Teoreticheskie osnovy kvantovoy spektral'noy opticheskoy kogerentnoy tomografii s chastotnym skanirovaniem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Целью данной работы является разработка подхода квантовой спектральной оптической когерентной томографии (ОКТ), основанного на управлении совместной спектральной амплитудой (ССА) бифотона. Получено аналитическое выражение, описывающее сигнал квантовой спектральной ОКТ в случае гауссовой формы ССА. Было проанализировано влияние формы ССА бифотона на конечный интерференционный сигнал и рассмотрена возможность улучшения качества интерференционного сигнала путем управления свойствами ССА. Теоретически показано, что предложенный подход превосходит другие методы ОКТ с точки зрения продольной пространственной разрешающей способности.

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, G. Kenton, C. Pulia to, and J. G. Fujimoto, Science 254, 1178 (1991).
  2. A. F. Fercher, K. Mengedoht, and W. Werner, Opt. Lett. 13, 186 (1988).
  3. A. G. Podoleanu, J. Light. Technol. 28, 624 (2010).
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, Opt. Lett. 28, 2067 (2003).
  5. M. Choma, M. Sarunic, C. Yang, and J. Izatt, Opt. Express 11, 2183 (2003).
  6. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 4, 144 (1999).
  7. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
  8. M. B. Nasr, B. E. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 8 (2003).
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 8 (1987).
  10. Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61, 2921 (1988).
  11. A. V. Burlakov, M. V. Chekhova, Yu. B. Mamaeva, O. A. Karabutova, D. Yu. Korystov, and S. P. Kulik, Laser Phys. 12, 825 (2002).
  12. A. V. Belinskii and D. Klyshko, Uspekhi Fizicheskih Nauk 163, 1 (1993).
  13. P. Y. Graciano, A. M. A. Mart'inez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejia, R. R. Alarcon, H. C. Ramirez, and A. B. U'Ren, Sci. Rep. 9, 1 (2019).
  14. Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, npj Quantum Inf. 5, 43 (2019).
  15. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, Phys. Rev. Lett. 103, 253601 (2009).
  16. M. Okano, R. Okamoto, A. Tanaka, S. Ishida, N. Nishizawa, and S. Takeuchi, Phys. Rev. A 88, 043845 (2013).
  17. S. Diddams and J.-C. Diels, J. Opt. Soc. Am. B 13, 1120 (1996).
  18. K. J. Resch, R. Kaltenbaek, J. Lavoie, and D. N. Bigersta, Proc. SPIE 7465, 74650N (2009).
  19. R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, and M. Sasaki, Opt. Express 23, 28836 (2015).
  20. P. Yepiz-Graciano, A. M. A. Mart'inez, D. Lopez-Mago, H. Cruz-Ramirez, and A. B. U'Ren, Photonics Res. 8, 1023 (2020).
  21. V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, Phys. Rev. Lett. 123, 123603 (2019).
  22. S. M. Kolenderska, F. Vanholsbeeck, and P. Kolenderski, Opt. Express 28, 29576 (2020).
  23. A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, New J. Phys. 11, 103052 (2009).
  24. D. De la Torre-Robles, F. Dominguez-Serna, G. L. Osorio, A. B. U'Ren, D. Bermudez, and K. Garay-Palmett, Sci. Reports 11, 1 (2021).
  25. L. Cui, J. Wang, J. Li, M. Ma, Z. Y. Ou, and X. Li, APL Photonics 7, 016101 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies