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Effects of quantum recoil forces in resistive switching in memristors
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Memristors – electric devices whose resistance “re-

members” the history of the previously passed cur-

rent [1] – are appealing circuit elements for neuromor-

phic applications beyond the von Neumann architec-

ture [2]. Current-controlled resistive switching in such

devices typically occurs due to ion migration in a dielec-

tric layer between the anode and the cathode resulting

in the growth or rupture of conductive filaments [3].

The physics of this key process still remains quite ob-

scure because of the stochasticity of the filament dy-

namics and a possible interplay of various scales and

effects, especially when it comes to filaments several

atoms thick exhibiting quantized conductance [4, 5]. Be-

cause of the attractiveness of such thin filaments for

encoding discrete states of the memristor [6], in this

letter, we analyze the role of electron-induced, “recoil”

forces acting on the ions [7] in the dynamics of these

filaments, in particular, in the context of conductance

quantization. In fact, in our recent study [8], we iden-

tified that recoil forces should be large enough at volt-

ages V ∼ 1 V and conductances near the conductance

quantum G0 = e20/π~ ≈ 77.5 µS (e0 is the elementary

charge, ~ is the Planck’s constant) to compete with the

interatomic forces, potentially affecting the evolution of

the filament; our experiments also favored the presence

of such forces. However, the model in [8] lacked the dy-

namics and used a semi-quantitative continuous descrip-

tion of the filament in the form of a liquid drop with a

certain profile. In contrast, in the present work we de-

velop an atomistic quantum theory of electron recoil

forces, estimate the latter ones within a toy model of

a 1D atomic chain, and further incorporate quantum

recoil into a molecular-dynamics (MD) framework with

realistic interatomic potentials. Using the latter, we ob-

serve a quantum analogue of electromigration triggering

a resistive switching event independently of the conven-

tional electrostatically-driven ion migration mechanism.

Our results thus indicate that quantum recoil should be

taken into account when describing memristive nanode-
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vices and could potentially be used in their rational de-

sign to achieve better retention characteristics of their

quantized-conductance states.

We use a semiclassical, Born–Oppenheimer descrip-

tion of the nanofilament supporting a quantum current

in terms of the tight-binding model:
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where m is the electron mass, X = (X1, . . . ,XN ) and

Pi = MiẊi are the (classical) coordinates and the mo-

menta of the ions, respectively, U(X) is the “bare” ion-

ion potential, u(x;X) is the effective (Kohn–Sham) po-

tential. We take the electron field operator ψ̂σ(x) with

the spin projection σ = ±1/2 expanded over a set of

annihilation operators ĉiσ, one per each atom, yield-

ing transfer integrals/on-site energies tij . The Ehren-

fest equations for the atomic coordinates now give Ṗi ≈
−∂U/∂Xi + F

(el)
i (X), where the “recoil” force acting

due to electrons can be written using nonequilibrium

Green’s functions (NEGFs) [9]:
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In this formula, µL,R are the chemical potentials of the

two leads, V = (µR−µL)/e0 is the applied bias, E0 is the

conduction band bottom, while GF(E) and ΓL,R(E) are

the filament’s retarded Green’s function and the broad-

ening operators, respectively. The force coefficients f
i
jk

are suppressed except for neighboring atoms and can be

approximately expressed in terms of the tmn matrix and

the inverse atomic radius ζ.

First we apply our model to a 1D chain of atoms with

the filament comprised of one, central atom (i = 0) and

all the other atoms assumed fixed (Fig. 1a); all nearest-

neighbor transfer integrals ti,i±1 are equal to t < 0
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Fig. 1. (Color online) (a) – Forces acting on atoms of a 1D atomic chain and their partial charges at V = 0 and 1V (solid and

dashed lines, respectively). (b) – Renormalized recoil forces for a 3D copper filament. (c) – Recoil-driven resistive switching for

the 3D filament (warmup and production MD at T = 300 K), with the plots showing the evolution of the total renormalized

recoil force F(el) acting on the whole filament, the total EAM+ recoil force F, and the conductance G

except t0,±1 = vR,L. Figure 1a demonstrates that the

recoil forces can be as large as 1 eV/Å; moreover, a

nonzero bias can trigger a Peierls-like instability of the

central atom’s position [10] with the critical voltage

Vcrit =
π|t|

e0|1/2− β|

[
2q2eff
ζ2a3|t| − 1− 8/π

]
, (4)

where qeff is the partially screened charges of the ions, a

is the interatomic distance, and β = (µR − EF)/e0V ∈
[0, 1] is the percentage of the voltage drop between

the cathode and the Fermi energy. For example, for

a = 1/ζ = 2.5 Å, t = −2 eV, qeff = 0.8e0, and β = 0,

the recoil-driven instability appears at Vcrit ≈ 1.7 V,

resulting in a voltage-controlled ion displacement.

Next, to simulate the effect of the recoil forces for

a realistic copper filament at room temperature – be-

yond the above toy model at T = 0 – we developed

a custom MD code implementing the embedded-atom

model (EAM) of the interatomic Cu-Cu forces [11] to-

gether with the recoil forces (3). To avoid double count-

ing, the latter ones were “renormalized” by subtracting

their zero-bias values, which should already be included

into the EAM force field. The recoil forces for the initial,

fcc-like filament configuration are presented in Fig. 1b,

and the MD results in Fig. 1c. During all the simulation

time, the recoil force remains directed toward the cath-

ode, facilitating ion migration in this direction, which

results in a resistive switching around t = 110 ps. Note

that the electrostatic field between the electrodes is ab-

sent in our simulations, and the ion transport occurs

solely due to momentum transfer from conduction elec-

trons. This is a novel mechanism of resistive switching

we report here, which is important in the atomic-scale-

filaments regime and could potentially be used for ra-

tional design of memristive devices.
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