Method for solving the inverse kinematics problem for a mechatronic device under the concept of separation between measurement space and physical motion space

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The issue of improving control accuracy for complex mechatronic systems in robotics and precision engineering is examined. The problem of misalignment between the measurement and physical spaces of mechatronic objects has been resolved. This misalignment arises due to manufacturing inaccuracies in mechatronic systems and instability in the sensor characteristics of mechanical actuation systems, among other systematic factors. A method of solving the inverse kinematics problem is proposed that is based on piecewise linear transformation and determining the orientation of the physical space axes using the concept of space separation (i.e. measurement, physical and generalised spaces). The transformation matrix was constructed using the direction cosines of the physical space axes, thereby reducing positioning errors under real-world conditions. An algorithm for correcting the direction cosine matrix, which links coordinates across different spaces, is also presented. Experimental validation was conducted on a monorail tripetron system (“STANKIN”, Russia). A Leica LTD800 laser tracker (Leica Geosystems AG, Switzerland) was used to evaluate positioning errors for both the traditional method (based on an ideal model) and the modified approach that accounts for distortions. The results showed a reduction in total positioning error from 5.69 mm to 3.41 mm (40.1%) across 11 control points. The key advantage of the proposed inverse kinematics solution is its ability to compensate for systematic errors without requiring precise measurement of the mechatronic system’s geometric parameters. These findings can be applied to industrial and collaborative robotics, medical manipulators and other systems where spatial control accuracy is critical. These results contribute to advancing calibration methods for mechatronic systems with non-ideal geometry.

Sobre autores

M. Stebulyanin

Moscow State University for Technology “STANKIN”

Email: mmsteb@rambler.ru
ORCID ID: 0009-0007-3443-0593
Código SPIN: 4389-1120

Y. Pimushkin

Moscow State University for Technology “STANKIN”

Email: yaroslav-pimushkin@yandex.ru
ORCID ID: 0009-0009-7359-9871
Código SPIN: 4853-4088

Bibliografia

  1. Григорьев С. Н., Телешевский В. И., Глубоков А. В. и др. Проблемы метрологического обеспечения подготовки производства в машиностроении. Измерительная техника, (5), 27–29 (2012). https://elibrary.ru/pbbtxz
  2. Григорьев С. Н., Мастеренко Д. А., Телешевский В. И., Емельянов П. Н. Современное состояние и перспективы развития метрологического обеспечения машиностроительного производства. Измерительная техника, (11), 56–59 (2012). https://elibrary.ru/pjwdxh
  3. Spong M. W., Hutchinson S., Vidyasagar M. Robot Modeling and Control. New York, Wiley (2006).
  4. Siciliano B., Sciavicco L., Villani L., Oriolo G. Robotics: Modelling, Planning and Control. London, Springer (2010). https://doi.org/10.1007/978-1-84628-642-1
  5. Craig J. J. Introduction to Robotics: Mechanics and Control. Boston, Pearson (2017).
  6. Kong Y., Yang L., Chen C., Zhu X., Li D., Guan Q., et al. Online kinematic calibration of robot manipulator based on neural network. Measurement, 238, 115281 (2024). https://doi.org/10.1016/j.measurement.2024.115281 ; https://elibrary.ru/mwekmd
  7. Zhang J., Lou Z., Fan K.-C. Accuracy improvement of a 3D passive laser tracker for the calibration of industrial robots. Robotics and Computer-Integrated Manufacturing, 81, 102487 (2023). https://doi.org/10.1016/j.rcim.2022.102487 ; https://elibrary.ru/samjzs
  8. Пимушкин Я. И., Стебулянин М. М. Коррекция объёмной точности портальной системы с помощью лазерного трекера. Вестник МГТУ «СТАНКИН», 64(1), 80–86 (2023). https://doi.org/10.47617/2072-3172_2023_1_80 ; https://elibrary.ru/euwczn
  9. Пимушкин Я. И., Стебулянин М. М., Мастеренко Д. А. К проблеме лазерной коррекции объёмной погрешности многокоординатных машин с портальной кинематикой. Контроль. Диагностика, 26(12(306)), 46–53 (2023). https://doi.org/10.14489/td.2023.12.pp.046-053 ; https://elibrary.ru/ggbylg
  10. Серков Н. А. Точность многокоординатных машин с ЧПУ: Теоретические и экспериментальные основы. Москва, Ленанд (2015).
  11. Лурье А. И. Аналитическая механика. Физматлит, Москва (1961).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).