (2020).
  19. I. M. Palstra, H. M. Doeleman, and A. F. Koenderink, Nanophotonics 8, 1513 (2019).
  20. D. Yoo, F. de Le'on-P'erez, M. Pelton, I.-H. Lee, D. A. Mohr, M. B. Raschke, J. D. Caldwell, L. Mart'in-Moreno, and S.-H. Oh, Nature Photon. 15, 125 (2021).
  21. I. Liberal and N. Engheta, Science 358, 1540 (2017).
  22. N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, Nat. Rev. Mater. 4, 742 (2019).
  23. B. C. Yildiz and H. Caglayan, Phys. Rev. B 102, 165303 (2020).
  24. V. Caligiuri, M. Palei, G. Bi, S. Artyukhin, and R. Krahne, Nano Lett. 19, 3151 (2019).
  25. N. Kinsey and J. Khurgin, Opt. Mater. Express 9, 2793 (2019).
  26. W. D. Tian, F. Liang, S. M. Chi, C. Li, H. H. Yu, H. Zhang, and H. J. Zhang, ACS Omega 5, 2458 (2020).
  27. S. S. Kharintsev, A. V. Kharitonov, A. R. Gazizov, and S. G. Kazarian, ACS Appl. Mater.Interfaces 12, 3862 (2020).
  28. А. Р. Газизов, А. В. Харитонов, С. С. Харинцев, Письма в ЖЭТФ 113, 152 (2021)
  29. JETP Lett. 113, 140 (2021).
  30. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, Optica 3, 339 (2016).
  31. B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992).
  32. H. T. Dung, L. Kn¨oll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998).
  33. T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996).
  34. M. K. Dezfouli and S. Hughes, ACS Photonics 4, 1245 (2017).
  35. A. R. Gazizov, M. Kh. Salakhov, and S. S. Kharintsev, J. Phys.: Conf. Ser. 2015, 012044 (2021).
  36. M. A. Yurkin and M. Huntemann, J. Phys. Chem. C 119, 29088 (2015).
  37. I. V. Lindell, J. C.-E. Sten, and R. E. Kleinman, J. Electromagnet. Wave. 8, 295 (1994).
  38. L. G. Can¸cado, R. Beams, A. Jorio, and L. Novotny, Phys. Rev. X 4, 031054 (2014).
  39. A. R. Gazizov and S. S. Kharintsev, in: 15th International Congress on Arti cial Materials for Novel Wave Phenomena (Metamaterials), IEEE, N.Y. (2021), X-132.
  40. C. van Vlack and S. Hughes, Opt. Lett. 37, 2880 (2012).
  41. A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comp. Phys.Commun. 181, 687 (2010).
  42. A. R. Gazizov, M. Kh. Salakhov, and S. S. Kharintsev, Bull.Russ. Acad. Sci.: Phys. 86, S71 (2022).
  43. А. В. Харитонов, А. Р. Газизов, С. С. Харинцев, Письма в ЖЭТФ 114, 756 (2021)
  44. JETP Lett. 114, 687 (2021).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies