Modified Bridgman formula for the thermal conductivity of complex (dusty) plasma fluids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A simple and popular Bridgman’s formula predicts a linear correlation between the thermal conductivity coefficient and the sound velocity of dense liquids. Unfortunately, it cannot be applied to strongly coupled plasma-related fluids, because the sound velocity can greatly increase as screening weakens. We propose a modification of the Bridgman formula by correlating the thermal conductivity coefficient with the transverse (shear) sound velocity. This approach is demonstrated to work reasonably well in screened Coulomb (Yukawa) fluids and can be useful in the context of complex (dusty) plasmas.

About the authors

S. A Khrapak

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: Sergey.Khrapak@gmx.de
Moscow, Russia

A. G Khrapak

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: Sergey.Khrapak@gmx.de
Moscow, Russia

References

  1. P.W. Bridgman, PNAAS 59, 141 (1923).
  2. A. Z. Zhao, M.C. Wingert, R. Chen, and J.E. Garay, J. Appl. Phys. 129, 235101 (2021).
  3. Q. Xi, J. Zhong, J. He, X. Xu, T. Nakayama, Y. Wang, J. Liu, J. Zhou, and B. Li, Chin. Phys. Lett. 37, 104401 (2020).
  4. S.A. Khrapak, Phys. Rev. E 103, 013207 (2021).
  5. G. Chen, J. Heat Transf. 144, 010801 (2021).
  6. S.A. Khrapak, J. Mol. Liq. 381, 121786 (2023).
  7. V.E. Fortov and G. E. Morfill, Complex and Dusty Plasmas – From Laboratory to Space, CRC Press LLC, Boca Raton (2019).
  8. S.A. Khrapak, Phys. Plasmas 26, 103703 (2019).
  9. N.N. Rao, P.K. Shukla, and M.Y. Yu, Planet. Space Sci. 38, 543 (1990).
  10. S.A. Khrapak, Phys. Rev. Research 2, 012040 (2020).
  11. S.A. Khrapak and A.G. Khrapak, Phys. Fluids 34, 027102 (2022).
  12. S.A. Khrapak and A.G. Khrapak, J. Chem. Phys. 157, 014501 (2022).
  13. Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).
  14. N.Yu, D. Huang, S. Lu, S. Khrapak, and Y. Feng, Phys. Rev. E 109, 035202 (2024).
  15. S. Hamaguchi, R.T. Farouki, and D.H.E. Dubin, Phys. Rev. E 56, 4671 (1997).
  16. O. S. Vaulina and S.A. Khrapak, JETP 90, 287 (2000).
  17. B. Scheiner and S.D. Baalrud, Phys. Rev. E 100, 043206 (2019).
  18. Z. Donk´o and P. Hartmann, Phys. Rev. E 69, 016405 (2004).

Copyright (c) 2024 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies