Квантовые эффекты при спин-флоп переходе в топологическом антиферромагнитном изоляторе MnBi₂Te₄

В. В. Вальков 1 , А. О. Злотников, А. Гамов, Н. А. Федорова, Ф. Н. Томилин

Институт физики им. Л. В. Киренского, Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук", 660036 Красноярск, Россия

> Поступила в редакцию 14 августа 2024 г. После переработки 29 августа 2024 г. Принята к публикации 29 августа 2024 г.

Показано, что экспериментально обнаруженные особенности низкотемпературного поведения намагниченности во внешнем магнитном поле, ориентированном перпендикулярно слоям ионов марганца топологического антиферромагнетика MnBi₂Te₄, обусловлены квантовыми эффектами, индуцированными
недиагональным характером тригональной компоненты кристаллического поля. При этом аномальное
возрастание намагниченности материала до спин-флоп перехода, а также после него в фазе "схлопнутых" подрешеток объясняется подавлением вкладов от квантовых эффектов. Сопоставление результатов
теоретического анализа с данными эксперимента позволило уточнить параметры эффективной спиновой модели MnBi₂Te₄ и установить важную роль отмеченной тригональной компоненты.

DOI: 10.31857/S0370274X24100072, EDN: ALJRJW

1. Введение. Существование ниже температуры Нееля $T_N = 24.5$ К антиферромагнитного (АФМ) порядка в топологическом изоляторе (ТИ) MnBi₂Te₄ [1–5] определило повышенный интерес к этому слоистому ван-дер-ваальсовому материалу, поскольку позволило воздействовать на топологически защищенные поверхностные состояния через магнитную структуру.

Магнитное упорядочение в MnBi₂Te₄ соответствует антиферромагнетизму А типа, при котором магнитные моменты ионов Mn²⁺ в пределах одного слоя образуют ферромагнитную (ФМ) структуру, тогда как в соседних плоскостях эти моменты ориентированы антипараллельно. Важная особенность магнитных свойств MnBi₂Te₄ обусловлена сильной одноионной анизотропией (ОА), в соответствие с которой магнитные моменты ионов Мп ориентированы перпендикулярно слоям. Отмеченные факты подтверждаются данными нейтронного рассеяния [6, 7]. При этом как магнитные, так и спектральные свойства MnBi₂Te₄ могут отличаться для разных образцов [8]. Например, в некоторых образцах [9, 10] обнаружено формирование ферромагнитного порядка при $T < T_N$ на поверхности $MnBi_2Te_4$.

Вызывает интерес механизм формирования ферромагнетизма в слоях Mn, который не объясняется прямым гейзенберговским обменом. Различные оценки по правилу Гуденафа–Канамори–Андерсона

¹⁾e-mail: vvv@iph.krasn.ru

предполагают формирование либо слабого АФМ обмена, либо ФМ обмена между ионами Mn в одном слое через лиганды Те²⁻ [11, 12]. Первопринципные расчеты обменных параметров в MnBi₂Te₄ подтверждают реализацию ФМ обмена величиной 0.09 мэВ между ближайшими ионами Mn в слое [2]. Однако единый взгляд на причину ферромагнетизма отсутствует и исследования в данном направлении продолжаются. В работе [12] было показано, что гибридизация *p*-состояний ионов Bi³⁺ с *p*-состояниями лиганда Te²⁻ может инициировать ФМ сверхобмен между ионами Mn. Отмечалось также, что ферромагнитная связь между магнитными моментами ионов Mn, находящихся в одном слое, может быть обусловлена кинематическим взаимодействием между фермионами Хаббарда, отражающими поведение сильно коррелированной подсистемы 3d-электронов ${\rm Mn^{2+}}$ [13]. При этом ${\rm A\Phi M}$ обмен внутри слоя и между слоями ионов Mn²⁺ возникает по механизму Андерсона.

Проблемным остается вопрос о возникновении ОА в ${\rm MnBi_2Te_4}$, поскольку для электронной конфигурации $3d^5$ иона марганца и S=5/2 орбитальный момент L=0. Один из механизмов индуцирования ОА может быть связан с виртуальным подмешиванием других электронных конфигураций. В работе [11] показано, что для появления ОА важным является учет спин-орбитального взаимодействия в ионах ${\rm Te}$.

По своим свойствам $MnBi_2Te_4$ напоминает $A\Phi M$ с OA типа "легкая ось", ориентированной перпенди-

кулярно слоям ионов марганца (ось c). Эта анизотропия стабилизирует коллинеарную АФМ структуру (в дальнейшем фаза I) в магнитном поле H, направленном вдоль оси c, вплоть до поля спин-флоп перехода $H_{sf}=3.7\,\mathrm{Tr}$, когда происходит "опрокидывание" магнитных подрешеток [2, 6, 14, 15] с формированием скошенной фазы II. В этой фазе увеличение H приводит к уменьшению угла наклона векторов намагниченностей подрешеток по отношению к оси c. Когда H достигает поля насыщения $H_{\mathrm{sat}}^c=8.1\,\mathrm{Tr}$ намагниченности обеих подрешеток ориентированы вдоль оси c (фаза III).

В магнитном поле, лежащем в плоскости и
онов марганца, скос подрешеток происходит сразу, а их "схлопывание" при поле насыщения
 $H_{\rm sat}^{ab}=10.9\,{\rm Tr}$.

Для описания эволюции магнитной структуры и оценке обменных параметров по величинам характеристических полей использовался феноменологический подход [7, 11, 15]. Однако часть данных не согласовывалась с феноменологическими результатами. Прежде всего это относилось к поведению намагниченности M при $T \ll T_N$, когда в фазе І M увеличивалась с ростом H, тогда как по феноменологической теории M=0. Аналогичная проблема возникала в связи с наблюдаемым в фазе ІІІ парапроцессом.

В работе [15] последний факт связывался с наличием дефектов в системе, когда ионы Мп занимают позиции ионов Ві. При этом между ионами Мп в центральном слое МпВі₂Те₄ и "дефектными" ионами Мп устанавливается АФМ связь, в результате чего при понижении температуры в АФМ фазе также устанавливается дальний порядок в "дефектном" слое ионов Мп [15–17]. Действительно, учет отмеченных дефектов позволил объяснить нарастание намагниченности в фазе ІІІ при увеличении поля вплоть до 60 Тл [15]. Однако вопрос о росте намагниченности в полях, меньших поля спин-флоп перехода, оставался открытым.

Следует отметить, что в родственном соединении $MnSb_2Te_4$ перемешивание позиций ионов Mn и Sb может приводить к смене магнитной структуры с $A\Phi M$ A типа на ΦM [16, 18]. В структурах с $MnBi_2Se_4$, помимо "дефектных" ионов MnI в слое ионов Bi, обнаружены также ионы MnII в ван-дерваальсовой щели между семислойками [19]. При этом обменное взаимодействие этих ионов с ионами Mn в центральном слое различно – ΦM для MnII и $A\Phi M$ для MnII.

Решение отмеченных вопросов составило предмет данной работы. В ней ключевая роль отводится квантовым эффектам, возникающим в анизотроп-

ных магнетиках с относительно низкими значениями температуры магнитного упорядочения.

Поскольку для кристаллографической структуры ${\rm MnBi_2Te_4}$ внутренние поля соответствуют тригональной симметрии с точечной группой C_{3d} (S_6) для ионов ${\rm Mn}$, то оператор ${\rm OA}$, кроме обычных одноосных слагаемых, содержит тригональную компоненту [20, 21]. Ее особенность обусловлена смешиванием состояний с разными значениями проекции спина. Это вызывает квантовые эффекты, отсутствующие при феноменологическом подходе.

Цель работы заключается в развитии теории, позволяющей при учете квантовых эффектов описать указанные выше аномалии в поведении низкотемпературной намагниченности. Для ее достижения использовано атомное представление [22] с привлечением диаграммной техники для операторов Хаббарда (ДТХ) [23, 24], в сущностной части отличающейся от стандартной техники для фермиевских или бозевских операторов [25] тем, что коммутация хаббардовских операторов может равняться не числу, а другому оператору Хаббарда. Это позволило вывести дисперсионное уравнение и получить его решение в низкотемпературной области при учете ренормировок от тригональной компоненты ОА (ТКОА). Определены критические поля и проанализировано поведение намагниченности материала во всех фазах при различных Т. Сопоставление теоретических зависимостей M(H) с данными эксперимента позволило получить дополнительные сведения о параметрах модели магнитной подсистемы MnBi₂Te₄ и сделать утверждение о существенной роли ТКОА.

2. Гамильтониан магнитной подсистемы. Принимая во внимание сказанное во введении, гамильтониан магнитной подсистемы ${\rm MnBi}_2{\rm Te}_4$ запишем в виде

$$\hat{H} = -\frac{1}{2} \sum_{ff'} I_{ff'}(\mathbf{S}_f \mathbf{S}_{f'}) - \frac{1}{2} \sum_{gg'} I_{gg'}(\mathbf{S}_g \mathbf{S}_{g'}) + (1)$$

$$+ \sum_{fg} J_{fg}(\mathbf{S}_f \mathbf{S}_g) + \sum_{f} [H_f^A - \mathbf{H} \mathbf{S}_f] + \sum_{g} [H_g^A - \mathbf{H} \mathbf{S}_g],$$

где индексы f и f' нумеруют узлы F-подрешетки, в которой без магнитного поля спины ориентированы вдоль оси Oz, а g и g' – узлы G-подрешетки, для которой ориентация спинов противоположна. Параметры $I_{ff'}$ и $I_{gg'}$ описывают интенсивность обменной связи между спинами из одной подрешетки, находящимися в пределах одного слоя, тогда как J_{fg} есть обменный интеграл для спинов из разных подрешеток. \mathbf{S}_f и \mathbf{S}_g – векторные операторы спина для узлов f и g соответственно, \mathbf{H} – вектор магнитного поля,

величина которого измеряется в энергетических единицах: т.е. под H понимается произведение $g_{\scriptscriptstyle L}\mu_{\scriptscriptstyle B}H,$ в котором $g_{\scriptscriptstyle L}$ – фактор Ланде, $\mu_{\scriptscriptstyle B}$ – магнетон Бора.

Оператор энергии ОА для F- подрешетки

$$H_f^A = -D_2(\hat{S}_f^z)^2 - D_4(\hat{S}_f^z)^4 + B\hat{\Omega}_{4f}^3 \tag{2}$$

в соответствие с кристаллической симметрией включает ТКОА с константой $B,\ \Omega_4^3$ имеет следующую структуру [20] (индекс узла временно опущен)

$$\hat{\Omega}_4^3 = (\hat{O}_4^{+3} - \hat{O}_4^{-3})/2i, \ \hat{O}_4^{\pm 3} = (\hat{S}^z \hat{S}^{\pm 3} + \hat{S}^{\pm 3} \hat{S}^z)/2,$$
$$\hat{S}^{\pm 3} = (\hat{S}^{\pm})^3, \quad \hat{S}^{\pm} = \hat{S}^x \pm i\hat{S}^y, \tag{3}$$

 $\hat{S}^x,~\hat{S}^y,~\hat{S}^z$ — компоненты вектора оператора спина. $H_g^{^A}$ отличается от $H_f^{^A}$ только заменой индекса узла.

С феноменологической точки зрения положительные D_2 и D_4 задают интенсивности эффективных полей, ориентирующих спины либо по, либо против направления оси Oz. При отрицательных D_2 и D_4 эффективные поля стремятся упорядочить спины перпендикулярно оси Oz. Константа B задает интенсивность эффективного поля анизотропии, соответствующего второй оси (двуосный кристалл).

При квантовом подходе параметры ОА соответствуют амплитудам квадрупольных и октупольных полей, действующих на спины, и возникающие в результате совместного влияния кристаллического поля и спин-орбитального взаимодействия.

3. Атомное представление, одноузельные состояния и уравнения самосогласования. Поскольку температура магнитного упорядочения в $\mathrm{MnBi_2Te_4}$ мала $(T_N \simeq 24\,\mathrm{K})$, то характерная энергия ОА может стать соизмеримой с энергией обменной связи. В этих условиях динамика магнитной подсистемы определяется не только дипольными моментами, но и динамикой высших мультиполей. Для описания таких систем используется расширенный базис, учитывающий наличие степеней свободы, связанных как со спиновыми операторами, так и с их допустимыми произведениями.

В наиболее общем виде такая программа реализуется посредством перехода к атомному представлению, в котором динамическими переменными становятся операторы группы U(N). С этой целью вводятся состояния $|\Psi_f^F\rangle$ и $|\Psi_g^G\rangle$, определяемые решениями уравнений Шредингера

$$\left(H_f^{A} - \bar{\mathbf{H}}_F \mathbf{S}_f\right) |\Psi_{nf}^{F}\rangle = E_n^{F} |\Psi_{nf}^{F}\rangle, \ n = 1, 2, ..., 6,$$
 (4)

$$\left(\boldsymbol{H}_{q}^{^{A}}-\bar{\boldsymbol{\mathbf{H}}}_{^{G}}\boldsymbol{\mathbf{S}}_{g}\right)|\boldsymbol{\Psi}_{nq}^{^{G}}\rangle=\boldsymbol{E}_{n}^{^{G}}|\boldsymbol{\Psi}_{nq}^{^{G}}\rangle,\ n=1,2,...,6,\quad(5)$$

в которых векторы самосогласованных полей

$$\bar{\mathbf{H}}_{\scriptscriptstyle E} = \mathbf{H} + I_0 \boldsymbol{\sigma}_{\scriptscriptstyle E} - J_0 \boldsymbol{\sigma}_{\scriptscriptstyle C}, \ \bar{\mathbf{H}}_{\scriptscriptstyle C} = \mathbf{H} + I_0 \boldsymbol{\sigma}_{\scriptscriptstyle C} - J_0 \boldsymbol{\sigma}_{\scriptscriptstyle E}$$
 (6)

зависят от значений равновесных средних $\sigma_F = \langle \mathbf{S}_f \rangle$, $\sigma_G = \langle \mathbf{S}_g \rangle$ для двух подрешеток. I_0 и J_0 – фурьеобразы обменных интегралов $I_{ff'}$ и J_{fg} при нулевом значении квазиимпульса.

Равновесные средние удовлетворяют уравнениям:

$$\boldsymbol{\sigma}_{F} = \sum_{n=1}^{6} \langle \Psi_{n}^{F} | \mathbf{S}_{f} | \Psi_{n}^{F} \rangle \exp(-E_{n}^{F}/T) / Z_{F},$$

$$\boldsymbol{\sigma}_{G} = \sum_{n=1}^{6} \langle \Psi_{n}^{G} | \mathbf{S}_{g} | \Psi_{n}^{G} \rangle \exp(-E_{n}^{G}/T) / Z_{G}, \qquad (7)$$

$$Z_{F} = \sum_{n=1}^{6} \exp(-E_{n}^{F}/T), \ Z_{G} = \sum_{n=1}^{6} \exp(-E_{n}^{G}/T).$$

Приведенные выражения (4)–(7) образуют замкнутую систему уравнений самосогласования, определяющую необходимые термодинамические средние.

Если одноузельные состояния (ОС) $|\Psi_{nf}^{F}\rangle$ и $|\Psi_{ng}^{G}\rangle$ рассматривать в качестве базисных векторов гильбертова пространства, то переход к атомному представлению осуществляется посредством введения операторов Хаббарда (ОХ) [22]:

$$X_f^{np} = |\Psi_{nf}^F\rangle\langle\Psi_{pf}^F|, \quad X_q^{mq} = |\Psi_{mq}^G\rangle\langle\Psi_{qq}^G|, \qquad (8)$$

которые выступают в роли новых динамических переменных, с помощью которых описывается динамика не только дипольных степеней свободы, но и динамика высших мультиполей. Связь спиновых операторов с новыми переменными записывается в виде:

$$S_f^+ = \sum_{np} \gamma_{np}^F X_f^{np} \longrightarrow \sum_{\alpha} \gamma_{\alpha}^F X_f^{\alpha}, \tag{9}$$

где во второй сумме, для краткости, пара индексов обозначена через α. Параметры представления вычисляются как матричные элементы:

$$\gamma_{np}^F = \langle \Psi_{nf}^F | S_f^+ | \Psi_{pf}^F \rangle. \tag{10}$$

Аналогичным образом записываются представления для других операторов

$$S_f^z = \sum_{\mu} \Gamma_{\mu}^F X_f^{\mu}, \ S_g^+ = \sum_{\beta} \gamma_{\beta}^G X_g^{\beta}, \ S_g^z = \sum_{\nu} \Gamma_{\nu}^G X_g^{\nu}.$$
 (11)

В новых переменных гамильтониан принимает вид:

$$\hat{H} = \sum_{fn} E_n^F X_f^{nn} + \sum_{gm} E_m^G X_g^{mm} + H_{\text{int}},$$
 (12)

в котором H_{int} получается из операторов, соответствующих обменным взаимодействиям, после подстановки в них представлений для спиновых операторов (9) и (11). Гамильтониан в форме (12) позволяет использовать диаграммную технику для операторов Хаббарда (ДТХ) [23, 24].

4. ОС и энергии в коллинеарной геометрии.

При ориентации магнитного поля вдоль тригональной оси в фазе I ОС для F-подрешетки имеют вид (индекс узла f опускаем):

$$|\Psi_{1}^{F}\rangle = \cos \alpha_{+}|5/2\rangle + i \sin \alpha_{+}|-1/2\rangle,$$

$$|\Psi_{2}^{F}\rangle = |3/2\rangle, \quad |\Psi_{5}^{F}\rangle = |-3/2\rangle,$$

$$|\Psi_{3}^{F}\rangle = \cos \alpha_{-}|1/2\rangle + i \sin \alpha_{-}|-5/2\rangle, \quad (13)$$

$$|\Psi_{4}^{F}\rangle = i \sin \alpha_{+}|5/2\rangle + \cos \alpha_{+}|-1/2\rangle,$$

$$|\Psi_{6}^{F}\rangle = i \sin \alpha_{-}|1/2\rangle + \cos \alpha_{-}|-5/2\rangle,$$

где $|m\rangle$, (m=5/2, 3/2, ..., -5/2) собственные состояния оператора \hat{S}^z для спина S=5/2,

$$\cos \alpha_{\pm} = \sqrt{\frac{1 + \delta_{\pm}}{2}}, \quad \sin \alpha_{\pm} = \mp \frac{V}{|V|} \sqrt{\frac{1 - \delta_{\pm}}{2}},$$

$$\delta_{\pm} = \frac{\Delta_{\pm}}{\sqrt{\Delta_{\pm}^{2} + V^{2}}}, \quad \Delta_{\pm} = [3\bar{H}_{F} \pm (6D_{2} + 39D_{4})]/2,$$

$$\bar{H}_{F} = H + I_{0}\sigma_{F} - J_{0}\sigma_{G}, \quad V = 3\sqrt{10}B. \tag{14}$$

ОС (13) соответствуют собственные энергии:

$$E_{1,4}^{F} = (\varepsilon_{4}^{F} + \varepsilon_{1}^{F})/2 \mp \sqrt{\Delta_{+}^{2} + V^{2}}, \ E_{2}^{F} = \varepsilon_{2}^{F},$$

$$E_{3,6}^{F} = (\varepsilon_{6}^{F} + \varepsilon_{3}^{F})/2 \mp \sqrt{\Delta_{-}^{2} + V^{2}}, \ E_{5}^{F} = \varepsilon_{5}^{F}, \quad (15)$$

$$\varepsilon_{n}^{F} = -\bar{H}_{F}(7/2 - n) - D_{2}(7/2 - n)^{2} - D_{4}(7/2 - n)^{4}.$$

Для *G*-подрешетки структура ОС аналогична:

$$|\Psi_1^G\rangle = \cos\beta_+|-5/2\rangle - i\sin\beta_+|+1/2\rangle,$$

$$|\Psi_2^G\rangle = |-3/2\rangle, \quad |\Psi_5^G\rangle = |+3/2\rangle,$$

$$|\Psi_3^G\rangle = \cos\beta_-|-1/2\rangle + i\sin\beta_-|+5/2\rangle, \quad (16)$$

$$|\Psi_4^G\rangle = -i\sin\beta_+|-5/2\rangle + \cos\beta_+|+1/2\rangle,$$

$$|\Psi_6^G\rangle = i\sin\beta_-|-1/2\rangle + \cos\beta_-|+5/2\rangle,$$

где

$$\cos \beta_{\pm} = \sqrt{\frac{1 + \delta_{\pm}^{G}}{2}}, \quad \sin \beta_{\pm} = \frac{V}{|V|} \sqrt{\frac{1 - \delta_{\pm}^{G}}{2}},$$

$$\delta_{\pm}^{G} = \frac{\Delta_{\pm}^{G}}{\sqrt{(\Delta_{\pm}^{G})^{2} + V^{2}}}, \quad \Delta_{\pm}^{G} = \frac{3\bar{H}_{G} \pm (6D_{2} + 39D_{4})}{2},$$

$$\bar{H}_{G} = -H - I_{0}\sigma_{G} + J_{0}\sigma_{F}. \tag{17}$$

Одноузельные энергии для G-подрешетки определяются выражениями:

$$E_{1,4}^G = (\varepsilon_4^G + \varepsilon_1^G)/2 \mp \sqrt{(\Delta_+^G)^2 + V^2}, \ E_2^G = \varepsilon_2^G,$$

$$E_{3,6}^G = (\varepsilon_6^G + \varepsilon_3^G)/2 \mp \sqrt{(\Delta_-^G)^2 + V^2}, \ E_5^G = \varepsilon_5^G, \ (18)$$

$$\varepsilon_m^G = \bar{H}_G(m - 7/2) - D_2(m - 7/2)^2 - D_4(m - 7/2)^4.$$

5. Дисперсионное уравнение. Увеличение поля H, приложенного вдоль легкой оси анизотропи, индуцирует фазовый переход (ФП) первого рода [26, 27] из фазы I в фазу II. Критическое значение H_{sf} , при котором имеет место ФП, находится из условия потери положительной определенности спектра возбуждений Ω_k в фазе I.

Следует отметить, что H_{sf} , вычисленное при феноменологическом подходе, может не совпадать с тем значением, которое находится на основе квантовой теории. Это происходит, в частности, из-за квантовых флуктуаций, которые проявляются при низких температурах и особенно в магнетиках пониженной размерности [28], а также в соединениях с треугольной решеткой. В этом случае из-за фрустраций возрастает влияние квантовых поправок [29, 30], способных приводить к дополнительным особенностям поведения намагниченности.

Учитывая сказанное, при вычислении Ω_k в условиях сильной ОА применим мацубаровские функции Грина (МФГ), построенные в базисе ОХ [23, 24]:

$$D_{\alpha\beta}^{AB}(l-l',\tau-\tau') = -\langle \hat{T}_{\tau}\tilde{X}_{l}^{\alpha}(\tau)\tilde{X}_{l'}^{-\beta}(\tau')\rangle = \frac{T}{N} \sum_{k\omega_{m}} \exp[ik(l-l') - i\omega_{m}(\tau-\tau')] D_{\alpha\beta}^{AB}(k,\omega_{m}). \quad (19)$$

Угловые скобки обозначают статистическое усреднение от упорядоченного по мацубаровскому времени (влияние оператора \hat{T}_{τ}) произведения ОХ, взятых в гейзенберговском представлении в мацубаровские времена τ и τ' . Узлы l и l' относятся соответственно к подрешеткам A и B, $D_{\alpha\beta}^{AB}(k,\omega_m)$ – фурье-образ МФГ, k- квазиимпульс, $\omega_m = 2m\pi T (m=0,\pm 1,\pm 2,...)$ – мацубаровская частота [25].

Методика ДТХ изложена во многих работах [23, 24, 31, 32], поэтому на рис. 1 приведем лишь графический вид системы уравнений для $G_{\alpha\beta}^{AB}(k,\omega_m)$ в приближении невзаимодействующих квазичастиц:

$$\frac{F}{\alpha} \xrightarrow{F} = \frac{F}{\alpha} \xrightarrow{\beta} + \frac{F}{\alpha} \xrightarrow{\xi F} \xrightarrow{F} + \frac{F}{\alpha} \xrightarrow{\xi G} \xrightarrow{F} \xrightarrow{V} \xrightarrow{\beta}$$

$$\frac{G \quad F}{V \quad \beta} = \frac{G}{V \quad G \quad F} + \frac{G}{V \quad F \quad F}$$

Рис. 1. Система уравнений для $G_{\alpha\beta}^{AB}(k,\omega_m)$

Двумя линиями со стрелками обозначены искомые функции $G^{AB}_{\alpha\beta}(k,\omega_m),$ которые связаны с

 $D^{AB}_{\alpha\beta}(k,\omega_m)$ равенством $D^{AB}_{\alpha\beta}=G^{AB}_{\alpha\beta}b(\beta)$, в котором $b(\beta)$ – концевой множитель [23, 24], изображаемый кружком. Линии со стрелкой соответствует одноузельный пропагатор для A-подрешетки

$$G_{\alpha}^{A}(i\omega_{m}) = (i\omega_{m} + E_{p}^{A} - E_{q}^{A})^{-1}, \quad \alpha \equiv \alpha(p,q).$$
 (20)

Пунктирными и волнистыми линиями обозначены соответственно обменные интегралы I_k и J_k .

После сопоставления графикам аналитических выражений получаем $(p \equiv (k, i\omega_m)),$

$$G_{\alpha\beta}^{FF}(p) = \delta_{\alpha\beta}G_{\alpha}^{F}(i\omega_{m}) - G_{\alpha}^{F}(i\omega_{m})b(\alpha)(\gamma_{\alpha}^{F})^{*} \left[I_{k}X_{\beta}(p) - J_{k}Y_{\beta}(p)\right]/2, \tag{21}$$

$$G_{\nu\beta}^{GF}(p) = G_{\nu}^{G}(i\omega_{m})b(\nu)(\gamma_{\nu}^{G})^{*} \left[J_{k}X_{\beta}(p) - I_{k}Y_{\beta}(p)\right]/2,$$

где

$$X_{\beta}(p) = \sum_{\nu} \gamma_{\nu}^F G_{\nu\beta}^{FF}(p), \quad Y_{\beta}(p) = \sum_{\nu} \gamma_{\nu}^G G_{\nu\beta}^{GF}(p).$$

Решая (21), получаем $(D^F_{\alpha}(i\omega_m) = G^F_{\alpha}(i\omega_m)b^F(\alpha))$

$$D_{\alpha\alpha}^{FF}(p) = D_{\alpha}^{F}(i\omega_m) \left[1 + R_{\alpha}^{F}(p) \right]. \tag{22}$$

В этом выражении

$$R_{\alpha}^{F}(p) = \frac{|\gamma_{\alpha}^{F}|^{2} D_{\alpha}^{F} \{J_{k}^{2} \Phi^{G}/4 - I_{k} [1 + I_{k} \Phi^{G}/2]/2\}}{\det(p)}, (23)$$

квазиимпульсная зависимость фурье-образов обменных интегралов имеет вид

$$I_k = 2I[\cos(k_1) + \cos(k_2) + \cos(k_1 + k_2)],$$

$$J_k = 2J[\cos(k_3/2) + \cos(k_3/2 + k_1) + \cos(k_3/2 + k_1 + k_2)].$$
(24)

В этих выражениях k_1 , k_2 и k_3 обозначают компоненты квазиимпульса, принадлежащего первой зоне Бриллюэна. Базисные вектора треугольной решетки в плоскостях ионов Mn обозначены как a_1 и a_2 , базисный вектор элементарной ячейки a_3 ориентирован между слоями.

Функции Φ^F и Φ^G определяются формулами

$$\Phi^{F}(i\omega_{m}) = \sum_{nl} \frac{|\gamma^{F}(nl)|^{2} (N_{n}^{F} - N_{l}^{F})}{i\omega_{m} + E_{n}^{F} - E_{l}^{F}},$$
 (26)

$$\Phi^{G}(i\omega_{m}) = \sum_{nl} \frac{|\gamma^{G}(nl)|^{2} (N_{n}^{G} - N_{l}^{G})}{i\omega_{m} + E_{n}^{G} - E_{l}^{G}},$$
 (27)

в которых N_n^F и N_n^G обозначают числа заполнения ОС для F и G подрешеток. Знаменатель (23)

$$\det(p) = [1 + I_k \Phi^F / 2] [1 + I_k \Phi^G / 2] - J_k^2 \Phi^F \Phi^G / 4.(28)$$

после аналитического продолжения дает уравнение для вычисления спектра возбуждений

$$\det(k, i\omega_m \longrightarrow \omega + i\delta) = 0, \quad \delta \longrightarrow +0. \tag{29}$$

6. Квантовые эффекты и намагниченность $\mathbf{A}\Phi\mathbf{M}$ в фазах I и III при $T\ll T_N$. Известно, что в одноосных $\mathbf{A}\Phi\mathbf{M}$ при низких температурах в фазе I в магнитном поле, направленном вдоль оси анизотропии, намагниченность с точностью до экспоненциально малых слагаемых равна нулю и не зависит от H. С этой же точностью независимость намагниченности от H имеет место и в фазе III при $H>H_{\mathrm{sat}}^c$ (H_{sat}^c — критическое поле насыщения), когда подрешетки выстраиваются вдоль легкой оси.

Учет ТКОА качественно меняет ситуацию. В этом случае изменение M описывается слагаемыми, имеющими степенную малость, а не экспоненциальную. Действительно при $T\ll T_N$ из выражений (13) и (16) следует, что система уравнений самосогласования для нахождения σ_F и σ_G записывается в виде

$$\sigma_F = S - 3\sin^2\alpha_+, \quad \sigma_G = -S + 3\sin^2\beta_+.$$
 (30)

Ее решение для фазы I в квадратичном по параметру B и линейном по H приближениях при учете соотношений (14) и (17) дает выражение для намагниченности $M(H,T)=\sigma_F+\sigma_G$ (в единицах μ_B), в расчете на один ион Mn:

$$M(H) = \left(\frac{192}{25}\right) \left(\frac{B}{I_{+}}\right)^{2} \left(\frac{H}{I_{+}}\right), I_{+} = I_{0} + J_{0}.$$
 (31)

Видно, что ТКОА из-за квантовых эффектов приводит к увеличению намагниченности с ростом H.

В фазе III $\sigma_{\scriptscriptstyle F}=\sigma_{\scriptscriptstyle G}$ и намагниченность имеет вид:

$$M(H) = 2\left[\frac{5}{2} - \frac{24}{5}\left(\frac{B}{I_{+}}\right)^{2} + \frac{96}{25}\left(\frac{B}{I_{+}}\right)^{2}\left(\frac{\delta H}{I_{+}}\right)\right], (32)$$

где $\delta H = H - 2SJ_0$. Второе слагаемое в правой части дает уменьшение намагниченности из-за квантовых эффектов. Третье слагаемое описывает парапроцесс, обусловленный подавлением магнитным полем отмеченных эффектов. Физическая причина квантовых ренормировок связана с тем, что оператор $\hat{\Omega}_4^3$ смешивает состояния с разными проекциями спина.

В связи с этими результатами необходимо сделать важное замечание. Напомним, что неелевское состояние соответствует собственной функции гамильтониана (1) лишь приближенно даже в отсутствие ТКОА. Поэтому в системе присутствуют так называемые нулевые квантовые колебания (НКК), уменьшающие намагниченности подрешеток при T=0.

В одноосном АФМ приложенное вдоль легкой оси магнитное поле в фазе I действует на спины F- и Gподрешеток по разному. Для спинов F-подрешетки поле H способствует упорядочению, тогда как для G-подрешетки оно действует противоположно. Поэтому можно было бы ожидать, что НКК при $H \neq 0$ также могут инициировать дополнительный вклад в зависимость намагниченности от H.

Для разрешения этого вопроса, вычислим вклад НКК в намагниченность (для простоты) одноосного АФМ в продольном магнитном поле в фазе I.

Используя функцию Грина (22) и хорошо известную процедуру нахождения средних, после суммирования по мацубаровским частотам [25], получим выражение, описывающее намагниченность Fподрешетки в расчете на один узел

$$\sigma_F = S - \frac{1}{2N} \sum_{k} \frac{A_k - \omega_k}{\omega_k} - \frac{1}{2N} \sum_{k} \left\{ \frac{A_k - \omega_k}{\omega_k} f\left(\frac{\Omega_k^-}{T}\right) + \frac{A_k + \omega_k}{\omega_k} f\left(\frac{\Omega_k^+}{T}\right) \right\},$$
(33)

где f(x) – функция распределения Бозе–Эйнштейна,

$$\Omega_k^{\pm} = \omega_k \pm H, \quad \omega_k = \sqrt{[A_k - SJ_k][A_k + SJ_k]},$$

$$A_k = \varepsilon_a + S(J_0 + I_0 - I_k), \quad \varepsilon_a = 4D_2 + 34D_4. \quad (34)$$

Для намагниченности G-подрешетки получаем

$$\sigma_G = -S + \frac{1}{2N} \sum_k \frac{A_k - \omega_k}{\omega_k} +$$

$$\frac{1}{2N} \sum_k \left\{ \frac{A_k + \omega_k}{\omega_k} f\left(\frac{\Omega_k^-}{T}\right) + \frac{A_k - \omega_k}{\omega_k} f\left(\frac{\Omega_k^+}{T}\right) \right\}.$$
(35)

Суммы в первых строках (33) и (35) обусловлены НКК, а слагаемые вторых строк описывают уменьшение намагниченностей подрешеток за счет тепловых возбуждений квазичастиц.

Существенно, что вклады HKK не зависят от H. В результате намагниченность магнетика в расчете на один ион Mn при $T \ll T_N$ не зависит от НКК и определяется только тепловыми флуктуациями

$$M(H,T) = \frac{1}{N} \sum_{k} \left\{ f\left(\frac{\Omega_{k}^{-}}{T}\right) - f\left(\frac{\Omega_{k}^{+}}{T}\right) \right\}.$$
 (36)

Однако, эта формула дает увеличение M с ростом поля H в области $0 < H < H_{sf}$, значительно меньшее, чем это наблюдается в эксперименте [15].

При $B \neq 0$ НКК начинают давать вклад в намагниченность, но при реальных параметрах ОА они много меньше вклада (31). Это связано с тем, что,

кроме малостей по B и H, НКК приводят к дополнительной малости, связанной с разложением по $1/r_0^3$.

Сказанное снимает поставленный вопрос о вкладе HKK в зависимость M(H) в фазе I.

7. Ренормировки критических полей. Граница области реализации фазы I определяется полем спин-флоп перехода H_{sf} , которое находится из условия обращения в ноль энергии возбуждения при k=0. Из формул (26) и (27) при $T\ll T_N$ получаем

$$\Phi^{F}(i\omega_{m}) = \frac{2\tilde{S}}{i\omega_{m} - E_{21}^{F}}, \quad \Phi^{G}(i\omega_{m}) = \frac{-2\tilde{S}}{i\omega_{m} + E_{21}^{G}}, \quad (37)$$

где

$$\tilde{S} = S(1+\xi), \quad \xi = (12/25)(B/I_{+})^{2},
E_{21}^{F} = H + \varepsilon_{a} + SI_{+} + 36B^{2}/(5I_{+}),
E_{21}^{G} = -H + \varepsilon_{a} + SI_{+} + 36B^{2}/(5I_{+}).$$
(38)

Возникновение ренормировки $\sim \xi$, обусловлено учетом взаимодействия спиновой динамики с динамикой высших мультиполей. Зацепление этих степеней свободы происходит из-за ТКОА. При этом дисперсионное уравнение принимает вид:

$$[\omega - E_{21}^F + \tilde{S}I_k][\omega + E_{21}^G - \tilde{S}I_k] + (\tilde{S}J_k)^2 = 0.$$
 (39)

Из него получаем две ветви спектра в фазе I:

$$\Omega_{1k} = \tilde{\omega}_k - H, \quad \Omega_{2k} = \tilde{\omega}_k + H, \tag{40}$$

$$\Omega_{1k} = \tilde{\omega}_k - H, \quad \Omega_{2k} = \tilde{\omega}_k + H,$$

$$\tilde{\omega}_k = \sqrt{\left[\tilde{\varepsilon}_a + E_k^-\right]\left[\tilde{\varepsilon}_a + E_k^+\right]},$$
(40)

$$E_k^{\mp} = \tilde{S}(I_0 - I_k + J_0 \mp J_k), \ \tilde{\varepsilon}_a = \varepsilon_a + 6B^2/I_+.$$
 (42)

Отсюда следует выражение для критического поля

$$H_{sf} = \sqrt{\tilde{\varepsilon}_a(\tilde{\varepsilon}_a + 2\tilde{S}J_0)}. (43)$$

В фазе III подрешетки идентичны, поэтому

$$\Phi^F(i\omega_m) = \Phi^G(i\omega_m) = 2\tilde{S}/(i\omega_m - E_{21}), \qquad (44)$$

и две ветви спектра определяются выражениями:

$$\Omega_k^{\pm} = H - H_{\text{sat}}^c + \tilde{S}[I_0 - I_k + J_0 \pm J_k],$$
 (45)

где второе критическое поле имеет вид

$$H_{\text{sot}}^c = 2\sigma J_0 - \tilde{\varepsilon}_a, \quad \sigma = S - (24/5)(B/I_+)^2.$$
 (46)

Видно, что ренормировки сужают область реализации фазы II.

8. Особенности M(H) при спин-флоп переходе. При решении уравнений для σ_F и σ_G параметры модели выбирались при учете четырех условий.

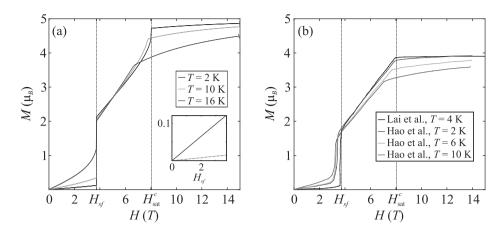


Рис. 2. (Цветной онлайн) (a) – Теоретические зависимости z-компоненты суммарной намагниченности подрешеток M^z от поля H, приложенного вдоль оси Oz при температурах: T=2, 10, 16 K. Параметры $I_0=0.516$ мэВ, $J_0=0.219$ мэВ, $D_2=0.0095$ мэВ, $D_4=0$, B=0.12 мэВ (см. текст). На вставке сплошной линией приведена зависимость $M^z(H)$ для $H\leq H_{sf}$, рассчитанная из формулы (31). Штриховой линией продемонстрирована зависимость в отсутствии тригональной компоненты кристаллического поля (B=0), см. (36). (b) – Экспериментальные данные для полевых зависимостей намагниченности в поле H|c для $MnBi_2Te_4$ из работ [14, 15] при температурах T=2, 4, 6, 10 K

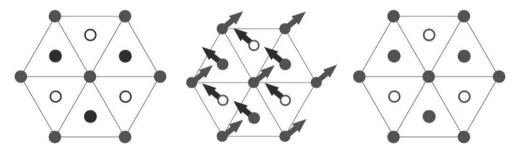


Рис. 3. (Цветной онлайн) Магнитная структура в фазах I, II, III (слева направо). Красный цвет соответствует положительной компоненте намагниченности вдоль оси Oz, синий – отрицательной. Стрелки в фазе II (рисунок посередине) определяют вектор намагниченности в плоскости $\mathbf{M}_{\perp} = (M^x, M^y)$

Два из них определяются выражениями для критических полей (43) и (46). Получающиеся значения должны были совпадать с экспериментальными данными $H_{sf}=3.7\,\mathrm{Tr}$ и $H_{\mathrm{sat}}^c=8.1\,\mathrm{Tr}$ [14, 15].

Третье ограничение связывает сумму обменных интегралов I_0 и J_0 со среднеполевым значением температуры Нееля: $T_N = S(S+1)(I_0+J_0)/3$. Наконец, параметр B определялся так, чтобы обеспечить при $T \ll T_N$ парапроцесс в фазе III и заметное нарастание намагниченности в фазе I, но при этом сохранить фазу II.

Результаты решения уравнений самосогласования (4)–(7), демонстрирующие важную роль квантовых эффектов при интерпретации обнаруженных в $MnBi_2Te_4$ особенностей поведения намагниченности, показаны на рис. 2a.

В фазах I и III при $T \ll T_N$ имеет место рост M при увеличении H. Это согласуется с экспериментальными данными, показанными на рис. 2b. Физи-

ческая причина такой зависимости, как отмечалось выше, связана с проявлением квантовых эффектов, инициируемых ТКОА. При возрастании температуры к отмеченному эффекту примешиваются вклады от тепловых флуктуаций. Этим объясняется более сильная зависимость M(H) в области больших T.

На рисунке 3 показаны фрагменты положений ионов Мп, формирующих три ближайших слоя. В каждом из них ионы находятся в узлах треугольных решеток. Левая часть рис. 3 соответствует фазе I, в которой спины F-подрешетки находятся в среднем слое (красные сплошные кружки) и ориентированы вдоль оси Oz. Проекции положений ионов Мп из нижнего и верхнего слоев на средний слой показаны синими кружками и окружностями соответственно. Спины этих ионов ориентированы против оси Oz (G-подрешетка). Средний фрагмент показывает спиновую конфигурацию в фазе II. В ней z-проекции спинов обеих подрешеток ориентированы по оси Oz,

а поперечные составляющие для F- и G-подрешеток обозначены красными и синими стрелками соответственно. В фазе III (правый фрагмент) все спины ориентированы по оси Oz.

Из сравнения зависимостей M(H), показанных на рис. 2a и b видно, что в фазе III теоретическое значение намагниченности оказывается близким к номинальному, но больше экспериментального. Такое расхождение объяснялось ранее влиянием дефектов [15], которые не учитываются в рассматриваемой модели. В этой связи отметим работу [19], в которой для гетероструктуры, приготовленной на основе MnBi₂Se₄ и Bi₂Te₃ и являющейся АФМ ТИ, получены важные результаты о характере разупорядочения и о влиянии неидеальности на магнитные свойства. В частности, было установлено, что ионы марганца могут занимать позиции, отличные от номинальных. При этом возникают магнитные взаимодействия между ионами Mn и Se, что указывает на наведение магнитного момента на ионах Se. Эти данные говорят о необходимости обобщения рассмотренной модели с целью учета дефектов, в окрестности которых будет происходить перераспределение спиновой плотности. В результате можно ожидать уменьшение M. Однако рассмотрение этого важного вопроса выходит за рамки данной работы.

Новая особенность, обусловленная ТКОА, проявляется в фазе II (см. рис. 4): кроме σ_F^x и $\sigma_G^x = -\sigma_F^x$ отличны от нуля σ_F^y и $\sigma_G^y = \sigma_F^y$, (ось Ox параллельна базисному вектору a_1 треугольной решетки). С феноменологической точки зрения возникающая геометрия векторов намагниченностей подрешеток объясняется двуосностью кристалла, при которой появляется "эффективное" поле анизотропии, направление которого не совпадает с направлением вектора a_1 .

Зависимости не равных нулю компонент намагниченностей подрешеток от H, когда реализуется прохождение через три фазы, показано на рис. 4.

9. Заключение.

1. Показано, что квантовые эффекты, инициируемые тригональной компонентой ОА, приводят в низкотемпературной области к возникновению зависимости намагниченности от магнитного поля как до спин-флоп перехода, так и в фазе "схлопнутых" подрешеток. При этом наличие парапроцесса в фазе III, когда намагниченности подрешеток ориентированы вдоль оси Oz, связано с тем, что магнитное поле подавляет квантовые эффекты и приводит к экспериментально наблюдаемому росту намагниченности. Это соответствует особенностям в зависимости M(H), обнаруженным при изучении магнитных свойств $A\Phi M$ TM $MnBi_2Te_4$.

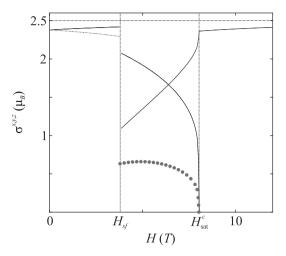


Рис. 4. (Цветной онлайн) В фазе I красная сплошная (штриховая) линия соответствует значениям σ_F^z ($|\sigma_G^z|$); в фазе II красная, синяя (сплошные) и зеленая (пунктирная) линии демонстрируют зависимости $\sigma_F^z = \sigma_G^z$, $\sigma_F^x = -\sigma_G^x$ и $|\sigma_F^y|$ ($\sigma_F^y = \sigma_G^y$) соответственно; в фазе III $\sigma_F^z = \sigma_G^z$, (красная линия). T = 2 К, параметры как и на рис. 2а

- 2. Утверждение о важной роли квантовых эффектов основано на результатах теории, использующей атомное представление, а также диаграммную технику для ОХ. Такой подход позволил корректно описать влияние сильной ОА и получить дисперсионное уравнение, определяющее спектр возбуждений при учете недиагонального характера ОА;
- 3. Проанализированы поправки к намагниченности подрешеток, обусловленные нулевыми квантовыми колебаниями, возникающими вследствие того, что неелевское состояние не соответствует точной функции гамильтониана системы. В аналитическом виде показано, что поправки не зависят от магнитного поля и не могут объяснить обнаруженные в эксперименте аномалии.
- 4. После решения дисперсионного уравнения из условий потери положительной определенности спектра возбуждений в магнитном поле получены ренормированные выражения для критических полей H_{sf} и H_{sat}^c .
- 5. При учете этих соотношений посредством численного решения системы уравнений самосогласования построены зависимости намагниченности от магнитного поля при различных температурах. Полученные закономерности качественно правильно отражают особенности полевых зависимостей в MnBi₂Te₄.
- 6. Применение результатов теории не ограничивается описанием магнитной подсистемы $MnBi_2Te_4$, а в равной мере может быть использовано для ин-

терпретации свойств анизотропных квазидвумерных магнетиков с треугольной решеткой в слоях. Вместе с тем необходимо отметить, что перенос результатов теории на ультратонкие пленки, актуальные с точки зрения возможной реализации в них квантового аномального эффекта Холла, требует корректировки. Это связано, в частности, с тем, что в нашем рассмотрении оператор ОА однороден, тогда как в тонких пленках поверхностные эффекты могут индуцировать неоднородность кристаллического поля.

Финансирование работы. Работа выполнена за счет гранта Российского научного фонда # 23-22-10021, https://rscf.ru/project/23-22-10021/ и Красноярского краевого фонда науки.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Phys. Rev. Lett. 122, 206401 (2019).
- 2. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature **576**, 416 (2019).
- J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).
- Y. Gong, J. Guo, J. Li et al. (Collaboration), Chin. Phys. Lett. 36, 076801 (2019).
- 5. S. Li, T. Liu, C. Liu, Y. Wang, H.-Z. Lu, and X. C. Xie, National Science Review 11, nwac296 (2023).
- J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney, Phys. Rev. Mater. 3, 064202 (2019).
- B. Li, J.-Q. Yan, D. M. Pajerowski, E. Gordon, A.-M. Nedi, Y. Sizyuk, L. Ke, P. P. Orth, D. Vaknin, and R. J. McQueeney, Phys. Rev. Lett. 124, 167204 (2020).
- 8. А. М. Шикин, Д. А. Естюнин, Д. А. Глазкова, С. О. Фильнов, И. И. Климовских, Письма в ЖЭТФ **115**, 241 (2022).
- 9. A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh et al. (Collaboration), Sci. Rep. 10, 13226 (2020).
- D. A. Glazkova, D. A. Estyunin, A. S. Tarasov, N. N. Kosyrev, V. A. Komarov, G. S. Patrin, V. A. Golyashov, O. E. Tereshchenko, K. A. Kokh, A. V. Koroleva, and A. M. Shikin, Crystallogr. Rep. 69, 79 (2024).
- Y. Li, Z. Jiang, J. Li, S. Xu, and W. Duan, Phys. Rev. B 100, 134438 (2019).
- J. Li, J. Y. Ni, X. Y. Li, H.-J. Koo, M.-H. Whangbo, J. S. Feng, and H. J. Xiang, Phys. Rev. B 101, 201408 (2020).

- 13. В. В. Вальков, А. О. Злотников, А. Гамов, Письма в ЖЭТФ 118, 330 (2023).
- Y.-J. Hao, P. Liu, Y. Feng et al. (Collaboration), Phys. Rev. X 9, 041038 (2019).
- Y. Lai, L. Ke, J. Yan, R.D. McDonald, and R.J. McQueeney, Phys. Rev. B 103, 184429 (2021).
- Y. Liu, L.-L. Wang, Q. Zheng, Z. Huang, X. Wang,
 M. Chi, Y. Wu, B. C. Chakoumakos, M. A. McGuire,
 B. C. Sales, W. Wu, and J. Yan, Phys. Rev. X 11, 021033 (2021).
- M. Sahoo, I. J. Onuorah, L. C. Folkers et al. (Collaboration), Advanced Science, DOI 10.1002/advs.202402753 (2024).
- S. X. M. Riberolles, Q. Zhang, E. Gordon, N. P. Butch,
 L. Ke, J.-Q. Yan, and R. J. McQueeney, Phys. Rev. B 104, 064401 (2021).
- 19. R. Fukushima, V. N. Antonov, M. M. Otrokov et al. (Collaboration), Phys. Rev. Mater. 8, 084202 (2024).
- 20. С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс соединений элементов переходных групп, Наука, М. (1972).
- 21. А. К. Звездин, В. М. Матвеев, А. А. Мухин, А. И. Попов, *Редкоземельные ионы в магнитоупорядоченных* кристаллах, Наука, М. (1985).
- 22. J. Hubbard, Proc. Roy. Soc. A285, 542 (1965).
- 23. Р.О. Зайцев, ЖЭТФ 68, 207 (1975).
- 24. Р.О. Зайцев, ЖЭТФ 70, 1100 (1976).
- 25. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский. Методы квантовой теории поля в статистической физике, Физматлит, М. (1962).
- 26. А.С. Боровик-Романов, *Антиферромагнетизм*, в кн. *Антиферромагнетизм и ферриты*, Изд-во АН СССР, М. (1962), с. 5.
- 27. А.Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).
- 28. А.И. Смирнов, УФН 186, 633 (2016).
- 29. Л. Е. Свистов, А. И. Смирнов, Л. А. Прозорова, О. А. Петренко, А. Я. Шапиро, Л. Н. Демьянец, Письма в ЖЭТФ **80**, 231 (2004).
- 30. Л. Е. Свистов, Л. А. Прозорова, А. М. Фарутин, А. А. Гиппиус, К. С. Охотников, А. А. Буш, К. Е. Каменцев, Э. А. Тищенко, ЖЭТФ 135, 1151 (2009).
- 31. Ю. А. Изюмов, М. И. Кацнельсон, Ю. Н. Скрябин, *Магнетизм коллективизированных электро-*нов, Физматлит, М. (1994).
- 32. В. В. Вальков, С. Г. Овчинников, *Квазичастицы в сильно коррелированных системах*, Изд-во СО РАН, Новосибирск (2001).