
Supplementary Material to the article “Exact theory of edge diffraction and launching

of transverse electric plasmons at two-dimensional junctions”

I. DERIVATION OF THE ELECTROMAGNETIC SCATTERING EQUATION

We proceed to derive the equation governing the edge diffraction, Eq. (1) of the main text. The derivation will
proceed in Gaussian units, and a universal form independent of unit system will be finally written down. The diffracted
field at a linear junction of 2DES is the superposition of incident field Einc(r) and field induced by charges and currents
in 2DES Eind(r):

E(r) = Einc(r) +Eind(r). (S1)

We now switch to a particular case of the s-polarization, where the electric field has only the y-component. An explicit
form of the field is

Einc,y(r) = E0e
ikx cos θ−ikz sin θ. (S2)

The induced field Eind(r) emerges due to currents with sheet density j(r) in 2DES. These currents are directed along
the junction (y-axis) and have zero divergence. It implies the absence of induced charge density in 2DES and absence
of scalar potential in the considered problem (in the Lorentz gauge). Consideration of vector potential Aind(r) is
sufficient for the formulation of the scattering equation. The vector potential Aind(r) created by current distribution
j(r) is

Aind(r) =
1

c

∫

j(x′)eik|∆r|

|∆r| dx′dy′, (S3)

In the above equations, the integration is performed over all the area of the conductor, ∆r = r′ − r is the distance
between observation point and location of the current element, |∆r| = [(x − x′)2 + (y − y′)2 + z2]1/2, k = ω/c is the
wave number. The term eik|∆r| is responsible for the retarded nature of electromagnetic potentials.
Further simplification is possible taking into account the absence of y-dependence for currents, which is guaranteed

by the extended character of the edge. Integration along the edge, i.e. over dy′ in the infinite limits, is performed
analytically using an identity

∞
∫

−∞

dy′eik[(x−x′)2+z2+y′2]1/2

[(x− x′)2 + z2 + y′2]1/2
= iπH0 (k|∆r⊥|) , (S4)

where |∆r⊥| = [(x− x′)2 + z2]1/2 is the transverse distance and H0 is the Hankel function. Formulation of scattering
equation requires the knowledge of currents and fields only in the 2DES plane. For this reason, we shall set z = 0 in
the argument of the Hankel function hitherto.
The final equation is obtained by linking the vector potential and electric field

Eind =
iω

c
Aind. (S5)

Combination of (S1-S5) leads us to the final scattering equation:

E (x) = E0e
ikxx − πk0

c

+∞
∫

−∞

H0 (k0 |x− x′|) j (x′) dx′. (S6)

Expressing the speed of light via free-space impedance in the prefactor of integral in (S6) as Z0 = 4π/c, we get a form
of equation independent of the unit system

E (x) = E0e
ikxx − Z0k0

4

+∞
∫

−∞

H0 (k0 |x− x′|) j (x′) dx′, (S7)

The latter form is also applicable in SI units, where Z0 =
√

µ0/ε0 ≈ 377 Ohm.



II. DETAILS OF THE WIENER-HOPF METHOD

In this section, we comment on some mathematical details of the Wiener-Hopf method omitted in the main text.
The Fourier transformed scattering equation has the form:

εL (q)EL (q) + εR (q)ER (q) = E0

[ −i

q − (kx + iǫ)
+

i

q − (kx − iǫ)

]

, (S8)

We apply the factorization procedure to the dielectric functions

εi(q) = εi+(q)εi−(q), (S9)

where the subscript i = {L,R} distinguishes the left and right half-spaces, the plus function is analytic in the upper
half-plane (UHP) of the q-variable, the minus function is analytic in the lower half-plane (LHP) of the q-variable.
Dividing the scattering equation by εR+(q)εL−(q), we get

εL+ (q)

εR+ (q)
EL (q) +

εR− (q)

εL− (q)
ER (q) =

E0

εR+ (q) εL− (q)

[

i

q − (kx − iǫ)
+

−i

q − (kx + iǫ)

]

. (S10)

The left hand side of Eq. S10 is factorized completely, as the first term is analytic in the UHP, the second term is
analytic in the LHP. The right-hand side still does not have well-defined analytic properties, as so does the product
εR+ (q) εL− (q). The situation is resolved by the fact that this poorly behaved function is multiplied by the Fourier
transform of the incident field. The latter tends to a delta-function as ǫ → 0:

[

i

q − (kx − iǫ)
+

−i

q − (kx + iǫ)

]

→ 2πδ(q − kx). (S11)

Keeping in mind taking the limit ǫ → 0 in the final result, we can safely set q = kx in the prefactor of Fourier
transformed incident field εR+ (q) εL− (q) → εR+ (kx) εL− (kx). With this trick, the right-hand side is now fully
factorized. We have verified that the trick with replacement q → kx in the prefactor of delta-like function provides
exactly the same result as a more complex method based on the substraction of ’most divergent’ fields at infinity.
The latter was implemented in a prior work [1].
We further collect the functions analytic in the UHP and in the LHP in the left and right-hand sides of the scattering

equation:

εL+ (q)

εR+ (q)
EL (q)− E0

εR+ (kx) εL− (kx)

i

q − (kx − iǫ)
= −εR− (q)

εL− (q)
ER (q)− E0

εR+ (kx) εL− (kx)

i

q − (kx + iǫ)
. (S12)

The two functions analytic in the upper and lower half-planes, respectively, and having a common stripe of analyticity,
define a function F (q) that is entire in the all complex q-plane. The function F (q) therefore reduces to a polynomial,

F (q) = c0 + c1q + c2q
2 + .... (S13)

It is possible to show that retaining even the coefficients before the lowest powers of q in F (q) would lead to the
divergent field in the real space. Therefore, the function F (q) should be identically zero. To show this explicitly, we
write the contribution of F (q) to the total field

EL (q) =
εR+ (q)

εL+ (q)
F (q) + ..., (S14)

ER (q) = − εL− (q)

εR− (q)
F (q) + ..., (S15)

where the omitted terms marked by ... come from the incident field. Noting the limiting behavior of εi±(q) at infinity
εi±(q) → 1, we see that EL/R (q) would have no well-defined Fourier transform if we retain c0 6= 0. Indeed, the
real-space field would contain the poorly-defined terms

EL (x) ∼ c0
π

+∞
∫

−∞

eiqxdq. (S16)



The absence of inverse Fourier transform for EL/R (q) becomes even more dramatic if we retain higher-order terms
c1, c2, etc. It is also pronounced for the case of metal-contacted 2DES, where

ε↔L± =

√
k0√

k0 ± q
. (S17)

Retaining the c0-term in F (q) would lead to the real-space field given by a divergent integral

E↔
L (x) ∼ c0

π

+∞
∫

−∞

√

k0 + qeiqxdq. (S18)

At the same time, physical constraints on zero value of electric field in metals require EL(x) ≡ 0 at x < 0.
Therefore, physical constraints on finiteness of real-space field constrain F (q) to be identically zero. This leads us

to the Wiener-Hopf solutions

εL+ (q)

εR+ (q)
EL (q) =

E0

εR+ (kx) εL− (kx)

i

q − (kx − iǫ)
, (S19)

−εR− (q)

εL− (q)
ER (q) =

E0

εR+ (kx) εL− (kx)

i

q − (kx + iǫ)
. (S20)

To reach the form (6) of the main text, we perform a replacement in Eq. S19:

εL− (kx) =
εL (kx)

εL+ (kx)
=

1 + ηL/ sin θ

εL+ (kx)
. (S21)

The first equality here follows from the definition of factorized function, the second equality is the result of dielectric
function evaluation at q = kx. A similar line of transforms is made in Eq. S20 to reach the form (7) of the main text:

εR+ (kx) =
εR (kx)

εR− (kx)
=

1 + ηR/ sin θ

εR− (kx)
. (S22)

After these replacements, we reach the final result:

EL (q) =
+iE0

1 + ηL/ sin θ

εR+ (q)

εL+ (q)

εL+ (kx)

εR+ (kx)

1

q − (kx − iǫ)
, (S23)

ER (q) =
−iE0

1 + ηR/ sin θ

εL− (q)

εR− (q)

εR− (kx)

εL− (kx)

1

q − (kx + iǫ)
. (S24)

The rationale beyond these replacements is the symmetry of final results with respect to interchanging the left and
right media. Further on, in such form it is explicitly seen that split functions εi±(q) can be determined up to a
multiplier that would drop out of the final results.

III. COMPARISON WITH SIMULATIONS

Our analytical solution for electric field in the metal-contacted 2DES, Eq. (9), was compared to the electromagnetic
simulations. In these simulations, the local fields E(x) were obtained using the finite-element method applied to the
Maxwell’s equations. The method was implemented within the commercially available CST Microwave Studio module.
The metal and 2DES were treated as ’sheet conductors’, moreover, the metal was treated as ’perfect conductor’. To
pass from the Fourier spectrum E↔

R (q) given by (9) to the real-space profile E(x), we have performed a numerical
inverse Fourier transform with cutoff wave vector |qmax = 20k0|. This cutoff ensures sufficient decay of E↔

R (q) and
convergence of the Fourier integrals.
Results of such comparison are shown in Fig. S1 for normal incidence θ = π/2 and two values of conductivity,

η = 0.1 (A) and η = −0.8i+0.01 (B). The decaying oscillation in (A) is the cylindrical electromagnetic wave radiated
by the junction. The oscillation in (B) is the TE plasmon, it has shorter wavelength λpl < λ0.
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FIG. S1. Comparison of Wiener-Hopf solution of the diffraction problem (red lines, marked as ’W-H’) with electromagnetic
simulations in the CST Microwave Studio package (blue lines, marked as ’sim.’). Panel (a) is plotted for 2DES conductivity
η = 0.1, panel (b) – for η = −0.8i + 0.01. In both panels, normal incidence is assumed (θ = π/2), the 2DES is contacting a
perfectly conducting metal at x < 0

The analytical solution agrees fairly well with numerical simulation. A residual discrepancy can be attributed to
the sensitivity of the numerical method to the size of simulation box. In the present case, it should largely exceed the
wavelength λ0 due to the slow decay of the scattered fields.

[1] E. Nikulin, D. Mylnikov, D. Bandurin, and D. Svintsov, Edge diffraction, plasmon launching, and universal absorption
enhancement in two-dimensional junctions, Physical Review B 103, 085306 (2021).

https://doi.org/10.1103/PhysRevB.103.085306

	Supplementary Material to the article Exact theory of edge diffraction and launching of transverse electric plasmons at two-dimensional junctions''
	Derivation of the electromagnetic scattering equation
	Details of the Wiener-Hopf method
	Comparison with simulations
	References


