Svyazannye sostoyaniya korotkodeystvuyushchego defekta na poverkhnosti sobstvennogo antiferromagnitnogo topologicheskogo izolyatora v nekollinearnoy faze

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The features of electronic states on the surface of an intrinsic antiferromagnetic topological insulator (AFM TI) containing defects are theoretically investigated. Our approach takes into account the role of the electrostatic potential and the variation in the orientation of magnetic moments in the near-surface layers. A change in the spectral characteristics of the surface states under the transformation of magnetization from an equilibrium AFM phase of A-type to a ferromagnetic phase through a noncollinear texture is described. It is shown that in AFM TI with uniaxial anisotropy, an external magnetic field applied along the easy axis can cause a significant modulation of the exchange gap size in the spectrum of surface states and even invert the gap sign. Modeling the single defect effect as a surface potential perturbation over a finite scale, we analytically investigate the formation of a bound state and its behavior depending on the strength of potential and exchange scattering by the defect and the exchange gap size. The energy level of the bound state is demonstrated to experience a sharp shift in the vicinity of the spin-flop transition. The theoretical results obtained allow us to provide a consistent explanation of recent experimental data on scanning tunneling spectroscopy of antisite defects on the surface of the prototype AFM TI MnBi2Te4 in an external magnetic field.

Авторлар туралы

V. Men'shov

National Research Center Kurchatov Institute; St. Petersburg State University

Email: vnmenshov@mail.ru
123182, Moscow, Russia; 198504, St. Petersburg, Russia

E. Chulkov

St. Petersburg State University; Departaménto de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU

Хат алмасуға жауапты Автор.
Email: vnmenshov@mail.ru
198504, St. Petersburg, Russia; 20080, San Sebastián/Donostia, Basque Country, Spain

