Effekt sverkhprovodyashchego spinovogo klapana v geterostrukture Co/Pb/Co s izoliruyushchimi prosloykami

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Исследованы сверхпроводящие свойства гетероструктуры Co/Pb/Co с тонкими изолирующими прослойками, роль которых играют окисленные интерфейсы сверхпроводник/ферромагнетик. Изучено поведение температуры перехода гетероструктуры в сверхпроводящее состояние (Tc) при изменении взаимной ориентации намагниченностей ферромагнитных слоев с антипараллельной на параллельную (так называемый эффект сверхпроводящего спинового клапана). Как правило, данный эффект наиболее выражен в случае идеального металлического контакта на границах раздела сверхпроводник/ферромагнетик. Мы же наблюдали значительный эффект сверхпроводящего спинового клапана для структур с ухудшенными интерфейсами сверхпроводник/ферромагнетик. Разница в Tc при изменении взаимной ориентации намагниченностей двух ферромагнитных слоев Co с антипараллельной на параллельную составила 0.2К при оптимальной толщине сверхпроводящего Pb-слоя. Наши исследования верифицируют ранние, до сих пор не подтвержденные результаты Дойчера и Менье [G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969)], и открывают новые интересные возможности улучшения параметров сверхпроводящего спинового клапана.

Әдебиет тізімі

  1. S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).
  2. L.R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
  3. A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).
  4. J. Y. Gu, C. Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
  5. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).
  6. A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503(R) (2005).
  7. K. Westerholt, D. Sprungmann, H. Zabel, R. Brucas, B. Hjorvarsson, D. A. Tikhonov, and I. A. Garifullin, Phys. Rev. Lett. 95, 097003 (2005).
  8. R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).
  9. N. G. Pugach, M. Yu. Kupriyanov, A. V. Vedyayev, C. Lacroix, E. Goldobin, D. Koelle, R. Kleiner, and A. S. Sidorenko, Phys. Rev. B 80, 134516 (2009).
  10. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).
  11. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchere, and G. Blatter, Nature 398, 679 (1999).
  12. M. V. Feigel’man, Phys.-Uspekhi 42, 823 (1999).
  13. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
  14. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
  15. M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014).
  16. J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
  17. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).
  18. E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997).
  19. I. A. Garifullin, J. Magn. Magn. Mater. 240, 571 (2002).
  20. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
  21. J. Linder, T. Yokoyama, and A. Sudbp, Phys. Rev. B 79, 224504 (2009).
  22. K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, Spin-Polarized Electrons in the superconductor/ferromagnet hybrid structures: Magnetic Nanostructures. Spin Dynamic and Spin Transport, Springer-Verlag, Berlin, Heidelberg (2013).
  23. Y. Gu, G.B. Halasz, J. W. A. Robinson, and M. G. Blamire, Phys. Rev. Lett. 115, 067201 (2015).
  24. A. Singh, S. Voltan, K. Lahabi, J. Aarts, Phys. Rev. X 5, 021019 (2015).
  25. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Buüchner, Ya. V. Fominov, and I. A. Garifullin, Phys. Rev. B 100, 134511 (2019).
  26. P. V. Leksin, A. A. Kamashev, J. Schumann, V. E. Kataev, J. Thomas, B. Buüchner, and I. A. Garifullin, Nano Res. 9, 1005 (2016).
  27. G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1999).
  28. B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin, D. Heiman, M. Muünzenberg, and J. S. Moodera, Phys. Rev. Lett. 110, 097001 (2013).
  29. J. M. Lommel and C. D. Graham, Jr., J. Appl. Phys. 33, 1160 (1968).
  30. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I. A. Garifullin, Phys. Rev. B 91, 214508 (2015).
  31. I. A. Garifullin, P. V. Leksin, N.N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, J. Magn. Magn. Mater. 373, 18 (2015).
  32. A. A. Kamashev, P. V. Leksin, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Buüchner, and I. A. Garifullin, J. Magn. Magn. Mater. 459, 7 (2018).
  33. P. V. Leksin, N.N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Buchner, Phys. Rev. Lett. 109, 057005 (2012).
  34. Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77, 510 (2003).

© Российская академия наук, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>