Multiple Andreev Reflection Effect Spectroscopy of Underdoped NaFe1 – xCoxAs Single Crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the structure of the superconducting order parameter in underdoped NaFe1 – xCoxAs pnictides with Tc ≈ 19–21 K related to the 111 family. Using incoherent multiple Andreev reflection effect spectroscopy of planar break junctions, we directly determine the magnitudes of the two microscopic superconducting order parameters: the small superconducting gap ΔS(0), and possible edges of the large gap ΔL(0) having an anisotropy in the 
 plane at T ≪ Tc, the corresponding characteristic ratios, as well as their temperature dependences. Additionally, we detect features of the tunneling spectra in NaFe1 – xCoxAs at 
, those irrelative to superconducting state, and discuss their origin.

Sobre autores

S. Kuz'michev

Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia; Faculty of Physics, Moscow State University, 119991, Moscow, Russia


Email: kuzmichevate@lebedev.ru

I. Morozov

Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia

Email: kuzmichevate@lebedev.ru

A. Shilov

Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia

Email: kuzmichevate@lebedev.ru

E. Rakhmanov

Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia; Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia

Email: kuzmichevate@lebedev.ru

T. Kuz'micheva

Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: kuzmichevate@lebedev.ru

Bibliografia

  1. T. E. Kuzmicheva and S. A. Kuzmichev, JETP Lett. 114, 630 (2021).
  2. M. D. Watson, S. Aswartham, L. C. Rhodes, B. Parrett, H. Iwasawa, M. Hoesch, I. Morozov, B. Bu�chner, and T. K. Kim, Phys. Rev. B 97, 035134 (2018).
  3. Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y. Song, C. L. Zhang, P. Dai, and D. L. Feng, Phys. Rev. X 3, 011020 (2013).
  4. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).
  5. S. A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).
  6. Z. Popovi'c, S. A. Kuzmichev, and T. E. Kuzmicheva, J. Appl. Phys. 128, 013901 (2020).
  7. I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
  8. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).
  9. R. Ku�mmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).
  10. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
  11. T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638 (1993).
  12. I. K. Yanson, Sov. Phys. JETP 39, 506 (1974).
  13. T. E. Kuzmicheva, S. A. Kuzmichev, I. V. Morozov, S. Wurmehl, and B. Bu�chner, JETP Lett. 111, 350 (2020).
  14. S. Kuzmichev, T. Kuzmicheva, I. Morozov, A. Boltalin, and A. Shilov, SN Appl. Sci. 4, 189 (2022).
  15. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, JETP Lett. 112, 786 (2020).
  16. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, Phys. Rev. B 104, 174512 (2021).
  17. A. V. Sadakov, A. V. Muratov, S. A. Kuzmichev, O. A. Sobolevskiy, B. I. Massalimov, A. R. Prishchepa, V. M. Mikhailov, K. S. Pervakov, V. A. Vlasenko, and T. E. Kuzmicheva, JETP Lett. 116, 708 (2022).
  18. S. A. Kuzmichev, K. S. Pervakov, V. A. Vlasenko, A. Yu. Degtyarenko, S. Yu. Gavrilkin, and T. E. Kuzmicheva, JETP Lett. 116, 723 (2022).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies