Shape of magnetic fluid surface near magnetic bodies in constant and alternating magnetic field
- 作者: Simonovsky А.Y.1,2, Zakinyan A.R.2
-
隶属关系:
- North Caucasus Federal University
- Stavropol State Agrarian University
- 期: 卷 88, 编号 10 (2024)
- 页面: 1626-1631
- 栏目: Microfluidics and ferrohydrodynamics of magnetic colloids
- URL: https://journals.rcsi.science/0367-6765/article/view/283406
- DOI: https://doi.org/10.31857/S0367676524100191
- EDN: https://elibrary.ru/DSDNQZ
- ID: 283406
如何引用文章
详细
The shape of the free surface of a magnetic fluid, which it takes in an external homogeneous magnetic field near solid magnetic bodies, is experimentally investigated. The shape of the magnetic fluid surface in the vicinity of bodies of different basic geometry: cylinder, ball, plate is studied. The pattern of the magnetic fluid surface under the influence of a stationary and alternating magnetic field is considered. It is shown that the shape of the surface essentially depends on the volume of the magnetic fluid, the geometry of the magnetic body and the magnitude of the magnetic field. The obtained results indicate the possibility of purposeful control of the shape of the free surface of magnetic fluid, which may have practical applications.
全文:

作者简介
А. Simonovsky
North Caucasus Federal University; Stavropol State Agrarian University
编辑信件的主要联系方式.
Email: simonovchkij@mail.ru
俄罗斯联邦, Stavropol; Stavropol
A. Zakinyan
Stavropol State Agrarian University
Email: simonovchkij@mail.ru
俄罗斯联邦, Stavropol
参考
- Гареев К.Г., Непомнящая Э.К. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 990; Gareev K.G., Nepomnyashchaya E.K. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. Р. 904.
- Richter R., Lange A. // In: Lecture Notes on Physics. V. 763. Berlin, Heidelberg: Springer, 2009.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshov E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. Р. 295.
- Zakinyan A., Mkrtchyan L., Dikansky Y. // Eur. J. Mech. B. 2016. V. 56. P. 172.
- Gogosov V.V., Grishanina O.A., Kiryushin V.V., Simonovskii A.Ya. // Magnetohydrodynamics. 1998. V. 34. P. 35.
- Naletova V.A., Turkov V.A., Pelevina D.A. et al. // J. Magn. Magn. Mater. 2012. V. 324. P. 1253.
- Bashtovoi V., Motsar A., Naletova V. et al. // Magnetohydrodynamics. 2013. V. 49. P. 592.
- Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. Art. No. 087107.
- Huang L., Hädrich T., Michelsacm D.L. // Trans. Graph. 2019. V. 38. P. 93.
- Ando B., Ascia A., Baglio S., Pitrone N. // IEEE Trans. Instrum. Meas. 2009. V. 58. P. 3232.
- Greivell N.E., Hannaford B. // IEEE Trans. Biomed. Eng. 1997. V. 44. P. 129.
- Sun R., Li D. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 165960.
- Gogosov V.V., Simonovskii A.Ya., Smolkin R.D. // J. Magn. Magn. Mater. 1990. V. 85. P. 227.
- Khoshmehr H.H., Saboonchi A., Shafii M.B., Jahani N. // Appl. Therm. Eng. 2014. V. 64. P. 331.
- Kole M., Khandekar S. // J. Magn. Magn. Mater. 2021. V. 537. Art. No. 168222.
补充文件