Әдебиет тізімі

  1. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature 576, 416 (2019).
  2. Y. Tokura, K. Yasuda, and A. Tsukazaki, Nat. Rev. Phys. 1, 126 (2019).
  3. B. A. Bernevig, C. Felser, and H. Beidenkopf, Nature 603, 41 (2022).
  4. C.-Z. Chang, Ch.-X. Liu, and A. H. MacDonald, Rev. Mod. Phys. 95, 011002 (2023).
  5. H. Chi and J. S. Moodera, APL Mater. 10, 090903 (2022).
  6. A. Sekine and K. Nomura, J. Appl. Phys. 129, 141101 (2021).
  7. Y. Wang, F. Zhang, M. Zeng et al. (Collaboration), Front. Phys. 18, 21304 (2023).
  8. R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).
  9. C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Nat. Mater. 19, 522 (2020).
  10. D. Ovchinnikov, X. Huang, Z. Lin, Z. Fei, J. Cai, T. Song, M. He, Q. Jiang, C. Wang, H. Li, Y. Wang, Y. Wu, D. Xiao, J.-H. Chu, J. Yan, C.-Z. Chang, Y.-T. Cui, and X. Xu, Nano Lett. 21, 2544 (2021).
  11. A. M. Shikin, D. A. Estyunin, N. L. Zaitsev et al. (Collaboration), Phys. Rev. B 104, 115168 (2021).
  12. A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh et al. (Collaboration), Sci. Rep. 10, 13226 (2020).
  13. А. М. Шикин, Д. А. Естюнин, Д. А. Глазкова, С. О. Фильнов, И. И. Климовских, Письма в ЖЭТФ 115, 241 (2022).
  14. Y.-J. Hao, P. Liu, Y. Feng et al. (Collaboration), Phys. Rev. X 9, 041038 (2019).
  15. H. Li, S.-Y. Gao, S.-F. Duan et al. (Collaboration), Phys. Rev. X 9, 041039 (2019).
  16. Y. Chen, L. Xu, J. Li et al. (Collaboration), Phys. Rev. X 9, 041040 (2019).
  17. P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Phys. Rev. B 101, 161109(R) (2020).
  18. D. Nevola, H. X. Li, J.-Q. Yan, R. G. Moore, H.-N. Lee, H. Miao, and P. D. Johnson, Phys. Rev. Lett. 125, 117205 (2020).
  19. M. Garnica, M. M. Otrokov, P. C. Aguilar et al. (Collaboration), npj Quantum Mater. 7, 7 (2022).
  20. V. N. Men'shov, I. A. Shvets, and E. V. Chulkov, Phys. Rev. B 106, 205301 (2022).
  21. Z. Huang, M.-H. Du, J. Yan, and W. Wu, Phys. Rev. Materials 4, 121202 (2020).
  22. X. Wu, C.Ruan, P. Tang, F. Kang, W. Duan, and J. Li, Nano Lett. 23, 5048 (2023).
  23. A. Zeugner, F. Nietschke, A. U. Wolter et al. (Collaboration), Chem. Mater. 31, 2795 (2019).
  24. M. Liu, C. Lei, H. Kim, Y. Li, L. Frammolino, J. Yan, A. H. Macdonald, and C.-K. Shih, Proc. Natl. Acad. Sci. 119, e2207681119 (2022).
  25. P. M. Sass, J. Kim, D. Vanderbilt, J. Yan, and W. Wu, Phys. Rev. Lett. 125, 037201 (2020).
  26. Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367, 895 (2020).
  27. S. H. Lee, Y. Zhu, Y. Wang et al. (Collaboration), Phys. Rev. Research 1, 012011 (2019).
  28. C. Lei, O. Heinonen, A. H. MacDonald, and R. J. McQueeney, Phys. Rev. Materials 5, 064201 (2021).
  29. S. Yang, X. Xu, Y. Zhu, R. Niu, C. Xu, Y. Peng, X. Cheng, X. Jia, Y. Huang, X. Xu, J. Lu, and Y. Ye, Phys. Rev. X 11, 011003 (2021).
  30. J. Cai, D. Ovchinnikov, Z. Fei, M. He, T. Song, Z. Lin, C. Wang, D. Cobden, J.-H. Chu, Y.-T. Cui, C.-Z. Chang, D. Xiao, J. Yan, and X. Xu, Nat.Commun. 13, 1668 (2022).
  31. M. P. Andersen, E. Mikheev, I. T. Rosen, L. Tai, P. Zhang, K. L. Wang, M. A. Kastner, and D. Goldhaber-Gordon, arXiv:2308.01183v1.
  32. G. Qian, M. Shi, H. Chen, S. Zhu, J. Hu, Z. Huang, Y. Huang, X.-H. Chen, and H.-J. Gao, Nano Res. 16, 1101 (2023).
  33. I. P.Rusinov, V. N. Men'shov, and E. V. Chulkov, Phys. Rev. B 104, 035411 (2021).
  34. E. K. Petrov, V. N. Men'shov, I. P.Rusinov, M. Ho mann, A. Ernst, M. M. Otrokov, V. K. Dugaev, T. V. Menshchikova, and E. V. Chulkov, Phys. Rev. B 103, 235142 (2021).
  35. В. Н. Меньшов, И. П. Русинов, Е. В. Чулков, Письма в ЖЭТФ 114, 768 (2021)
  36. V. N. Men'shov, I. P.Rusinov, and E. V. Chulkov, JETP Lett. 114, 699 (2021).
  37. В. Н. Меньшов, Е. В. Чулков, Письма в ЖЭТФ 117, 147 (2023)
  38. V. N. Men'shov and E. V. Chulkov, JETP Lett. 117, 147 (2023).
  39. C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, S.-C. Zhang, Phys. Rev. B 82, 045122 (2010).
  40. V. N. Men'shov, I. A. Shvets, V. V. Tugushev, and E. V. Chulkov, Phys. Rev. B 96, 075302 (2017).
  41. В. Н. Меньшов, И. А. Швец, Е. В. Чулков, Письма в ЖЭТФ 110, 777 (2019)
  42. V. N. Men'shov, I. A. Shvets, and E. V. Chulkov, JETP Lett. 110, 771 (2019).
  43. S. Yang, X. Xu, Y. Zhu, R. Niu, C. Xu, Y. Peng, X. Cheng, X. Jia, Y. Huang, X. Xu, J. Lu, and Y. Ye, Phys. Rev. X 11, 011003 (2021).
  44. J. Ge, Y. Liu, P. Wang, Z. Xu, J. Li, H. Li, Z. Yan, Y. Wu, Y. Xu, and J. Wang, Phys. Rev. B 105, L201404 (2022).
  45. Y. Zhang, K. Deng, X. Zhang, M. Wang, Y. Wang, C. Liu, J.-W. Mei, S. Kumar, E. F. Schwier, K. Shimada, C. Chen, and B. Shen, Phys. Rev. B 101, 205126 (2020).
  46. Y. Lai, L. Ke, J. Yan, R. D. McDonald, and R. J. McQueeney, Phys. Rev. B 103, 184429 (2021).
  47. J. Lu, W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, New J. Phys. 13, 103016 (2011).
  48. V. A. Sablikov and A. A. Sukhanov, Phys. Status Solidi RRL 8, 853 (2014).
  49. Справочник по специальным функциям, под ред. М. Абрамовица, И. Стиган, Наука, М. (1979).

© Российская академия наук, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>