Наблюдение резонансной радиационно-столкновительной передачи колебательной энергии в молекулах при лазерном ИК многофотонном возбуждении в двухкомпонентной среде

 Γ . H. Макаров¹⁾, A. H. Петин

Институт спектроскопии РАН, 142190 Троицк, Москва, Россия

Поступила в редакцию 5 сентября 2024 г. После переработки 18 сентября 2024 г. Принята к публикации 19 сентября 2024 г.

Представлены наблюдению результаты исследований по резонансной радиационностолкновительной передачи колебательной энергии между молекулами при их селективном лазерном ИК многофотонном возбуждении в двухкомпонентной среде. Эксперименты проводились с молекулами ВСІз природного изотопического состава в смеси с оптически активным сенсибилизатором и акцептором радикалов – молекулами СН₃F. Оба типа молекул резонансно поглощали излучение лазера. Наблюдалась резонансная радиационно-столкновительная передача энергии от молекул СН₃F к молекулам $^{10}{
m BCl_3}$. Показано, что указанный процесс приводит к большому увеличению выхода диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃ по сравнению с выходом диссоциации с нейтральными акцепторами радикалов. Зависимости выходов диссоциации молекул ВСІ3 от частоты возбуждающего лазерного излучения показывают структуру, которая хорошо коррелирует со структурой спектра ИК поглощения молекул СН₃F. Описан метод и приведены результаты экспериментов. Обсуждаются условия, при которых реализуется эффективная резонансная радиационно-столкновительная передача колебательной энергии между молекулами при лазерном ИК многофотонном возбуждении.

DOI: 10.31857/S0370274X24100204, EDN: YUPXUU

1. Введение. Процессы передачи энергии между частицами играют важную роль при проведении направленных фотофизических и фотохимических реакций [1-5]. В селективной лазерной ИК фотохимии и фотофизике, включая молекулярное лазерное разделение изотопов, особенно велика роль резонансных радиационно-столкновительных процессов передачи колебательной энергии между молекулами, когда передача энергии происходит одновременно с процессом возбуждения молекул лазером [4-8]. Резонансная передача энергии при этом реализуется за счет того, что молекулы обоих типов одновременно возбуждаются одним и тем же лазером на одной и той же частоте. Такие процессы имеют место при селективном лазерном ИК многофотонном возбуждении и диссоциации молекул с оптически активными сенсибилизаторами - молекулами, которые, как и исследуемые (целевые) молекулы, резонансно поглощают возбуждающее лазерное излучение [9, 10]. Процессы передачи энергии могут приводить к существенному увеличению скорости индуцированных лазером химических реакций, а также к изменению состава образующихся продуктов и парциального соотношения между ними [2-10]. С другой стороны, они могут также препятствовать проведению направленных реакций и получению желаемых продуктов [2-6, 11, 12].

Передача колебательной энергии от молекулсенсибилизаторов к исследуемым молекулам во многих случаях используется из-за отсутствия подходящих и мощных лазеров для их возбуждения. Так, на первоначальном этапе исследований по ИК многофотонному возбуждению и диссоциации молекул UF₆ не было мощных лазеров 16-мкм диапазона для возбуждения UF₆. Поэтому исследования по ИК диссоциации UF₆ проводились с использованием сенсибилизатора SF₆ [13–17]. Молекулы SF₆ использовались также для возбуждения и диссоциации целого ряда других молекул (XeOF₄ [17], SF₅Cl и CF₃I [18], CF₃Cl и (CF₃)₃CH [19]).

В качестве сенсибилизатора (донора колебательной энергии) используются молекулы, характеризующиеся большой колебательной теплоемкостью и имеющие интенсивные полосы поглощения в области частот генерации мощных ИК лазеров. Кроме того, желательно, чтобы молекулы-сенсибилизаторы имели более высокую энергию диссоциации, чем исследуемые молекулы. Молекулы SF₆ имеют сильную полосу ИК поглощения в области 10.6-мкм по-

¹⁾e-mail: g.makarov@isan.troitsk.ru

лосы генерации CO_2 -лазера (колебание ν_3 , частота $\approx 948\,\mathrm{cm}^{-1}$ [20]). Для возбуждения и диссоциации молекул UF₆ в качестве сенсибилизаторов использовались также и другие молекулы (CF₄, CF₃Cl, CF₂Cl₂) [14]. Роль сенсибилизаторов состояла в том, чтобы за счет передачи поглощенной ими из лазерного поля энергии возбудить исследуемые молекулы и индуцировать их диссоциацию. Молекулы сенсибилизатора могут и сами сильно возбуждаться лазерным излучением и подвергаться диссоциации. Однако при умеренных плотностях энергии накачки можно реализовать условия, когда исследуемые молекулы подвергаются диссоциации, а молекулы сенсибилизатора — нет [13–17].

В указанных выше работах [13–18] исследуемые молекулы не поглощали лазерное излучение. Они возбуждались за счет передачи энергии от сенсибилизаторов. Недавно были проведены исследования по изотопно-селективному лазерному ИК многофотонному возбуждению молекул с использованием оптически активных сенсибилизаторов — молекул, которые сильно поглощают лазерное излучение на тех же частотах, на которых резонансно возбуждаются исследуемые молекулы [9, 10]. Выполнены также эксперименты по вовлечению молекул, не поглощающих лазерное излучение, в резонанс с лазерным полем за счет использования оптически активных сенсибилизаторов [21, 22].

В условиях, когда исследуемые молекулы и молекулы сенсибилизатора одновременно поглощают излучение лазера, происходит эффективный резонансный столкновительный обмен энергией между молекулами в присутствии лазерного поля, что приводит к сильному возбуждению обоих типов молекул [6-10]. Именно в таких условиях в работах [9, 10] была изучена изотопно-селективная диссоциация молекул ¹¹BCl₃ в естественной смеси изотопологов с сенсибилизатором и акцептором радикалов SF₆. Показано, что использование сенсибилизатора приводит к существенному увеличению эффективности диссоциации молекул ¹¹BCl₃. Отсутствие структуры в полосе ИК поглощения колебания ν_3 SF $_6$ не позволило в работах [9, 10] наглядно продемонстрировать резонансный характер процесса передачи энергии от молекул сенсибилизатора к исследуемым молекулам. В данной работе представлены результаты, которые четко показывают резонансный характер процесса передачи энергии от молекул СН₃F к молекулам ¹⁰BCl₃. Тем самым установлено, что молекулы СН₃F являются активным сенсибилизатором и акцептором радикалов для эффективной диссоциации молекул ¹⁰BCl₃. Полученные результаты важны в плане реализации лазерного разделения изотопов бора на практике.

2. Установка и метод. Экспериментальная установка (рис. 1) включала в себя перестраиваемый по частоте импульсный CO_2 -лазер, формирующую оптику, газовую кювету из нержавеющей стали для облучения исследуемых молекул длиной $112\,\mathrm{mm}$, объемом $24.2\,\mathrm{cm}^3$, с окнами из KBr, калориметрический (ТПИ-2-5) и пироэлектрические (SensorPhysics Model 510) приемники излучения для измерения падающей и прошедшей через кювету энергии. Импульс излучения CO_2 -лазера состоял из переднего пика длительностью около $80\,\mathrm{mm}$ полувысоте и хвостовой части длительностью $\approx 750\,\mathrm{mm}$, в которой содержалась примерно третья часть энергии лазерного импульса. Лазерное излучение фокусировалось

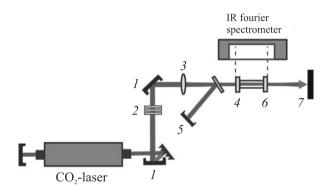


Рис. 1. (Цветной онлайн) Схема экспериментальной установки. 1 – зеркало; 2 – ослабители лазерного излучения; 3 – короткофокусная линза; 4 – делительная пластинка; 5 – приемник излучения; 6 – кювета с облучаемым газом; 7 – поглотитель излучения

в облучаемую кювету линзой из NaCl с фокусным расстоянием $f=14\,\mathrm{cm}$. Размер лазерного пятна в фокальной области линзы был $\approx 0.01\,\mathrm{cm}^2$. Энергия излучения лазера в импульсе составляла $\approx 0.4\,\mathrm{Дж}$. Плотность энергии возбуждающего излучения в фокальной области линзы достигала $\approx 40\,\mathrm{Дж/cm}^2$. Частота излучения лазера перестраивалась в диапазоне от 973.3 до $986.6\,\mathrm{cm}^{-1}$ (линии генерации лазера $10\mathrm{R}(16)-10\mathrm{R}(38)$). Для привязки частоты линий излучения CO_2 -лазера использовался оптикоакустический приемник с реперным газом NH_3 .

Лазерная ИК многофотонная диссоциация молекул BCl_3 протекает [2, 3] по схеме:

$$BCl_3 + nh\nu \rightarrow BCl_2 + Cl,$$
 (1)

где $nh\nu$ обозначает количество поглощенных лазерных ИК фотонов.

При облучении молекул на указанных выше частотах генерации лазера продукты диссоциации обогащались изотопом 10 В, а остаточный после облучения газ BCl₃ обогащался изотопом 11 В. Выходы диссоциации, которые представляют собой доли распавшихся в облучаемом объеме молекул за один лазерный импульс, определялись по изменениям интенсивности полос в ИК спектрах поглощения для каждой из изотопных компонент BCl₃. Спектры поглощения измерялись с помощью ИК фурье-спектрометра ФТ-801. Выходы диссоциации β_{10} и β_{11} вычислялись по парциальному давлению каждой компоненты i BCl₃ (i=10,11) до ($p_{i,0}$) и после (p_{i}) облучения лазерными импульсами с использованием соотношения

$$\beta_i = \Gamma^{-1} [1 - (p_i/p_{i,0})^{1/N}], \tag{2}$$

где $\Gamma \approx 0.02$ – отношение облучаемого объема $(V_{irr} \approx 0.48 \, \text{cm}^3)$ к объему кюветы $(V_{\text{cell}} = 24.2 \, \text{cm}^3)$, N – число импульсов облучения. Селективность $\alpha(^{10}\text{B}/^{11}\text{B})$ определялась как отношение выходов диссоциации молекул $^{10}\text{BCl}_3$ и $^{11}\text{BCl}_3$:

$$\alpha(^{10}B/^{11}B) = \beta_{10}/\beta_{11}.$$
 (3)

Молекулы $^{11}\mathrm{BCl_3}$ и $^{10}\mathrm{BCl_3}$ имеют интенсивные полосы поглощения с центрами соответственно около $954.2\,\mathrm{cm^{-1}}$ и $993.7\,\mathrm{cm^{-1}}$, которые соответствуют асимметричным колебаниям моды ν_3 связи B–Cl [23]. Изотопический сдвиг между указанными полосами поглощения составляет $\Delta\nu_{\mathrm{is}}\approx 39.5\,\mathrm{cm^{-1}}$ [23]. Полоса поглощения колебания ν_3 молекул CH₃F (частота Q-ветви $1048.61\,\mathrm{cm^{-1}}$ [24]) примерно на $54.9\,\mathrm{cm^{-1}}$ смещена в высокочастотную сторону от центра полосы поглощения молекул $^{10}\mathrm{BCl_3}$ (993.7 см $^{-1}$ [23]) (см. рис. $2\mathrm{a-c}$).

Однако ряд колебательно-вращательных линий P-ветви полосы ИК поглощения молекул ${\rm CH_3F}$ совпадают с полосой поглощения молекул ${\rm ^{10}BCl_3}$. При лазерном ИК многофотонном возбуждении ${\rm CH_3F}$ спектр поглощения возбужденных молекул смещается из-за ангармонизма колебаний в красную сторону, что приводит их к лучшему резонансу с лазерным полем [2, 3, 21, 22, 25]. Это дает возможность при изотопно-селективной диссоциации молекул ${\rm ^{10}BCl_3}$ использовать молекулы ${\rm CH_3F}$ одновременно в качестве сенсибилизатора и акцептора радикалов.

Следует отметить, что молекулы CH_3F , как и молекулы BCl_3 , имеют довольно большую энергию диссоциации ($BCl_3 - \approx 110\,$ ккал/моль, $CH_3F - \approx 112\,$ ккал/моль по каналу образования $CH_3 + F$ и $\approx 110.2\,$ ккал/моль по каналу образования $CH_2F + H$ [26]). Поэтому при сравнительно высоких плотностях

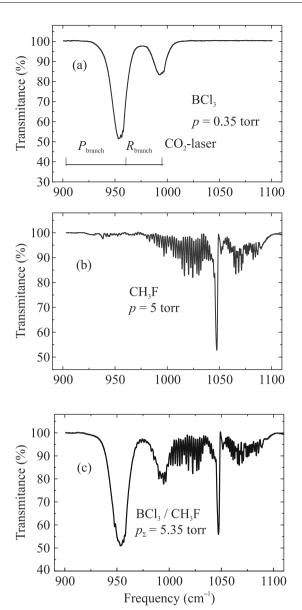


Рис. 2. (Цветной онлайн) (а) — Полосы ИК поглощения колебаний ν_3 молекул 11 BCl $_3$ и 10 BCl $_3$. Давление BCl $_3$ в кювете — 0.35 торр, длина кюветы — 11.2 см. (b) — Полоса ИК поглощения колебания ν_3 молекул CH $_3$ F. Давление CH $_3$ F в кювете — 5 торр. (c) — Полосы ИК поглощения колебаний ν_3 молекул 11 BCl $_3$, 10 BCl $_3$ и CH $_3$ F. Давление BCl $_3$ в кювете — 0.35 торр, CH $_3$ F — 5 торр

энергии возбуждения могла иметь место диссоциация и молекул $\mathrm{CH_3F}$. Однако молекулы $\mathrm{CH_3F}$ характеризуются значительно большей, чем молекулы $\mathrm{BCl_3}$, величиной ангармонизма колебаний возбуждаемой лазером моды ν_3 ($\Delta\nu_{\mathrm{anh}}\approx 3.3\,\mathrm{cm^{-1}}$ для $\mathrm{BCl_3}$ [27] и $\Delta\nu_{\mathrm{anh}}\approx 15.8\,\mathrm{cm^{-1}}$ для $\mathrm{CH_3F}$ [28]), что затрудняет процесс их многофотонного возбуждения [2, 3]. При используемых нами плотностях энергии возбуждения ($\Phi \leq 40\,\mathrm{Дж/cm^2}$) эффективная диссоциация молекул $\mathrm{CH_3F}$ (без $\mathrm{BCl_3}$) не происходила.

3. Результаты и их обсуждение. На рисунке 2а-с приведены спектры линейного ИК поглощения молекул BCl₃ (a), CH₃F (b) и смеси молекул BCl₃ с CH₃F (с) в области частот, на которых молекулы возбуждались лазером, полученные со спектральным разрешением $0.5\,\mathrm{cm}^{-1}\,\mathrm{c}$ помощью спектрометра ФТ-801. При таком разрешении тонкая структура отдельных линий поглощения молекул СН₃F не разрешалась. В нижней части рис. 2а показаны vчастки P- и R-ветвей 10.6-мкм полосы генерации СО₂-лазера. Частотные отстройки между некоторыми используемыми в экспериментах линиями генерации лазера и линиями поглощения молекул СН₃F составляют $\leq 0.1 \, \text{cm}^{-1}$ [29]. Наименьшие частотные отстройки реализуются для линий лазера 10R(16), 10R(24), 10R(30) и 10R(36) [29]. При возбуждении смеси молекул BCl₃ + CH₃F можно ожидать проявления структуры в спектральной зависимости выхода диссоциации молекул BCl₃, хотя многофотонное поглощение молекул в сильном ИК поле лазера может сильно повлиять на спектральную зависимость выхода диссоциации [2, 3]. В экспериментах при возбуждении молекул BCl₃ + CH₃F именно на этих линиях генерации лазера нами наблюдались максимумы в выходах диссоциации молекул BCl₃.

Рисунок 3 демонстрирует методику измерений. На нем показаны спектры ИК поглощения смеси молекул $BCl_3 + CH_3F$ (при давлении 0.35 + 5.0 торр) до облучения (1) и после облучения (2) лазером на частоте $983.25\,\mathrm{cm}^{-1}$ (на линии $10\mathrm{R}(32)$ лазера). Энергия возбуждающего лазерного излучения составляла около 0.3 Дж. Видно, что в результате облучения происходит диссоциация молекул BCl₃, причем как $^{10}\mathrm{BCl_{3}}$, так и $^{11}\mathrm{BCl_{3}}$. При этом большого расхода газа СН₃F не наблюдается. Следует особо отметить, что в результате облучения BCl₃ в смеси с CH₃F образуется продукт BCl₂F. Полоса поглощения колебания ν_4 молекул $^{11}BCl_2F$ (частота $993.7\,\mathrm{cm}^{-1}$ [23]) практически совпадает с полосой поглощения колебания ν_3 молекул $^{10}BCl_3$ (накладывается на нее) [23]. В результате полученные нами данные по расходу ¹⁰BCl₃ значительно занижены. Это не давало также возможности определять селективность диссоциации $\alpha(^{10}{\rm B}/^{11}{\rm B})$ молекул BCl₃ по расходу газа.

Основное внимание в экспериментах было уделено измерению выхода диссоциации молекул BCl_3 по расходу $^{11}BCl_3$. На полосу поглощения молекул $^{11}BCl_3$ никакие полосы поглощения продуктов не накладывались. При этом полагалось, что селективность диссоциации молекул BCl_3 в проводимых нами экспериментах сопоставима с селективностью их диссоциации с другими акцепторами радикалов [9, 10],

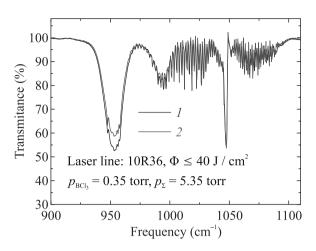


Рис. 3. (Цветной онлайн) Полосы ИК поглощения колебаний ν_3 молекул $^{11}BCl_3$, $^{10}BCl_3$ и CH_3F до облучения (1) и после облучения (2) лазером. Исходное давление BCl_3 в кювете – 0.35 торр, CH_3F – 5 торр. Плотность энергии возбуждающего лазерного излучения $\leq 40 \, \text{Дж/cm}^2$. Число импульсов облучения N=900

и она составляет $\alpha(^{10}{\rm B}/^{11}{\rm B}) \approx 2.5 - 3.5$ (см. работы [30, 31]). Кроме того, на полосу поглощения молекул ¹⁰BCl₃ накладывались линии поглощения молекул СН₃F (см. рис. 2с и 3), что также ограничивало уменьшение интенсивности полосы поглощения ¹⁰BCl₃ за счет облучения. Поэтому в представленных нами на рис. 4 и 5 данных выходы диссоциации молекул ¹⁰BCl₃ определены неточно, они занижены. Данные по выходу диссоциации ¹⁰BCl₃ приведены нами лишь для качественного сравнения с данными по измерению выхода диссоциации молекул ¹¹BCl₃. Для точного определение выхода, а также селективности диссоциации ¹⁰BCl₃ с использованием сенсибилизатора СН₃F требуется проводить массспектрометрический анализ остаточного после облучения газа BCl₃.

На рисунке 4 приведены зависимости выходов диссоциации молекул $^{11}\mathrm{BCl_3}$ и $^{10}\mathrm{BCl_3}$ от частоты возбуждающего излучения $\mathrm{CO_2}$ -лазера.

Молекулы возбуждались на линиях 10R(16)–10R(38). Энергия лазерного импульса – 0.3 Дж. Облучалась смесь 0.35 торр $BCl_3 + 5$ торр CH_3F . Установлено, что структура в зависимостях выходов диссоциации молекул $^{10}BCl_3$ и $^{11}BCl_3$ от частоты возбуждающего излучения довольно хорошо коррелирует со структурой спектра линейного ИК поглощения колебания ν_3 молекул CH_3F , состоящей из отдельных колебательно-вращательных линий поглощения (рис. 2b). Максимальные выходы диссоциации $^{10}BCl_3$ и $^{11}BCl_3$ наблюдаются при возбуждении молекул именно на тех линиях гене-

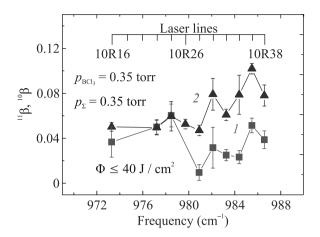


Рис. 4. (Цветной онлайн) Зависимости выходов диссоциации β_{10} (1) и β_{11} (2) от частоты возбуждающего лазерного излучения. Область перестройки линий лазера: 10R(16)-10R(38). Давление газа в кювете: 0.35 торр BCl_3+5 торр CH_3F . В верхней части рисунка показано частотное положение линий генерации CO_2 -лазера, на которых возбуждались молекулы

рации лазера (R(24), R(30) и R(36)), для которых реализуются минимальные частотные отстройки от линий поглощения молекул CH_3F [29]. Полученные результаты ясно показывают резонансный характер процесса передачи энергии от молекул CH_3F к молекулам BCl_3 .

На рисунке 5 показаны зависимости выходов диссоциации молекул $^{10}{\rm BCl_3}$ и $^{11}{\rm BCl_3}$ от давления сенсибилизатора и акцептора радикалов СН₃F. Заметим сразу, что без СН₃F выход диссоциации молекул $^{10}{
m BCl_3}$ больше таковой $^{11}{
m BCl_3}$. Селективность диссоциации $^{10}{\rm BCl_3}$ составляла $\alpha(^{10}{\rm B}/^{11}{\rm B}) \approx 3.5$ (см. рис. 5). С использованием СН₃F, как отмечено выше, измерять селективность мы не могли, поскольку на полосу поглощения молекул ¹⁰BCl₃ накладывались полосы поглощения продукта ¹¹BCl₂F и сенсибилизатора. Как видно на рис. 5, в исследуемом диапазоне выходы диссоциации молекул BCl₃ монотонно растут с увеличением давления СН₃F и увеличиваются почти на 2 порядка (в 60-80 раз) при увеличении давления СН₃F примерно от 1.0 до 15 торр. Этот результат существенно отличается от результатов, полученных ранее в случае ИК диссоциации молекул BCl₃ с другими акцепторами радикалов, таких как O_2 , H_2 NO, HBr, H_2S и другие [30–33], которые не поглощают возбуждающее молекулы BCl₃ лазерное излучение. В случае использования оптически нейтральных акцепторов радикалов выход диссоциации молекул BCl₃ с ростом давления акцепторного газа увеличивался всего в 2-3 раза, а оптимальная величина выхода диссоциации BCl₃ достигалась при давлениях буферных газов 5–10 торр [30–33]. При дальнейшем увеличении давления буферного газа наблюдалась дезактивация возбужденных молекул и уменьшение их выхода диссоциации. Показано также, что в плане получения сравнительно высоких значений селективности и выхода диссоциации молекул ВСl₃ хорошим акцептором радикалов является кислород [32, 33]. Полученные нами зависимости выходов диссоциации молекул ВСl₃ от частоты возбуждающего

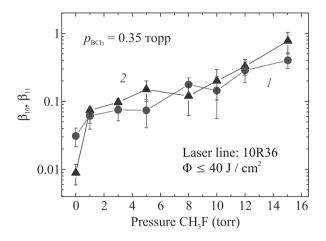


Рис. 5. (Цветной онлайн) Зависимости выходов диссоциации β_{10} (1) и β_{11} (2) от давления сенсибилизатора и акцептора радикалов $\mathrm{CH_3F}$. Давление газа $\mathrm{BCl_3}$ в кювете – 0.35 торр, плотность энергии возбуждающего лазерного излучения $\leq 40\,\mathrm{Дж/cm^2}$

излучения и от давления сенсибилизатора и акцептора радикалов СН₃F четко показывают, что именно за счет передачи колебательной энергии от молекул CH₃F исследуемым молекулам ¹⁰BCl₃ происходит существенное увеличение выхода диссоциации BCl₃. Эффективная передача колебательной энергии от молекул CH₃F к молекулам ¹⁰BCl₃ происходит ввиду резонансного характера процесса передачи энергии [1, 14, 25, 34]. В результате последующего довольно быстрого столкновительного процесса колебательно-колебательного $V \leftrightarrow V$ обмена энергий между молекулами ¹⁰BCl₃ и ¹¹BCl₃ (константа скорости $p\tau_{\text{V-V}} \approx 0.5\,\text{мкc}\cdot\text{торр}$ [24]) происходит возбуждение также и не поглощающих лазерное излучение молекул $^{11}\mathrm{BCl}_3$. Константа скорости колебательнопоступательной релаксации молекул BCl₃ в собственном газе составляет $p\tau_{V-T} \approx 5.8\,\mathrm{mkc}\cdot\mathrm{торр}$, а в ${\rm CH_3F} - p\tau_{\rm V-T} \approx 15.3\,{\rm MKC}\cdot{\rm торр}$ [24]. Поскольку полная длительность возбуждающего лазерного импульса составляла $\approx 0.75\,\mathrm{mkc}$, в проведенных нами экспериментах реализовывался преимущественно радиационно-столкновительный режим возбуждения молекул.

Газообразные продукты, которые образовывались в результате лазерной ИК многофотонной диссоциации молекул BCl_3 в смеси с CH_3F и последующих химических реакций, идентифицировались по их спектрам ИК поглощения в спектральной области примерно от $750\,\mathrm{cm}^{-1}$ до $3600\,\mathrm{cm}^{-1}$. Установлено, что основными конечными продуктами являются $^{10}BCl_2F$ и $^{11}BCl_2F$, $^{10}BClF_2$ и $^{11}BClF_2$, а также HCl.

4. Заключение. Изучена резонансная передача колебательной энергии при изотопно-селективной лазерной ИК многофотонной диссоциации молекул BCl₃ в смеси с оптически активным сенсибилизатором и акцептором радикалов — молекулами CH₃F. Молекулы CH₃F имеют структурированную полосу ИК поглощения, перекрывающуюся с полосой поглощения молекул ¹⁰BCl₃, что позволяет наблюдать процесс резонансной радиационно-столкновительной передачи колебательной энергии от молекул CH₃F к молекулам ¹⁰BCl₃.

Показано, что зависимости выходов диссоциации молекул BCl_3 от частоты возбуждающего лазерного излучения имеют структуру, которая хорошо коррелирует со структурой спектра ИК поглощения колебания ν_3 молекул CH_3F . Установлено, что указанный процесс приводит к значительному (более, чем в 5–10 раз) увеличению выхода диссоциации молекул $^{10}BCl_3$ по сравнению с выходом диссоциации при облучении с нейтральными акцепторами радикалов.

Полученные результаты четко показывают резонансный характер индуцированных мощным ИК лазером процессов передачи энергии от молекул сенсибилизатора $\mathrm{CH_3F}$ к исследуемым молекулам $^{10}\mathrm{BCl_3}$ и представляют большой интерес в плане применения лазерных методов для разделения изотопов бора на практике.

Финансирование работы. Исследование выполнено в рамках государственного задания FFUU-2022-0004.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- J. T. Yardley, in Introduction to Molecular Energy Transfer, Academic, N.Y. (1980), p. 130.
- V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry, Harwood Acad. Publ., Chur (1985).
- 3. C.D. Cantrell (editor), Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Topics in Current Physics, Springer-Verlag, Berlin (1986), v. 35.
- 4. Г. Н. Макаров, УФН **192**, 569 (2022).

- 5. Г. H. Макаров, УФН **194**, 48 (2024).
- 6. Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ **112**, 226 (2020).
- 7. Г. Н. Макаров, А. Н. Петин, Квантовая электроника **50**, 1036 (2020).
- 8. Г. Н. Макаров, А. Н. Петин, ЖЭТФ ${\bf 159}$, 281 (2021).
- 9. Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ **117**, 734 (2023).
- 10. Г. Н. Макаров, А. Н. Петин, ЖЭТФ 165, 14 (2024).
- 11. В.Б. Лаптев, Е.А. Рябов, Квантовая электроника **13**, 2368 (1986).
- 12. В. Б. Лаптев, Е. А. Рябов, Химическая физика **7**, 165 (1988).
- R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Chem. Phys. Lett. 78, 273 (1981).
- R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).
- K. C. Kim, S. Freund, R. K. Sander, D. F. Smith, and W. B. Person, J. Chem. Phys. 78, 32 (1983).
- C. Chin, H. Hou, Yi. Bao, and T. Li, Chem. Phys. Lett. 101, 69 (1983).
- C. Angelie, M. Cauchetier, and J. Paris, Chem. Phys. 66, 129 (1982).
- M. Cauchetier, M. Luce, and C. Angelie, Chem. Phys. Lett. 88, 146 (1982).
- 19. В. Н. Баграташвили, В. Н. Буримов, Л. Е. Деев, В. И. Носков, А. П. Свиридов, Квантовая электроника ${\bf 10},\,1682\,\,(1983).$
- R. S. McDowell, B. J. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta 42A, 351 (1986).
- 21. Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ **115**, 292 (2022).
- 22. В. Б. Лаптев, Г. Н. Макаров, А. Н. Петин, Е. А. Рябов, ЖЭТФ **162**, 60 (2022).
- D. F. Wolfe and G. L. Humphrey, J. Mol. Struct. 3, 293 (1969).
- P. L. Houston, A. V. Nowak, and J. I. Steinfeld, J. Chem. Phys. 58, 3373 (1973).
- 25. Г. Н. Макаров, Письма в ЖЭТФ 115, 703 (2022).
- 26. В. Н. Кондратьев (ред.), Энергии разрыва химических связей, потенциалы ионизации и сродство к электрону, Наука, М. (1974).
- 27. Н.В. Карлов, Ю.Н. Петров, А.М. Прохоров, О.М. Стельмах, Письма в ЖЭТФ **11**, 220 (1970).
- A. Owens, A. Yachmenev, J. Kupper, S. N. Yurchenko, and W. Thie, Phys. Chem. Chem. Phys. 21, 3496 (2018).
- D. G. Biron, R. J. Temkin, B. Lax, and B. G. Danly, Opt. Lett. 4, 381 (1979).
- 30. Ю. Р. Коломийский, Е. А. Рябов, Квантовая электроника $\mathbf{5}, 651 \ (1978).$

- 31. Z. Peiran, Z. Wensen, and Z. Yuying, Chinese J. Lasers 8(10), 20 (1981).
- Р. В. Амбарцумян, Ю. А. Горохов, В. С. Летохов, Г. Н. Макаров, Е. А. Рябов, Н. В. Чекалин, Квантовая электроника 2, 2197 (1975).
- 33. Р. В. Амбарцумян, Ю. А. Горохов, В. С. Летохов, Г. Н. Макаров, Е. А. Рябов, Н. В. Чекалин, Квантовая электроника $\bf 3$, 802 (1976).
- 34. B. Y. Mohan, J. Chem. Phys. 46, 98 (1967).