The fine structure constant: a review of measurement results and possible space-time variations
- Authors: Bronnikov K.A.1, Ivashchuk V.D.1, Khruschov V.V.1
-
Affiliations:
- Research Center for Applied Metrology – Rostest
- Issue: Vol 74, No 2 (2025)
- Pages: 5-16
- Section: FUNDAMENTAL PROBLEMS IN METROLOGY
- URL: https://journals.rcsi.science/0368-1025/article/view/351164
- ID: 351164
Cite item
Abstract
About the authors
K. A. Bronnikov
Research Center for Applied Metrology – Rostest
Email: kb@yandex.ru
ORCID iD: 0000-0001-9392-7558
V. D. Ivashchuk
Research Center for Applied Metrology – Rostest
Email: VladimirDI@rostest.ru
ORCID iD: 0000-0002-4153-2658
SPIN-code: 2349-7755
V. V. Khruschov
Research Center for Applied Metrology – Rostest
Email: VyacheslavVK@rostest.ru
ORCID iD: 0000-0002-1287-5846
SPIN-code: 1997-6248
References
Bureau International des Poids et Measures. Resolution 1 of the 26th CGPM (2018). On the revision of the International System of Units (SI). https://www.bipm.org/en/committees/cg/cgpm/26-2018/resolution-1 Mills I. M., Mohr P. J., Quinn T. J. et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005). Metrologia, 43(3), 227–246 (2006). https://doi.org/10.1088/0026-1394/43/3/006 Кононогов С. А. Метрология и фундаментальные физические константы. Стандартинформ, Москва (2008)https://www.elibrary.ru/qjubtt (In Russ.) Will C. M. The Confrontation between General Relativity and Experiment. Living Reviews Relativity, 9, 3 (2006). https://doi.org/10.12942/lrr-2006-3; https://elibrary.ru/mjuucb Martins C. J. A. P. The status of varying constant: a review of the physics, searches and implications. Reports on Progress in Physics, 80(12), 126902 (2017). https://doi.org/10.1088/1361-6633/aa860e; https://elibrary.ru/sduhix Wilczynska M. R., Webb J. K., Bainbridge M. et al. Four direct measurements of the fine-structure constant 13 billion years ago. Science Advances, 6(17), 9672 (2020). https://doi.org/10.1126/sciadv.aay9672; https://www.elibrary.ru/taeakq Safronova M. S., Budker D., DeMille D. et al. Search for new physics with atoms and molecules. Reviews of Modern Physics, 90, 025008 (2018). https://doi.org/10.1103/RevModPhys.90.025008; https://elibrary.ru/glsshb Uzan J.-P. Fundamental constants: from measurement to the universe, a window on gravitation and cosmology. Cosmology and Nongalactic Astrophysics (2024). https://doi.org/10.48550/arXiv.2410.07281 Sommerfeld A. Zur Quantentheorie der Spektrallinien. Annalen der Physik, 366(51), 1–94 (1916). (In German) https://doi.org/10.1002/andp.19163561702 Van Dyck R. S., Schwinberg P. B., Dehmelt H. G. New high-precision comparison of electron and positron g factors. Physical Review Letters, 59(1), 26–29 (1987). https://doi.org/10.1103/PhysRevLett.59.26 Odom B., Hanneke D., D’Urso B. et al. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Physical Review Letters, 97(3), 030801 (2006). https://doi.org/10.1103/PhysRevLett.97.030801; https://elibrary.ru/mmehjp Gabrielse G., Hanneke D., Kinoshita T. et al. New determination of the fine structure constant from the electron g value and QED (Erratum), Physical Review Letters, 99, 039902 (2007). https://doi.org/10.1103/PhysRevLett.99.039902 Hanneke D., Fogwell S., Gabrielse G. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100, 120801 (2008). https://doi.org/10.1103/PhysRevLett.100.120801; https://elibrary.ru/mmeidp Fan X., Myers T. G., Sukra B. A. D., Gabrielse G. Measurement of the Electron Magnetic Moment. Physical Review Letters, 130, 071801 (2023). https://doi.org/10.1103/PhysRevLett.130.071801; https://elibrary.ru/hjsveh Kinoshita T., Nio М. Improved α4 term of the electron anomalous magnetic moment. Physical Review D, 73, 013003 (2006). https://doi.org/10.1103/PhysRevD.73.013003; https://elibrary.ru/mfsjzz Aoyama T., Hayakawa M., Kinoshita T. et al. Revised value of the eighth-order electron g-2. Physical Review Letters, 99, 110406 (2007). https://doi.org/10.1103/physrevlett.99.110406 Aoyama T., Kinoshita T., Nio M. Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Physical Review D, 97(3), 036001 (2018). https://doi.org/10.1103/PhysRevD.97.036001; https://elibrary.ru/yfrapr Wicht A., Hensley J. M., Sarajlic E., Chu S. A preliminary measurement of the fine structure constant based on atom interferometry. Physica Scripta, 2002(T102), 82–88 (2002). https://doi.org/10.1238/Physica.Topical.102a00082 Cadoret M., de Mirandes E., Clade P. et al. Combination of Bloch oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant. Physical Review Letters, 101, 230801 (2008). https://doi.org/10.1103/PhysRevLett.101.230801 Bouchendira R., Cladé P., Guellati-Khélifa S., Nez F., Biraben F. New determination of the fine structure constant and test of the quantum electrodynamics. Physical Review Letters, 106, 080801 (2011). https://doi.org/10.1103/PhysRevLett.106.080801 Clade P., de Mirandes E., Cadoret M. et al. Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: determination of the fine-structure constant. Physical Review A, 74, 052109 (2006). https://doi.org/10.1103/PhysRevA.74.052109; https://elibrary.ru/ycqmax Parker R. H., Yu C., Zhong W., Estey B., Müller H. Measurement of the fine-structure constant as a test of the Standard Model. Science, 360(6385), 191–195 (2018). https://doi.org/10.1126/science.aap7706; https://elibrary.ru/ygowrf Morel L., Yao Z., Cladé P., Guellati-Khélifa S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature, 588, 61–65 (2020). https://doi.org/10.1038/s41586-020-2964-7; https://elibrary.ru/inrrig Borde Ch. J. Atomic interferometry with internal state labeling. Physics Letters A, 140(1-2), 10–12 (1989). https://doi.org/10.1016/0375-9601(89)90537-9 Tiesinga E., Mohr P. J., Newell D. B., Taylor B. N. CODATA recommended values of the fundamental physical constants: 2018. Reviews of Modern Physics, 93, 025010 (2021). https://doi.org/10.1103/RevModPhys.93.025010; https://elibrary.ru/veyaoc Mount B. J., Redshaw M., Myers E. G. Atomic masses of 6Li, 23Na, 39,41K, 85,87Rb, and 133Cs. Physical Review A, 82, 042513 (2010). https://doi.org/10.1103/PhysRevA.82.042513; https://elibrary.ru/ogccbt Mohr P. J., Newell D. B., Taylor B. N. CODATA recommended values of the fundamental physical constants: 2014. Reviews of Modern Physics, 88, 035009 (2016). https://doi.org/10.1103/RevModPhys.88.035009; https://elibrary.ru/vkhelp Tanabashi M., Hagiwara K., Hikasa K. et al., Review in Particle Physics. Physical Review D, 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001; https://elibrary.ru/dtlofo Schwinger J. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review Journals Archive, 73, 416 (1948). https://doi.org/10.1103/PhysRev.73.416 Бронников К. А., Иващук В. Д., Хрущев В. В. Фундаментальные физические константы: результаты поиска и описания вариаций. Измерительная техника, (3), 3–8 (2022). https://doi.org/10.32446/0368-1025it.2022-3-3-8; https://elibrary.ru/mxmegc Бронников К. А., Калинин М. И., Хрущев В. В. О тепловой истории ранней Вселенной. Законодательная и прикладная метрология, (1), 11–17 (2024) https://elibrary.ru/wkmwmw Rosenband T., Hume D. B., Schmidt P. O. et al. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science, 319(5871), 1808–1812 (2008). https://doi.org/10.1126/science.1154622; https://elibrary.ru/mewhhh Godun R. M., Nisbet-Jones P. B. R., Jones J. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Physical Review Letters, 113, 210801 (2014). https://doi.org/10.1103/PhysRevLett.113.210801; https://elibrary.ru/urvhwh Levshakov S. A., Ng K-W., Henkel C. et al. Testing the weak equivalence principle by differential measurements of fundamental constants in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 487(4), 5175–5187 (2019). https://doi.org/10.1093/mnras/stz1628; https://elibrary.ru/djgwdl Lange R., Huntemann N., Rahm J. M. et al. Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons. Physical Review Letters, 126, 011102 (2021). https://doi.org/10.1103/physrevlett.126.011102 Flambaum V. V., Dzuba V. A. Search for variation of the fundamental constants in atomic, molecular and nuclear spectra. Canadian Journal of Physics, 87(1), 25–33 (2009). https://doi.org/10.1139/p08-072; https://elibrary.ru/mmyzrj Filzinger M., Dorscher S., Lange R. et al. Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons. Physical Review Letters, 130, 2530011 (2023). https://doi.org/10.1103/PhysRevLett.130.253001; https://elibrary.ru/avsglk Murphy M. T., Berke D.A., Liu F. et al. A limit on variations in the fine-structure constant from spectra of nearby Sun-like stars. Science, 378(6620), 634–636 (2022). https://doi.org/10.1126/science.abi9232 Kalita S., Uniyal A. C onstraining fundamental parameters in modifi ed gravity using Gaia-DR2 massive white dwarf observation. The Astrophysical Journal, 949(2), 62 (2023). https://doi.org/10.3847/1538-4357/accf1c; https://elibrary.ru/wergrb Jiang L., Fu S., Wang F. et al. Constraints on the variation of the fi ne-structure constant at 3˂ᴢ˂10 with JWST emissionline galaxies. Cosmology and Nongalactic Astrophysics (2024). https://doi.org/10.48550/arXiv.2405.08977 Milakovic D. Fine structure constant measurements in quasar absorption systems. Methodology (2023). https://doi.org/10.48550/arXiv.2310.00107 Tohfa H., Crump J., Baker E. et al. A cosmic microwave background search for fine-structure constant evolution. Cosmology and Nongalactic Astrophysics (2023). https://doi.org/10.48550/arXiv.2307.06768 Meisner U.-G., Metsch B. Ch., Meyer H. The electromagnetic fine-structure constant in primordial nucleosynthesis revisited. High Energy Physics – Theory (2023). https://doi.org/10.48550/arXiv.2305.15849 Seto O., Takahashi T., Toda Y. Variation of the fine structure constant in the light of recent helium abundance measurement. Physical Review D, 108, 023525 (2023). https://doi.org/10.1103/PhysRevD.108.023525; https://elibrary.ru/vrbxxb Matsumoto A., Ouchi M., Nakajima K. et al., EMPRESS. VIII. A new determination of primordial He abundance with extremely metal-poor galaxies: a suggestion of the lepton asymmetry and implications for the Hubble tension. The Astrophysical Journal, 941(2), 167 (2022). https://doi.org/10.3847/1538-4357/ac9ea1; https://elibrary.ru/kruwig Webb J. K., Murphy M. T., Flambaum V. V. et al. Further evidence for cosmological evolution of the fine structure constant. Physical Review Letters, 87, 091301 (2001). https://doi.org/10.1103/PhysRevLett.87.091301; https://elibrary.ru/lmwhmp Webb J. K., King J.A., Murphy M. T. et al. Indications of a spatial variation of the fine structure constant. Physical Review Letters, 107, 191101 (2011). https://doi.org/10.1103/PhysRevLett.107.191101; https://elibrary.ru/phzfyd Levshakov S. A., Combes F., Boone F. et al., An upper limit to the variation in the fundamental constants at redshift z=5.2. Astronomy and Astrophysics, 540, L9 (2012). https://doi.org/10.1051/0004-6361/201219042; https://elibrary.ru/pdmvpx Whitmore J. B., Murphy M. T. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra. Monthly Notices of the Royal Astronomical Society, 447(1), 446–462 (2015). https://doi.org/10.1093/mnras/stu2420; https://elibrary.ru/spobzn Lee C.-C., Webb J. K., Milaković D., Carswell R. F. Non-uniqueness in quasar absorption models and implications for measurements of the fine structure constant. Monthly Notices of the Royal Astronomical Society, 507(1), 27–42 (2021). https://doi.org/10.1093/mnras/stab2005; https://elibrary.ru/wzsfug
Supplementary files

