Samofokusirovka i fazovaya samomodulyatsiya sfokusirovannogo femtosekundnogo lazernogo lucha v plavlenom kvartse pri okolo kriticheskoy moshchnosti

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Исследованы самофокусировка и фазовая самомодуляция сфокусированного фемтосекундного лазерного импульса в плавленом кварце. В зависимости от энергии лазерного импульса наблюдались три различных режима: 1) линейный, когда эффект самофокусировки незначителен, характеризующийся линейным спектральным уширением; 2) переходной, когда за счет самофокусировки заметно уменьшается диаметр лазерного луча в фокальной плоскости без значительного нелинейного поглощения и коллапса пучка, характеризующийся резким ростом уширения спектра за счет фазовой самомодуляции; 3) нелинейный режим, филаментация, характеризующийся близким к линейному спектральному уширению за счет фазовой самомодуляции. Наклон в зависимости уширения спектра от энергии лазерного импульса для линейного и нелинейного режимов одинаковы в пределах погрешности измерений. Численное моделирование с использованием матричной оптики описало спектральное уширение за счет фазовой самомодуляции во всех режимах.

Әдебиет тізімі

  1. K. Sugioka, Nanophotonics 6, 393 (2017).
  2. R. Liao, H. Tian, W. Liu, R. Li, Y. Song, and M. Hu, J. Phys. Photonics 2, 042006 (2020).
  3. Y. E. Geints, O. V. Minina, I. Y. Geints et al. (Collaboration), Sensors 22, 6322 (2022).
  4. S. V. Chekalin and V. P. Kandidov, Phys.-Uspekhi 56, 123 (2013).
  5. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
  6. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
  7. Ya. V. Grudtsyn, A. V. Koribut, V. A. Trofimov, and L. D. Mikheev, JOSA B 35, 1054 (2018).
  8. R. Alfano, S. F. B. Mazhar, M. Sharonov, and L. Shi, Optik 249, 168208 (2022).
  9. Z. Heiner, V. Petrov, V. L. Panyutin, V. V. Badikov, K. Kato, K. 7Miyata, and M. Mero, Sci. Rep. 12, 5082 (2022).
  10. I. Kinyaevskiy, V. Kovalev, P. Danilov, N. Smirnov, S. Kudryashov, A. Koribut, and A. Ionin, Chin. Opt. Lett. 21, 031902 (2023).
  11. I. O. Kinyaevskiy, V. I. Kovalev, A. V., Koribut, P. A. Danilov, N. A. Smirnov, S. I. Kudryashov, Ya. V. Grudtsyn, E. E. Dunaeva, V. A. Trofimov, and A. A. Ionin, J. Russ. Laser Res. 43, 315 (2022).
  12. J. M. Laniel, N. Hˆo, R. Vall´ee, and A. Villeneuve, JOSA B 22, 437 (2005).
  13. S. I. Kudryashov, P. A. Danilov, E. V. Kuzmin, Yu. S. Gulina, A. E. Rupasov, G. K. Krasin, G. Zubarev, A. O. Levchenko, M. S. Kovalev, P. P. Pakholchuk, S. A. Ostrikov, and A. A. Ionin, Opt. Lett. 47, 3487 (2022).
  14. K. Lim, M. Durand, M. Baudelet, and M. Richardson, Sci. Rep. 4, 7217 (2014).
  15. D. Reyes, M. Baudelet, M. Richardson, and S. Rostami Fairchild, J. Appl. Phys. 124, 053103 (2018).
  16. D. V. Pushkarev, G. E. Rizaev, D. V. Mokrousova, S. Yu. Gavrilov, M. V. Levus, E. S. Mitricheva, L. V. Seleznev, and A. A. Ionin, Opt. Quantum Electron. 55, 577 (2023).
  17. I. O. Kinyaevskiy, V. I. Kovalev, P. A. Danilov, N. A. Smirnov, S. I. Kudryashov, L. V. Seleznev, E. E. Dunaeva, and A. A. Ionin, Opt. Lett. 45, 2160 (2020).
  18. I. O. Kinyaevskiy, A. V. Koribut, I. V. Gritsenko, A. M. Sagitova, M. V. Ionin, E. E. Dunaeva, and A. A. Ionin, Opt. Spectrosc. 131, 190 (2023).
  19. F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, Phys. Rev. 164, 312 (1967).
  20. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Berge, Phys. Rev. Lett. 87, 213902 (2001).
  21. Y. Tian, C. Gong, D. Kong, and X. Hu, JOSA B 39, 2435 (2022).
  22. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
  23. D. Milam, Appl. Opt. 37, 546 (1998).

© Российская академия наук, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>